--- /dev/null
+#include <stdlib.h>
+#include <stdio.h>
+#include <sys/time.h>
+
+
+long currentTimeMillis() {
+ struct timeval* t;
+ gettimeofday( t, NULL );
+ double micros = (double)t->tv_usec;
+ double millis = micros / 1000.0;
+ return (long) millis;
+}
+
+
+void buildTestData();
+
+void calcEncryptKey();
+void calcDecryptKey();
+
+int mul( int a, int b );
+int inv( int x );
+
+void kernel();
+
+void cipher_idea( char* text1, char* text2, int* key );
+
+
+int size;
+int* datasizes;
+int array_rows;
+
+char* plain1; // Buffer for plaintext data.
+
+short* userkey; // Key for encryption/decryption.
+int* Z; // Encryption subkey (userkey derived).
+int* DK; // Decryption subkey (userkey derived).
+
+int problem_size = 2;
+
+
+void main( int argc, char** argv ) {
+
+ long startT;
+ long endT;
+
+ datasizes = malloc( 4*sizeof(int) );
+ datasizes[0] = 3000000;
+ datasizes[1] = 20000000;
+ datasizes[2] = 50000000;
+ datasizes[3] = 1000000000;
+
+ if( argc > 1 ) {
+ problem_size = atoi( argv[1] );
+ }
+
+ startT=currentTimeMillis();
+
+ array_rows = datasizes[size];
+ buildTestData();
+
+ endT=currentTimeMillis();
+
+ kernel();
+
+ printf( "init=%d\n", endT-startT );
+}
+
+
+// buildTestData
+// Builds the data used for the test -- each time the test is run.
+void buildTestData() {
+
+ int i;
+
+ // Create three byte arrays that will be used (and reused) for
+ // encryption/decryption operations.
+
+ plain1 = malloc( array_rows*sizeof( char ) );
+
+ srand( 136506717 );
+
+ // Allocate three arrays to hold keys: userkey is the 128-bit key.
+ // Z is the set of 16-bit encryption subkeys derived from userkey,
+ // while DK is the set of 16-bit decryption subkeys also derived
+ // from userkey. NOTE: The 16-bit values are stored here in
+ // 32-bit int arrays so that the values may be used in calculations
+ // as if they are unsigned. Each 64-bit block of plaintext goes
+ // through eight processing rounds involving six of the subkeys
+ // then a final output transform with four of the keys; (8 * 6)
+ // + 4 = 52 subkeys.
+
+ userkey = malloc( 8*sizeof( short ) ); // User key has 8 16-bit shorts.
+ Z = malloc( 52*sizeof( int ) ); // Encryption subkey (user key derived).
+ DK = malloc( 52*sizeof( int ) ); // Decryption subkey (user key derived).
+
+ // Generate user key randomly; eight 16-bit values in an array.
+
+ for( i = 0; i < 8; i++ ) {
+ // Again, the random number function returns int. Converting
+ // to a short type preserves the bit pattern in the lower 16
+ // bits of the int and discards the rest.
+
+ userkey[i] = (short) rand();
+ }
+
+ // Compute encryption and decryption subkeys.
+
+ calcEncryptKey();
+ calcDecryptKey();
+
+ // Fill plain1 with "text."
+ for( i = 0; i < array_rows; i++ ) {
+ plain1[i] = (char) i;
+
+ // Converting to a byte
+ // type preserves the bit pattern in the lower 8 bits of the
+ // int and discards the rest.
+ }
+}
+
+
+
+void calcEncryptKey() {
+ // Builds the 52 16-bit encryption subkeys Z[] from the user key and
+ // stores in 32-bit int array. The routing corrects an error in the
+ // source code in the Schnier book. Basically, the sense of the 7-
+ // and 9-bit shifts are reversed. It still works reversed, but would
+ // encrypted code would not decrypt with someone else's IDEA code.
+ //
+ int i;
+ int j; // Utility variables.
+ int flag1;
+ int flag2;
+
+ for( i = 0; i < 52; i++ ) {
+ // Zero out the 52-int Z array.
+ Z[i] = 0;
+ }
+
+ for( i = 0; i < 8; i++ ) { // First 8 subkeys are userkey itself.
+ Z[i] = userkey[i] & 0xffff; // Convert "unsigned"
+ // short to int.
+ }
+
+ // Each set of 8 subkeys thereafter is derived from left rotating
+ // the whole 128-bit key 25 bits to left (once between each set of
+ // eight keys and then before the last four). Instead of actually
+ // rotating the whole key, this routine just grabs the 16 bits
+ // that are 25 bits to the right of the corresponding subkey
+ // eight positions below the current subkey. That 16-bit extent
+ // straddles two array members, so bits are shifted left in one
+ // member and right (with zero fill) in the other. For the last
+ // two subkeys in any group of eight, those 16 bits start to
+ // wrap around to the first two members of the previous eight.
+
+ for( i = 8; i < 52; i++ ) {
+ flag1 = 0;
+ j = i % 8;
+ if (j < 6) {
+ Z[i] = ((Z[i - 7] >> 9) | (Z[i - 6] << 7)) // Shift and combine.
+ & 0xFFFF; // Just 16 bits.
+ // continue; // Next iteration.
+ flag1 = 1;
+ }
+
+ if (flag1 == 0) {
+ flag2 = 0;
+
+ if (j == 6) { // Wrap to beginning for second chunk.
+ Z[i] = ((Z[i - 7] >> 9) | (Z[i - 14] << 7)) & 0xFFFF;
+ // continue;
+ flag2 = 1;
+ }
+
+ if (flag2 == 0) {
+ // j == 7 so wrap to beginning for both chunks.
+ Z[i] = ((Z[i - 15] >> 9) | (Z[i - 14] << 7)) & 0xFFFF;
+ }
+ }
+ }
+}
+
+
+void calcDecryptKey() {
+ // Builds the 52 16-bit encryption subkeys DK[] from the encryption-
+ // subkeys Z[]. DK[] is a 32-bit int array holding 16-bit values as
+ // unsigned.
+ //
+
+ int i, j, k; // Index counters.
+ int t1, t2, t3; // Temps to hold decrypt subkeys.
+
+ t1 = inv(Z[0]); // Multiplicative inverse (mod x10001).
+ t2 = -Z[1] & 0xffff; // Additive inverse, 2nd encrypt subkey.
+ t3 = -Z[2] & 0xffff; // Additive inverse, 3rd encrypt subkey.
+
+ DK[51] = inv(Z[3]); // Multiplicative inverse (mod x10001).
+ DK[50] = t3;
+ DK[49] = t2;
+ DK[48] = t1;
+
+ j = 47; // Indices into temp and encrypt arrays.
+ k = 4;
+ for( i = 0; i < 7; i++ ) {
+ t1 = Z[k++];
+ DK[j--] = Z[k++];
+ DK[j--] = t1;
+ t1 = inv(Z[k++]);
+ t2 = -Z[k++] & 0xffff;
+ t3 = -Z[k++] & 0xffff;
+ DK[j--] = inv(Z[k++]);
+ DK[j--] = t2;
+ DK[j--] = t3;
+ DK[j--] = t1;
+ }
+
+ t1 = Z[k++];
+ DK[j--] = Z[k++];
+ DK[j--] = t1;
+ t1 = inv(Z[k++]);
+ t2 = -Z[k++] & 0xffff;
+ t3 = -Z[k++] & 0xffff;
+ DK[j--] = inv(Z[k++]);
+ DK[j--] = t3;
+ DK[j--] = t2;
+ DK[j--] = t1;
+}
+
+
+
+int mul( int a, int b ) {
+ // Performs multiplication, modulo (2**16)+1. This code is structured
+ // on the assumption that untaken branches are cheaper than taken
+ // branches, and that the compiler doesn't schedule branches.
+ // Java: Must work with 32-bit int and one 64-bit long to keep
+ // 16-bit values and their products "unsigned." The routine assumes
+ // that both a and b could fit in 16 bits even though they come in
+ // as 32-bit ints. Lots of "& 0xFFFF" masks here to keep things 16-bit.
+ // Also, because the routine stores mod (2**16)+1 results in a 2**16
+ // space, the result is truncated to zero whenever the result would
+ // zero, be 2**16. And if one of the multiplicands is 0, the result
+ // is not zero, but (2**16) + 1 minus the other multiplicand (sort
+ // of an additive inverse mod 0x10001).
+
+ // NOTE: The java conversion of this routine works correctly, but
+ // is half the speed of using Java's modulus division function (%)
+ // on the multiplication with a 16-bit masking of the result--running
+ // in the Symantec Caje IDE. So it's not called for now; the test
+ // uses Java % instead.
+ //
+
+ int ret;
+ long p; // Large enough to catch 16-bit multiply
+ // without hitting sign bit.
+ if (a != 0) {
+ if (b != 0) {
+ p = (long) a * b;
+ b = (int) p & 0xFFFF; // Lower 16 bits.
+ a = (int) p >> 16; // Upper 16 bits.
+ if (b < a)
+ return (b - a + 1) & 0xFFFF;
+ else
+ return (b - a) & 0xFFFF;
+ } else
+ return ((1 - a) & 0xFFFF); // If b = 0, then same as
+ // 0x10001 - a.
+ } else
+ // If a = 0, then return
+ return ((1 - b) & 0xFFFF); // same as 0x10001 - b.
+}
+
+
+
+
+int inv( int x ) {
+ // Compute multiplicative inverse of x, modulo (2**16)+1 using
+ // extended Euclid's GCD (greatest common divisor) algorithm.
+ // It is unrolled twice to avoid swapping the meaning of
+ // the registers. And some subtracts are changed to adds.
+ // Java: Though it uses signed 32-bit ints, the interpretation
+ // of the bits within is strictly unsigned 16-bit.
+ //
+
+ int t0, t1;
+ int q, y;
+
+ if (x <= 1) // Assumes positive x.
+ return (x); // 0 and 1 are self-inverse.
+
+ t1 = 0x10001 / x; // (2**16+1)/x; x is >= 2, so fits 16 bits.
+ y = 0x10001 % x;
+ if (y == 1)
+ return ((1 - t1) & 0xFFFF);
+
+ t0 = 1;
+ do {
+ q = x / y;
+ x = x % y;
+ t0 += q * t1;
+ if (x == 1)
+ return (t0);
+ q = y / x;
+ y = y % x;
+ t1 += q * t0;
+ } while (y != 1);
+
+ return ((1 - t1) & 0xFFFF);
+}
+
+
+
+void kernel() {
+ int i;
+ int error;
+
+ char* crypt1 = malloc( array_rows*sizeof( char ) );
+ char* plain2 = malloc( array_rows*sizeof( char ) );
+
+ cipher_idea(plain1, crypt1, Z); // Encrypt plain1.
+ cipher_idea(crypt1, plain2, DK); // Decrypt.
+
+ error = 0;
+ for( i = 0; i < array_rows; i++ ){
+ error = (plain1 [i] != plain2 [i]);
+ if (error){
+ printf("Validation failed\n");
+ printf("Original Byte %d = %c\n", i, plain1[i]);
+ printf("Encrypted Byte %d = %c\n", i, crypt1[i]);
+ printf("Decrypted Byte %d = %c\n", i, plain2[i]);
+ return;
+ }
+ }
+ printf("Validation Success\n");
+}
+
+
+
+
+void cipher_idea( char* text1, char* text2, int* key ) {
+ // IDEA encryption/decryption algorithm. It processes plaintext in
+ // 64-bit blocks, one at a time, breaking the block into four 16-bit
+ // unsigned subblocks. It goes through eight rounds of processing
+ // using 6 new subkeys each time, plus four for last step. The source
+ // text is in array text1, the destination text goes into array text2
+ // The routine represents 16-bit subblocks and subkeys as type int so
+ // that they can be treated more easily as unsigned. Multiplication
+ // modulo 0x10001 interprets a zero sub-block as 0x10000; it must to
+ // fit in 16 bits.
+ //
+ int i;
+ int i1 = 0; // Index into first text array.
+ int i2 = 0; // Index into second text array.
+ int ik; // Index into key array.
+ int x1, x2, x3, x4, t1, t2; // Four "16-bit" blocks, two temps.
+ int r; // Eight rounds of processing.
+
+ for( i = 0; i < array_rows; i += 8 )
+ {
+
+ ik = 0; // Restart key index.
+ r = 8; // Eight rounds of processing.
+
+ // Load eight plain1 bytes as four 16-bit "unsigned" integers.
+ // Masking with 0xff prevents sign extension with cast to int.
+
+ x1 = text1[i1++] & 0xff; // Build 16-bit x1 from 2 bytes,
+ x1 |= (text1[i1++] & 0xff) << 8; // assuming low-order byte first.
+ x2 = text1[i1++] & 0xff;
+ x2 |= (text1[i1++] & 0xff) << 8;
+ x3 = text1[i1++] & 0xff;
+ x3 |= (text1[i1++] & 0xff) << 8;
+ x4 = text1[i1++] & 0xff;
+ x4 |= (text1[i1++] & 0xff) << 8;
+
+ do {
+ // 1) Multiply (modulo 0x10001), 1st text sub-block
+ // with 1st key sub-block.
+
+ x1 = (int) ((long) x1 * key[ik++] % 0x10001L & 0xffff);
+
+ // 2) Add (modulo 0x10000), 2nd text sub-block
+ // with 2nd key sub-block.
+
+ x2 = x2 + key[ik++] & 0xffff;
+
+ // 3) Add (modulo 0x10000), 3rd text sub-block
+ // with 3rd key sub-block.
+
+ x3 = x3 + key[ik++] & 0xffff;
+
+ // 4) Multiply (modulo 0x10001), 4th text sub-block
+ // with 4th key sub-block.
+
+ x4 = (int) ((long) x4 * key[ik++] % 0x10001L & 0xffff);
+
+ // 5) XOR results from steps 1 and 3.
+
+ t2 = x1 ^ x3;
+
+ // 6) XOR results from steps 2 and 4.
+ // Included in step 8.
+
+ // 7) Multiply (modulo 0x10001), result of step 5
+ // with 5th key sub-block.
+
+ t2 = (int) ((long) t2 * key[ik++] % 0x10001L & 0xffff);
+
+ // 8) Add (modulo 0x10000), results of steps 6 and 7.
+
+ t1 = t2 + (x2 ^ x4) & 0xffff;
+
+ // 9) Multiply (modulo 0x10001), result of step 8
+ // with 6th key sub-block.
+
+ t1 = (int) ((long) t1 * key[ik++] % 0x10001L & 0xffff);
+
+ // 10) Add (modulo 0x10000), results of steps 7 and 9.
+
+ t2 = t1 + t2 & 0xffff;
+
+ // 11) XOR results from steps 1 and 9.
+
+ x1 ^= t1;
+
+ // 14) XOR results from steps 4 and 10. (Out of order).
+
+ x4 ^= t2;
+
+ // 13) XOR results from steps 2 and 10. (Out of order).
+
+ t2 ^= x2;
+
+ // 12) XOR results from steps 3 and 9. (Out of order).
+
+ x2 = x3 ^ t1;
+
+ x3 = t2; // Results of x2 and x3 now swapped.
+
+ } while(--r != 0); // Repeats seven more rounds.
+
+ // Final output transform (4 steps).
+
+ // 1) Multiply (modulo 0x10001), 1st text-block
+ // with 1st key sub-block.
+
+ x1 = (int) ((long) x1 * key[ik++] % 0x10001L & 0xffff);
+
+ // 2) Add (modulo 0x10000), 2nd text sub-block
+ // with 2nd key sub-block. It says x3, but that is to undo swap
+ // of subblocks 2 and 3 in 8th processing round.
+
+ x3 = x3 + key[ik++] & 0xffff;
+
+ // 3) Add (modulo 0x10000), 3rd text sub-block
+ // with 3rd key sub-block. It says x2, but that is to undo swap
+ // of subblocks 2 and 3 in 8th processing round.
+
+ x2 = x2 + key[ik++] & 0xffff;
+
+ // 4) Multiply (modulo 0x10001), 4th text-block
+ // with 4th key sub-block.
+
+ x4 = (int) ((long) x4 * key[ik++] % 0x10001L & 0xffff);
+
+ // Repackage from 16-bit sub-blocks to 8-bit byte array text2.
+
+ text2[i2++] = (char) x1;
+ text2[i2++] = (char) (x1 >> 8);
+ text2[i2++] = (char) x3; // x3 and x2 are switched
+ text2[i2++] = (char) (x3 >> 8); // only in name.
+ text2[i2++] = (char) x2;
+ text2[i2++] = (char) (x2 >> 8);
+ text2[i2++] = (char) x4;
+ text2[i2++] = (char) (x4 >> 8);
+
+ } // End for loop.
+
+} // End routine.