}
Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
- if (Constant *C = getImpl(Ty, V))
- return C;
- return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
-}
-Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
// Empty arrays are canonicalized to ConstantAggregateZero.
if (V.empty())
return ConstantAggregateZero::get(Ty);
assert(V[i]->getType() == Ty->getElementType() &&
"Wrong type in array element initializer");
}
+ LLVMContextImpl *pImpl = Ty->getContext().pImpl;
// If this is an all-zero array, return a ConstantAggregateZero object. If
// all undef, return an UndefValue, if "all simple", then return a
}
// Otherwise, we really do want to create a ConstantArray.
- return nullptr;
+ return pImpl->ArrayConstants.getOrCreate(Ty, V);
}
/// getTypeForElements - Return an anonymous struct type to use for a constant
// ConstantVector accessors.
Constant *ConstantVector::get(ArrayRef<Constant*> V) {
- if (Constant *C = getImpl(V))
- return C;
- VectorType *Ty = VectorType::get(V.front()->getType(), V.size());
- return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
-}
-Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
assert(!V.empty() && "Vectors can't be empty");
VectorType *T = VectorType::get(V.front()->getType(), V.size());
+ LLVMContextImpl *pImpl = T->getContext().pImpl;
// If this is an all-undef or all-zero vector, return a
// ConstantAggregateZero or UndefValue.
// Otherwise, the element type isn't compatible with ConstantDataVector, or
// the operand list constants a ConstantExpr or something else strange.
- return nullptr;
+ return pImpl->VectorConstants.getOrCreate(T, V);
}
Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
// and return early.
BlockAddress *&NewBA =
getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
- if (NewBA) {
- replaceUsesOfWithOnConstantImpl(NewBA);
+ if (!NewBA) {
+ getBasicBlock()->AdjustBlockAddressRefCount(-1);
+
+ // Remove the old entry, this can't cause the map to rehash (just a
+ // tombstone will get added).
+ getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
+ getBasicBlock()));
+ NewBA = this;
+ setOperand(0, NewF);
+ setOperand(1, NewBB);
+ getBasicBlock()->AdjustBlockAddressRefCount(1);
return;
}
- getBasicBlock()->AdjustBlockAddressRefCount(-1);
+ // Otherwise, I do need to replace this with an existing value.
+ assert(NewBA != this && "I didn't contain From!");
- // Remove the old entry, this can't cause the map to rehash (just a
- // tombstone will get added).
- getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
- getBasicBlock()));
- NewBA = this;
- setOperand(0, NewF);
- setOperand(1, NewBB);
- getBasicBlock()->AdjustBlockAddressRefCount(1);
+ // Everyone using this now uses the replacement.
+ replaceAllUsesWith(NewBA);
+
+ destroyConstant();
}
//---- ConstantExpr::get() implementations.
LLVMContextImpl *pImpl = Ty->getContext().pImpl;
// Look up the constant in the table first to ensure uniqueness.
- ConstantExprKeyType Key(opc, C);
+ ExprMapKeyType Key(opc, C);
return pImpl->ExprConstants.getOrCreate(Ty, Key);
}
return FC; // Fold a few common cases.
Constant *ArgVec[] = { C1, C2 };
- ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
+ ExprMapKeyType Key(Opcode, ArgVec, 0, Flags);
LLVMContextImpl *pImpl = C1->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
return SC; // Fold common cases
Constant *ArgVec[] = { C, V1, V2 };
- ConstantExprKeyType Key(Instruction::Select, ArgVec);
+ ExprMapKeyType Key(Instruction::Select, ArgVec);
LLVMContextImpl *pImpl = C->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
"getelementptr index type missmatch");
ArgVec.push_back(cast<Constant>(Idxs[i]));
}
- const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
- InBounds ? GEPOperator::IsInBounds : 0);
+ const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
+ InBounds ? GEPOperator::IsInBounds : 0);
LLVMContextImpl *pImpl = C->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
// Look up the constant in the table first to ensure uniqueness
Constant *ArgVec[] = { LHS, RHS };
// Get the key type with both the opcode and predicate
- const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
+ const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
Type *ResultTy = Type::getInt1Ty(LHS->getContext());
if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
// Look up the constant in the table first to ensure uniqueness
Constant *ArgVec[] = { LHS, RHS };
// Get the key type with both the opcode and predicate
- const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
+ const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
Type *ResultTy = Type::getInt1Ty(LHS->getContext());
if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
// Look up the constant in the table first to ensure uniqueness
Constant *ArgVec[] = { Val, Idx };
- const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
+ const ExprMapKeyType Key(Instruction::ExtractElement, ArgVec);
LLVMContextImpl *pImpl = Val->getContext().pImpl;
Type *ReqTy = Val->getType()->getVectorElementType();
return FC; // Fold a few common cases.
// Look up the constant in the table first to ensure uniqueness
Constant *ArgVec[] = { Val, Elt, Idx };
- const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
+ const ExprMapKeyType Key(Instruction::InsertElement, ArgVec);
LLVMContextImpl *pImpl = Val->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
// Look up the constant in the table first to ensure uniqueness
Constant *ArgVec[] = { V1, V2, Mask };
- const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec);
+ const ExprMapKeyType Key(Instruction::ShuffleVector, ArgVec);
LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
return FC;
Constant *ArgVec[] = { Agg, Val };
- const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
+ const ExprMapKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
LLVMContextImpl *pImpl = Agg->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
return FC;
Constant *ArgVec[] = { Agg };
- const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
+ const ExprMapKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
LLVMContextImpl *pImpl = Agg->getContext().pImpl;
return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
/// work, but would be really slow because it would have to unique each updated
/// array instance.
///
-void Constant::replaceUsesOfWithOnConstantImpl(Constant *Replacement) {
- // I do need to replace this with an existing value.
- assert(Replacement != this && "I didn't contain From!");
-
- // Everyone using this now uses the replacement.
- replaceAllUsesWith(Replacement);
-
- // Delete the old constant!
- destroyConstant();
-}
-
void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
Use *U) {
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
AllSame &= Val == ToC;
}
+ Constant *Replacement = nullptr;
if (AllSame && ToC->isNullValue()) {
- replaceUsesOfWithOnConstantImpl(ConstantAggregateZero::get(getType()));
- return;
- }
- if (AllSame && isa<UndefValue>(ToC)) {
- replaceUsesOfWithOnConstantImpl(UndefValue::get(getType()));
- return;
- }
-
- // Check for any other type of constant-folding.
- if (Constant *C = getImpl(getType(), Values)) {
- replaceUsesOfWithOnConstantImpl(C);
- return;
+ Replacement = ConstantAggregateZero::get(getType());
+ } else if (AllSame && isa<UndefValue>(ToC)) {
+ Replacement = UndefValue::get(getType());
+ } else {
+ // Check to see if we have this array type already.
+ LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup(
+ cast<ArrayType>(getType()), makeArrayRef(Values));
+ LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
+ pImpl->ArrayConstants.find(Lookup);
+
+ if (I != pImpl->ArrayConstants.map_end()) {
+ Replacement = I->first;
+ } else {
+ // Okay, the new shape doesn't exist in the system yet. Instead of
+ // creating a new constant array, inserting it, replaceallusesof'ing the
+ // old with the new, then deleting the old... just update the current one
+ // in place!
+ pImpl->ArrayConstants.remove(this);
+
+ // Update to the new value. Optimize for the case when we have a single
+ // operand that we're changing, but handle bulk updates efficiently.
+ if (NumUpdated == 1) {
+ unsigned OperandToUpdate = U - OperandList;
+ assert(getOperand(OperandToUpdate) == From &&
+ "ReplaceAllUsesWith broken!");
+ setOperand(OperandToUpdate, ToC);
+ } else {
+ for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
+ if (getOperand(i) == From)
+ setOperand(i, ToC);
+ }
+ pImpl->ArrayConstants.insert(this);
+ return;
+ }
}
- // Check to see if we have this array type already.
- LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup(
- cast<ArrayType>(getType()), makeArrayRef(Values));
- LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
- pImpl->ArrayConstants.find(Lookup);
+ // Otherwise, I do need to replace this with an existing value.
+ assert(Replacement != this && "I didn't contain From!");
- if (I != pImpl->ArrayConstants.map_end()) {
- replaceUsesOfWithOnConstantImpl(I->first);
- return;
- }
+ // Everyone using this now uses the replacement.
+ replaceAllUsesWith(Replacement);
- // Okay, the new shape doesn't exist in the system yet. Instead of
- // creating a new constant array, inserting it, replaceallusesof'ing the
- // old with the new, then deleting the old... just update the current one
- // in place!
- pImpl->ArrayConstants.remove(this);
-
- // Update to the new value. Optimize for the case when we have a single
- // operand that we're changing, but handle bulk updates efficiently.
- if (NumUpdated == 1) {
- unsigned OperandToUpdate = U - OperandList;
- assert(getOperand(OperandToUpdate) == From &&
- "ReplaceAllUsesWith broken!");
- setOperand(OperandToUpdate, ToC);
- } else {
- for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
- if (getOperand(I) == From)
- setOperand(I, ToC);
- }
- pImpl->ArrayConstants.insert(this);
+ // Delete the old constant!
+ destroyConstant();
}
void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
LLVMContextImpl *pImpl = getContext().pImpl;
+ Constant *Replacement = nullptr;
if (isAllZeros) {
- replaceUsesOfWithOnConstantImpl(ConstantAggregateZero::get(getType()));
- return;
- }
- if (isAllUndef) {
- replaceUsesOfWithOnConstantImpl(UndefValue::get(getType()));
- return;
- }
-
- // Check to see if we have this struct type already.
- LLVMContextImpl::StructConstantsTy::LookupKey Lookup(
- cast<StructType>(getType()), makeArrayRef(Values));
- LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
+ Replacement = ConstantAggregateZero::get(getType());
+ } else if (isAllUndef) {
+ Replacement = UndefValue::get(getType());
+ } else {
+ // Check to see if we have this struct type already.
+ LLVMContextImpl::StructConstantsTy::LookupKey Lookup(
+ cast<StructType>(getType()), makeArrayRef(Values));
+ LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
pImpl->StructConstants.find(Lookup);
- if (I != pImpl->StructConstants.map_end()) {
- replaceUsesOfWithOnConstantImpl(I->first);
- return;
+ if (I != pImpl->StructConstants.map_end()) {
+ Replacement = I->first;
+ } else {
+ // Okay, the new shape doesn't exist in the system yet. Instead of
+ // creating a new constant struct, inserting it, replaceallusesof'ing the
+ // old with the new, then deleting the old... just update the current one
+ // in place!
+ pImpl->StructConstants.remove(this);
+
+ // Update to the new value.
+ setOperand(OperandToUpdate, ToC);
+ pImpl->StructConstants.insert(this);
+ return;
+ }
}
- // Okay, the new shape doesn't exist in the system yet. Instead of
- // creating a new constant struct, inserting it, replaceallusesof'ing the
- // old with the new, then deleting the old... just update the current one
- // in place!
- pImpl->StructConstants.remove(this);
+ assert(Replacement != this && "I didn't contain From!");
- // Update to the new value.
- setOperand(OperandToUpdate, ToC);
- pImpl->StructConstants.insert(this);
+ // Everyone using this now uses the replacement.
+ replaceAllUsesWith(Replacement);
+
+ // Delete the old constant!
+ destroyConstant();
}
void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
Use *U) {
assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
- Constant *ToC = cast<Constant>(To);
SmallVector<Constant*, 8> Values;
Values.reserve(getNumOperands()); // Build replacement array...
- unsigned NumUpdated = 0;
for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
Constant *Val = getOperand(i);
- if (Val == From) {
- ++NumUpdated;
- Val = ToC;
- }
+ if (Val == From) Val = cast<Constant>(To);
Values.push_back(Val);
}
- if (Constant *C = getImpl(Values)) {
- replaceUsesOfWithOnConstantImpl(C);
- return;
- }
-
- // Update to the new value. Optimize for the case when we have a single
- // operand that we're changing, but handle bulk updates efficiently.
- auto &pImpl = getType()->getContext().pImpl;
- pImpl->VectorConstants.remove(this);
+ Constant *Replacement = get(Values);
+ assert(Replacement != this && "I didn't contain From!");
- if (NumUpdated == 1) {
- unsigned OperandToUpdate = U - OperandList;
- assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
- setOperand(OperandToUpdate, ToC);
- } else {
- for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
- if (getOperand(I) == From)
- setOperand(I, ToC);
- }
+ // Everyone using this now uses the replacement.
+ replaceAllUsesWith(Replacement);
- pImpl->VectorConstants.insert(this);
+ // Delete the old constant!
+ destroyConstant();
}
void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
Constant *Replacement = getWithOperands(NewOps);
assert(Replacement != this && "I didn't contain From!");
- // Check if Replacement has no users (and is the same type). Ideally, this
- // check would be done *before* creating Replacement, but threading this
- // through constant-folding isn't trivial.
- if (canBecomeReplacement(Replacement)) {
- // Avoid unnecessary RAUW traffic.
- auto &ExprConstants = getType()->getContext().pImpl->ExprConstants;
- ExprConstants.remove(this);
-
- auto *CE = cast<ConstantExpr>(Replacement);
- for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
- // Only set the operands that have actually changed.
- if (getOperand(I) != CE->getOperand(I))
- setOperand(I, CE->getOperand(I));
-
- CE->destroyConstant();
- ExprConstants.insert(this);
- return;
- }
-
// Everyone using this now uses the replacement.
replaceAllUsesWith(Replacement);
destroyConstant();
}
-bool ConstantExpr::canBecomeReplacement(const Constant *Replacement) const {
- // If Replacement already has users, use it regardless.
- if (!Replacement->use_empty())
- return false;
-
- // Check for anything that could have changed during constant-folding.
- if (getValueID() != Replacement->getValueID())
- return false;
- const auto *CE = cast<ConstantExpr>(Replacement);
- if (getOpcode() != CE->getOpcode())
- return false;
- if (getNumOperands() != CE->getNumOperands())
- return false;
- if (getRawSubclassOptionalData() != CE->getRawSubclassOptionalData())
- return false;
- if (isCompare())
- if (getPredicate() != CE->getPredicate())
- return false;
- if (hasIndices())
- if (getIndices() != CE->getIndices())
- return false;
-
- return true;
-}
-
Instruction *ConstantExpr::getAsInstruction() {
SmallVector<Value*,4> ValueOperands;
for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
#define DEBUG_TYPE "ir"
namespace llvm {
+template<class ValType>
+struct ConstantTraits;
/// UnaryConstantExpr - This class is private to Constants.cpp, and is used
/// behind the scenes to implement unary constant exprs.
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CompareConstantExpr, Value)
-template <class ConstantClass> struct ConstantAggrKeyType;
-struct InlineAsmKeyType;
-struct ConstantExprKeyType;
+struct ExprMapKeyType {
+ ExprMapKeyType(unsigned opc,
+ ArrayRef<Constant*> ops,
+ unsigned short flags = 0,
+ unsigned short optionalflags = 0,
+ ArrayRef<unsigned> inds = None)
+ : opcode(opc), subclassoptionaldata(optionalflags), subclassdata(flags),
+ operands(ops.begin(), ops.end()), indices(inds.begin(), inds.end()) {}
+ uint8_t opcode;
+ uint8_t subclassoptionaldata;
+ uint16_t subclassdata;
+ std::vector<Constant*> operands;
+ SmallVector<unsigned, 4> indices;
+ bool operator==(const ExprMapKeyType& that) const {
+ return this->opcode == that.opcode &&
+ this->subclassdata == that.subclassdata &&
+ this->subclassoptionaldata == that.subclassoptionaldata &&
+ this->operands == that.operands &&
+ this->indices == that.indices;
+ }
+ bool operator<(const ExprMapKeyType & that) const {
+ return std::tie(opcode, operands, subclassdata, subclassoptionaldata,
+ indices) <
+ std::tie(that.opcode, that.operands, that.subclassdata,
+ that.subclassoptionaldata, that.indices);
+ }
+
+ bool operator!=(const ExprMapKeyType& that) const {
+ return !(*this == that);
+ }
+};
-template <class ConstantClass> struct ConstantInfo;
-template <> struct ConstantInfo<ConstantExpr> {
- typedef ConstantExprKeyType ValType;
- typedef Type TypeClass;
+struct InlineAsmKeyType {
+ InlineAsmKeyType(StringRef AsmString,
+ StringRef Constraints, bool hasSideEffects,
+ bool isAlignStack, InlineAsm::AsmDialect asmDialect)
+ : asm_string(AsmString), constraints(Constraints),
+ has_side_effects(hasSideEffects), is_align_stack(isAlignStack),
+ asm_dialect(asmDialect) {}
+ std::string asm_string;
+ std::string constraints;
+ bool has_side_effects;
+ bool is_align_stack;
+ InlineAsm::AsmDialect asm_dialect;
+ bool operator==(const InlineAsmKeyType& that) const {
+ return this->asm_string == that.asm_string &&
+ this->constraints == that.constraints &&
+ this->has_side_effects == that.has_side_effects &&
+ this->is_align_stack == that.is_align_stack &&
+ this->asm_dialect == that.asm_dialect;
+ }
+ bool operator<(const InlineAsmKeyType& that) const {
+ return std::tie(asm_string, constraints, has_side_effects, is_align_stack,
+ asm_dialect) <
+ std::tie(that.asm_string, that.constraints, that.has_side_effects,
+ that.is_align_stack, that.asm_dialect);
+ }
+
+ bool operator!=(const InlineAsmKeyType& that) const {
+ return !(*this == that);
+ }
};
-template <> struct ConstantInfo<InlineAsm> {
- typedef InlineAsmKeyType ValType;
- typedef PointerType TypeClass;
+
+// The number of operands for each ConstantCreator::create method is
+// determined by the ConstantTraits template.
+// ConstantCreator - A class that is used to create constants by
+// ConstantUniqueMap*. This class should be partially specialized if there is
+// something strange that needs to be done to interface to the ctor for the
+// constant.
+//
+template<typename T, typename Alloc>
+struct ConstantTraits< std::vector<T, Alloc> > {
+ static unsigned uses(const std::vector<T, Alloc>& v) {
+ return v.size();
+ }
};
-template <> struct ConstantInfo<ConstantArray> {
- typedef ConstantAggrKeyType<ConstantArray> ValType;
- typedef ArrayType TypeClass;
+
+template<>
+struct ConstantTraits<Constant *> {
+ static unsigned uses(Constant * const & v) {
+ return 1;
+ }
};
-template <> struct ConstantInfo<ConstantStruct> {
- typedef ConstantAggrKeyType<ConstantStruct> ValType;
- typedef StructType TypeClass;
+
+template<class ConstantClass, class TypeClass, class ValType>
+struct ConstantCreator {
+ static ConstantClass *create(TypeClass *Ty, const ValType &V) {
+ return new(ConstantTraits<ValType>::uses(V)) ConstantClass(Ty, V);
+ }
};
-template <> struct ConstantInfo<ConstantVector> {
- typedef ConstantAggrKeyType<ConstantVector> ValType;
- typedef VectorType TypeClass;
+
+template<class ConstantClass, class TypeClass>
+struct ConstantArrayCreator {
+ static ConstantClass *create(TypeClass *Ty, ArrayRef<Constant*> V) {
+ return new(V.size()) ConstantClass(Ty, V);
+ }
};
-template <class ConstantClass> struct ConstantAggrKeyType {
- ArrayRef<Constant *> Operands;
- ConstantAggrKeyType(ArrayRef<Constant *> Operands) : Operands(Operands) {}
- ConstantAggrKeyType(const ConstantClass *C,
- SmallVectorImpl<Constant *> &Storage) {
- assert(Storage.empty() && "Expected empty storage");
- for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
- Storage.push_back(C->getOperand(I));
- Operands = Storage;
+template<class ConstantClass>
+struct ConstantKeyData {
+ typedef void ValType;
+ static ValType getValType(ConstantClass *C) {
+ llvm_unreachable("Unknown Constant type!");
}
+};
- bool operator==(const ConstantAggrKeyType &X) const {
- return Operands == X.Operands;
+template<>
+struct ConstantCreator<ConstantExpr, Type, ExprMapKeyType> {
+ static ConstantExpr *create(Type *Ty, const ExprMapKeyType &V,
+ unsigned short pred = 0) {
+ if (Instruction::isCast(V.opcode))
+ return new UnaryConstantExpr(V.opcode, V.operands[0], Ty);
+ if ((V.opcode >= Instruction::BinaryOpsBegin &&
+ V.opcode < Instruction::BinaryOpsEnd))
+ return new BinaryConstantExpr(V.opcode, V.operands[0], V.operands[1],
+ V.subclassoptionaldata);
+ if (V.opcode == Instruction::Select)
+ return new SelectConstantExpr(V.operands[0], V.operands[1],
+ V.operands[2]);
+ if (V.opcode == Instruction::ExtractElement)
+ return new ExtractElementConstantExpr(V.operands[0], V.operands[1]);
+ if (V.opcode == Instruction::InsertElement)
+ return new InsertElementConstantExpr(V.operands[0], V.operands[1],
+ V.operands[2]);
+ if (V.opcode == Instruction::ShuffleVector)
+ return new ShuffleVectorConstantExpr(V.operands[0], V.operands[1],
+ V.operands[2]);
+ if (V.opcode == Instruction::InsertValue)
+ return new InsertValueConstantExpr(V.operands[0], V.operands[1],
+ V.indices, Ty);
+ if (V.opcode == Instruction::ExtractValue)
+ return new ExtractValueConstantExpr(V.operands[0], V.indices, Ty);
+ if (V.opcode == Instruction::GetElementPtr) {
+ std::vector<Constant*> IdxList(V.operands.begin()+1, V.operands.end());
+ return GetElementPtrConstantExpr::Create(V.operands[0], IdxList, Ty,
+ V.subclassoptionaldata);
+ }
+
+ // The compare instructions are weird. We have to encode the predicate
+ // value and it is combined with the instruction opcode by multiplying
+ // the opcode by one hundred. We must decode this to get the predicate.
+ if (V.opcode == Instruction::ICmp)
+ return new CompareConstantExpr(Ty, Instruction::ICmp, V.subclassdata,
+ V.operands[0], V.operands[1]);
+ if (V.opcode == Instruction::FCmp)
+ return new CompareConstantExpr(Ty, Instruction::FCmp, V.subclassdata,
+ V.operands[0], V.operands[1]);
+ llvm_unreachable("Invalid ConstantExpr!");
}
- bool operator==(const ConstantClass *C) const {
- if (Operands.size() != C->getNumOperands())
- return false;
- for (unsigned I = 0, E = Operands.size(); I != E; ++I)
- if (Operands[I] != C->getOperand(I))
- return false;
- return true;
+};
+
+template<>
+struct ConstantKeyData<ConstantExpr> {
+ typedef ExprMapKeyType ValType;
+ static ValType getValType(ConstantExpr *CE) {
+ std::vector<Constant*> Operands;
+ Operands.reserve(CE->getNumOperands());
+ for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i)
+ Operands.push_back(cast<Constant>(CE->getOperand(i)));
+ return ExprMapKeyType(CE->getOpcode(), Operands,
+ CE->isCompare() ? CE->getPredicate() : 0,
+ CE->getRawSubclassOptionalData(),
+ CE->hasIndices() ?
+ CE->getIndices() : ArrayRef<unsigned>());
}
- unsigned getHash() const {
- return hash_combine_range(Operands.begin(), Operands.end());
+};
+
+template<>
+struct ConstantCreator<InlineAsm, PointerType, InlineAsmKeyType> {
+ static InlineAsm *create(PointerType *Ty, const InlineAsmKeyType &Key) {
+ return new InlineAsm(Ty, Key.asm_string, Key.constraints,
+ Key.has_side_effects, Key.is_align_stack,
+ Key.asm_dialect);
}
+};
- typedef typename ConstantInfo<ConstantClass>::TypeClass TypeClass;
- ConstantClass *create(TypeClass *Ty) const {
- return new (Operands.size()) ConstantClass(Ty, Operands);
+template<>
+struct ConstantKeyData<InlineAsm> {
+ typedef InlineAsmKeyType ValType;
+ static ValType getValType(InlineAsm *Asm) {
+ return InlineAsmKeyType(Asm->getAsmString(), Asm->getConstraintString(),
+ Asm->hasSideEffects(), Asm->isAlignStack(),
+ Asm->getDialect());
}
};
-struct InlineAsmKeyType {
- StringRef AsmString;
- StringRef Constraints;
- bool HasSideEffects;
- bool IsAlignStack;
- InlineAsm::AsmDialect AsmDialect;
-
- InlineAsmKeyType(StringRef AsmString, StringRef Constraints,
- bool HasSideEffects, bool IsAlignStack,
- InlineAsm::AsmDialect AsmDialect)
- : AsmString(AsmString), Constraints(Constraints),
- HasSideEffects(HasSideEffects), IsAlignStack(IsAlignStack),
- AsmDialect(AsmDialect) {}
- InlineAsmKeyType(const InlineAsm *Asm, SmallVectorImpl<Constant *> &)
- : AsmString(Asm->getAsmString()), Constraints(Asm->getConstraintString()),
- HasSideEffects(Asm->hasSideEffects()),
- IsAlignStack(Asm->isAlignStack()), AsmDialect(Asm->getDialect()) {}
-
- bool operator==(const InlineAsmKeyType &X) const {
- return HasSideEffects == X.HasSideEffects &&
- IsAlignStack == X.IsAlignStack && AsmDialect == X.AsmDialect &&
- AsmString == X.AsmString && Constraints == X.Constraints;
- }
- bool operator==(const InlineAsm *Asm) const {
- return HasSideEffects == Asm->hasSideEffects() &&
- IsAlignStack == Asm->isAlignStack() &&
- AsmDialect == Asm->getDialect() &&
- AsmString == Asm->getAsmString() &&
- Constraints == Asm->getConstraintString();
- }
- unsigned getHash() const {
- return hash_combine(AsmString, Constraints, HasSideEffects, IsAlignStack,
- AsmDialect);
- }
-
- typedef ConstantInfo<InlineAsm>::TypeClass TypeClass;
- InlineAsm *create(TypeClass *Ty) const {
- return new InlineAsm(Ty, AsmString, Constraints, HasSideEffects,
- IsAlignStack, AsmDialect);
- }
-};
-
-struct ConstantExprKeyType {
- uint8_t Opcode;
- uint8_t SubclassOptionalData;
- uint16_t SubclassData;
- ArrayRef<Constant *> Ops;
- ArrayRef<unsigned> Indexes;
-
- ConstantExprKeyType(unsigned Opcode, ArrayRef<Constant *> Ops,
- unsigned short SubclassData = 0,
- unsigned short SubclassOptionalData = 0,
- ArrayRef<unsigned> Indexes = None)
- : Opcode(Opcode), SubclassOptionalData(SubclassOptionalData),
- SubclassData(SubclassData), Ops(Ops), Indexes(Indexes) {}
- ConstantExprKeyType(const ConstantExpr *CE,
- SmallVectorImpl<Constant *> &Storage)
- : Opcode(CE->getOpcode()),
- SubclassOptionalData(CE->getRawSubclassOptionalData()),
- SubclassData(CE->isCompare() ? CE->getPredicate() : 0),
- Indexes(CE->hasIndices() ? CE->getIndices() : ArrayRef<unsigned>()) {
- assert(Storage.empty() && "Expected empty storage");
- for (unsigned I = 0, E = CE->getNumOperands(); I != E; ++I)
- Storage.push_back(CE->getOperand(I));
- Ops = Storage;
- }
-
- bool operator==(const ConstantExprKeyType &X) const {
- return Opcode == X.Opcode && SubclassData == X.SubclassData &&
- SubclassOptionalData == X.SubclassOptionalData && Ops == X.Ops &&
- Indexes == X.Indexes;
- }
-
- bool operator==(const ConstantExpr *CE) const {
- if (Opcode != CE->getOpcode())
- return false;
- if (SubclassOptionalData != CE->getRawSubclassOptionalData())
- return false;
- if (Ops.size() != CE->getNumOperands())
- return false;
- if (SubclassData != (CE->isCompare() ? CE->getPredicate() : 0))
- return false;
- for (unsigned I = 0, E = Ops.size(); I != E; ++I)
- if (Ops[I] != CE->getOperand(I))
- return false;
- if (Indexes != (CE->hasIndices() ? CE->getIndices() : ArrayRef<unsigned>()))
- return false;
- return true;
- }
-
- unsigned getHash() const {
- return hash_combine(Opcode, SubclassOptionalData, SubclassData,
- hash_combine_range(Ops.begin(), Ops.end()),
- hash_combine_range(Indexes.begin(), Indexes.end()));
- }
-
- typedef ConstantInfo<ConstantExpr>::TypeClass TypeClass;
- ConstantExpr *create(TypeClass *Ty) const {
- switch (Opcode) {
- default:
- if (Instruction::isCast(Opcode))
- return new UnaryConstantExpr(Opcode, Ops[0], Ty);
- if ((Opcode >= Instruction::BinaryOpsBegin &&
- Opcode < Instruction::BinaryOpsEnd))
- return new BinaryConstantExpr(Opcode, Ops[0], Ops[1],
- SubclassOptionalData);
- llvm_unreachable("Invalid ConstantExpr!");
- case Instruction::Select:
- return new SelectConstantExpr(Ops[0], Ops[1], Ops[2]);
- case Instruction::ExtractElement:
- return new ExtractElementConstantExpr(Ops[0], Ops[1]);
- case Instruction::InsertElement:
- return new InsertElementConstantExpr(Ops[0], Ops[1], Ops[2]);
- case Instruction::ShuffleVector:
- return new ShuffleVectorConstantExpr(Ops[0], Ops[1], Ops[2]);
- case Instruction::InsertValue:
- return new InsertValueConstantExpr(Ops[0], Ops[1], Indexes, Ty);
- case Instruction::ExtractValue:
- return new ExtractValueConstantExpr(Ops[0], Indexes, Ty);
- case Instruction::GetElementPtr:
- return GetElementPtrConstantExpr::Create(Ops[0], Ops.slice(1), Ty,
- SubclassOptionalData);
- case Instruction::ICmp:
- return new CompareConstantExpr(Ty, Instruction::ICmp, SubclassData,
- Ops[0], Ops[1]);
- case Instruction::FCmp:
- return new CompareConstantExpr(Ty, Instruction::FCmp, SubclassData,
- Ops[0], Ops[1]);
+template<class ValType, class ValRefType, class TypeClass, class ConstantClass,
+ bool HasLargeKey = false /*true for arrays and structs*/ >
+class ConstantUniqueMap {
+public:
+ typedef std::pair<TypeClass*, ValType> MapKey;
+ typedef std::map<MapKey, ConstantClass *> MapTy;
+ typedef std::map<ConstantClass *, typename MapTy::iterator> InverseMapTy;
+private:
+ /// Map - This is the main map from the element descriptor to the Constants.
+ /// This is the primary way we avoid creating two of the same shape
+ /// constant.
+ MapTy Map;
+
+ /// InverseMap - If "HasLargeKey" is true, this contains an inverse mapping
+ /// from the constants to their element in Map. This is important for
+ /// removal of constants from the array, which would otherwise have to scan
+ /// through the map with very large keys.
+ InverseMapTy InverseMap;
+
+public:
+ typename MapTy::iterator map_begin() { return Map.begin(); }
+ typename MapTy::iterator map_end() { return Map.end(); }
+
+ void freeConstants() {
+ for (typename MapTy::iterator I=Map.begin(), E=Map.end();
+ I != E; ++I) {
+ // Asserts that use_empty().
+ delete I->second;
}
}
-};
+
+ /// InsertOrGetItem - Return an iterator for the specified element.
+ /// If the element exists in the map, the returned iterator points to the
+ /// entry and Exists=true. If not, the iterator points to the newly
+ /// inserted entry and returns Exists=false. Newly inserted entries have
+ /// I->second == 0, and should be filled in.
+ typename MapTy::iterator InsertOrGetItem(std::pair<MapKey, ConstantClass *>
+ &InsertVal,
+ bool &Exists) {
+ std::pair<typename MapTy::iterator, bool> IP = Map.insert(InsertVal);
+ Exists = !IP.second;
+ return IP.first;
+ }
+
+private:
+ typename MapTy::iterator FindExistingElement(ConstantClass *CP) {
+ if (HasLargeKey) {
+ typename InverseMapTy::iterator IMI = InverseMap.find(CP);
+ assert(IMI != InverseMap.end() && IMI->second != Map.end() &&
+ IMI->second->second == CP &&
+ "InverseMap corrupt!");
+ return IMI->second;
+ }
+
+ typename MapTy::iterator I =
+ Map.find(MapKey(static_cast<TypeClass*>(CP->getType()),
+ ConstantKeyData<ConstantClass>::getValType(CP)));
+ if (I == Map.end() || I->second != CP) {
+ // FIXME: This should not use a linear scan. If this gets to be a
+ // performance problem, someone should look at this.
+ for (I = Map.begin(); I != Map.end() && I->second != CP; ++I)
+ /* empty */;
+ }
+ return I;
+ }
+
+ ConstantClass *Create(TypeClass *Ty, ValRefType V,
+ typename MapTy::iterator I) {
+ ConstantClass* Result =
+ ConstantCreator<ConstantClass,TypeClass,ValType>::create(Ty, V);
-template <class ConstantClass> class ConstantUniqueMap {
+ assert(Result->getType() == Ty && "Type specified is not correct!");
+ I = Map.insert(I, std::make_pair(MapKey(Ty, V), Result));
+
+ if (HasLargeKey) // Remember the reverse mapping if needed.
+ InverseMap.insert(std::make_pair(Result, I));
+
+ return Result;
+ }
public:
- typedef typename ConstantInfo<ConstantClass>::ValType ValType;
- typedef typename ConstantInfo<ConstantClass>::TypeClass TypeClass;
- typedef std::pair<TypeClass *, ValType> LookupKey;
+
+ /// getOrCreate - Return the specified constant from the map, creating it if
+ /// necessary.
+ ConstantClass *getOrCreate(TypeClass *Ty, ValRefType V) {
+ MapKey Lookup(Ty, V);
+ ConstantClass* Result = nullptr;
+
+ typename MapTy::iterator I = Map.find(Lookup);
+ // Is it in the map?
+ if (I != Map.end())
+ Result = I->second;
+
+ if (!Result) {
+ // If no preexisting value, create one now...
+ Result = Create(Ty, V, I);
+ }
+
+ return Result;
+ }
+ void remove(ConstantClass *CP) {
+ typename MapTy::iterator I = FindExistingElement(CP);
+ assert(I != Map.end() && "Constant not found in constant table!");
+ assert(I->second == CP && "Didn't find correct element?");
+
+ if (HasLargeKey) // Remember the reverse mapping if needed.
+ InverseMap.erase(CP);
+
+ Map.erase(I);
+ }
+
+ /// MoveConstantToNewSlot - If we are about to change C to be the element
+ /// specified by I, update our internal data structures to reflect this
+ /// fact.
+ void MoveConstantToNewSlot(ConstantClass *C, typename MapTy::iterator I) {
+ // First, remove the old location of the specified constant in the map.
+ typename MapTy::iterator OldI = FindExistingElement(C);
+ assert(OldI != Map.end() && "Constant not found in constant table!");
+ assert(OldI->second == C && "Didn't find correct element?");
+
+ // Remove the old entry from the map.
+ Map.erase(OldI);
+
+ // Update the inverse map so that we know that this constant is now
+ // located at descriptor I.
+ if (HasLargeKey) {
+ assert(I->second == C && "Bad inversemap entry!");
+ InverseMap[C] = I;
+ }
+ }
+
+ void dump() const {
+ DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
+ }
+};
+
+// Unique map for aggregate constants
+template<class TypeClass, class ConstantClass>
+class ConstantAggrUniqueMap {
+public:
+ typedef ArrayRef<Constant*> Operands;
+ typedef std::pair<TypeClass*, Operands> LookupKey;
private:
struct MapInfo {
- typedef DenseMapInfo<ConstantClass *> ConstantClassInfo;
- static inline ConstantClass *getEmptyKey() {
+ typedef DenseMapInfo<ConstantClass*> ConstantClassInfo;
+ typedef DenseMapInfo<Constant*> ConstantInfo;
+ typedef DenseMapInfo<TypeClass*> TypeClassInfo;
+ static inline ConstantClass* getEmptyKey() {
return ConstantClassInfo::getEmptyKey();
}
- static inline ConstantClass *getTombstoneKey() {
+ static inline ConstantClass* getTombstoneKey() {
return ConstantClassInfo::getTombstoneKey();
}
static unsigned getHashValue(const ConstantClass *CP) {
- SmallVector<Constant *, 8> Storage;
- return getHashValue(LookupKey(CP->getType(), ValType(CP, Storage)));
+ SmallVector<Constant*, 8> CPOperands;
+ CPOperands.reserve(CP->getNumOperands());
+ for (unsigned I = 0, E = CP->getNumOperands(); I < E; ++I)
+ CPOperands.push_back(CP->getOperand(I));
+ return getHashValue(LookupKey(CP->getType(), CPOperands));
}
static bool isEqual(const ConstantClass *LHS, const ConstantClass *RHS) {
return LHS == RHS;
}
static unsigned getHashValue(const LookupKey &Val) {
- return hash_combine(Val.first, Val.second.getHash());
+ return hash_combine(Val.first, hash_combine_range(Val.second.begin(),
+ Val.second.end()));
}
static bool isEqual(const LookupKey &LHS, const ConstantClass *RHS) {
if (RHS == getEmptyKey() || RHS == getTombstoneKey())
return false;
- if (LHS.first != RHS->getType())
+ if (LHS.first != RHS->getType()
+ || LHS.second.size() != RHS->getNumOperands())
return false;
- return LHS.second == RHS;
+ for (unsigned I = 0, E = RHS->getNumOperands(); I < E; ++I) {
+ if (LHS.second[I] != RHS->getOperand(I))
+ return false;
+ }
+ return true;
}
};
-
public:
typedef DenseMap<ConstantClass *, char, MapInfo> MapTy;
private:
+ /// Map - This is the main map from the element descriptor to the Constants.
+ /// This is the primary way we avoid creating two of the same shape
+ /// constant.
MapTy Map;
public:
typename MapTy::iterator map_end() { return Map.end(); }
void freeConstants() {
- for (auto &I : Map)
+ for (typename MapTy::iterator I=Map.begin(), E=Map.end();
+ I != E; ++I) {
// Asserts that use_empty().
- delete I.first;
+ delete I->first;
+ }
}
private:
- ConstantClass *create(TypeClass *Ty, ValType V) {
- ConstantClass *Result = V.create(Ty);
+ typename MapTy::iterator findExistingElement(ConstantClass *CP) {
+ return Map.find(CP);
+ }
+
+ ConstantClass *Create(TypeClass *Ty, Operands V, typename MapTy::iterator I) {
+ ConstantClass* Result =
+ ConstantArrayCreator<ConstantClass,TypeClass>::create(Ty, V);
assert(Result->getType() == Ty && "Type specified is not correct!");
- insert(Result);
+ Map[Result] = '\0';
return Result;
}
-
public:
- /// Return the specified constant from the map, creating it if necessary.
- ConstantClass *getOrCreate(TypeClass *Ty, ValType V) {
+
+ /// getOrCreate - Return the specified constant from the map, creating it if
+ /// necessary.
+ ConstantClass *getOrCreate(TypeClass *Ty, Operands V) {
LookupKey Lookup(Ty, V);
- ConstantClass *Result = nullptr;
+ ConstantClass* Result = nullptr;
- auto I = find(Lookup);
- if (I == Map.end())
- Result = create(Ty, V);
- else
+ typename MapTy::iterator I = Map.find_as(Lookup);
+ // Is it in the map?
+ if (I != Map.end())
Result = I->first;
- assert(Result && "Unexpected nullptr");
+
+ if (!Result) {
+ // If no preexisting value, create one now...
+ Result = Create(Ty, V, I);
+ }
return Result;
}
}
/// Insert the constant into its proper slot.
- void insert(ConstantClass *CP) { Map[CP] = '\0'; }
+ void insert(ConstantClass *CP) {
+ Map[CP] = '\0';
+ }
/// Remove this constant from the map
void remove(ConstantClass *CP) {
- typename MapTy::iterator I = Map.find(CP);
+ typename MapTy::iterator I = findExistingElement(CP);
assert(I != Map.end() && "Constant not found in constant table!");
assert(I->first == CP && "Didn't find correct element?");
Map.erase(I);
}
- void dump() const { DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n"); }
+ void dump() const {
+ DEBUG(dbgs() << "Constant.cpp: ConstantUniqueMap\n");
+ }
};
} // end namespace llvm