private:
// A map from instructions to their dependency, with a boolean
// flags for whether this mapping is confirmed or not
- typedef DenseMap<Instruction*, std::pair<const Instruction*, bool> >
+ typedef DenseMap<Instruction*, std::pair<Instruction*, bool> >
depMapType;
depMapType depGraphLocal;
// A reverse mapping form dependencies to the dependees. This is
// used when removing instructions to keep the cache coherent.
- typedef DenseMap<const Instruction*, SmallPtrSet<Instruction*, 4> >
+ typedef DenseMap<Instruction*, SmallPtrSet<Instruction*, 4> >
reverseDepMapType;
reverseDepMapType reverseDep;
public:
// Special marker indicating that the query has no dependency
// in the specified block.
- static const Instruction* NonLocal;
+ static Instruction* const NonLocal;
// Special marker indicating that the query has no dependency at all
- static const Instruction* None;
+ static Instruction* const None;
static char ID; // Class identification, replacement for typeinfo
MemoryDependenceAnalysis() : FunctionPass((intptr_t)&ID) {}
/// getDependency - Return the instruction on which a memory operation
/// depends, starting with start.
- const Instruction* getDependency(Instruction* query, Instruction* start = 0,
+ Instruction* getDependency(Instruction* query, Instruction* start = 0,
BasicBlock* block = 0);
/// getNonLocalDependency - Fills the passed-in map with the non-local
void removeInstruction(Instruction* rem);
private:
- const Instruction* getCallSiteDependency(CallSite C, Instruction* start,
+ Instruction* getCallSiteDependency(CallSite C, Instruction* start,
BasicBlock* block);
void nonLocalHelper(Instruction* query, BasicBlock* block,
DenseMap<BasicBlock*, Value*>& resp);
char MemoryDependenceAnalysis::ID = 0;
-const Instruction* MemoryDependenceAnalysis::NonLocal = (Instruction*)-3;
-const Instruction* MemoryDependenceAnalysis::None = (Instruction*)-4;
+Instruction* const MemoryDependenceAnalysis::NonLocal = (Instruction*)-3;
+Instruction* const MemoryDependenceAnalysis::None = (Instruction*)-4;
// Register this pass...
static RegisterPass<MemoryDependenceAnalysis> X("memdep",
/// getCallSiteDependency - Private helper for finding the local dependencies
/// of a call site.
-const Instruction* MemoryDependenceAnalysis::getCallSiteDependency(CallSite C,
+Instruction* MemoryDependenceAnalysis::getCallSiteDependency(CallSite C,
Instruction* start,
BasicBlock* block) {
if (BB != block) {
visited.insert(BB);
- const Instruction* localDep = getDependency(query, 0, BB);
+ Instruction* localDep = getDependency(query, 0, BB);
if (localDep != NonLocal) {
- resp.insert(std::make_pair(BB, const_cast<Instruction*>(localDep)));
+ resp.insert(std::make_pair(BB, localDep));
stack.pop_back();
continue;
} else if (BB == block && stack.size() > 1) {
visited.insert(BB);
- const Instruction* localDep = getDependency(query, 0, BB);
+ Instruction* localDep = getDependency(query, 0, BB);
if (localDep != query)
- resp.insert(std::make_pair(BB, const_cast<Instruction*>(localDep)));
+ resp.insert(std::make_pair(BB, localDep));
stack.pop_back();
// If we didn't insert because we have no predecessors, then this
// query has no dependency at all.
else if (!inserted && !predOnStack) {
- resp.insert(std::make_pair(BB, const_cast<Instruction*>(None)));
+ resp.insert(std::make_pair(BB, None));
// If we didn't insert because our predecessors are already on the stack,
// then we might still have a dependency, but it will be discovered during
// backtracking.
} else if (!inserted && predOnStack){
- resp.insert(std::make_pair(BB, const_cast<Instruction*>(NonLocal)));
+ resp.insert(std::make_pair(BB, NonLocal));
}
stack.pop_back();
void MemoryDependenceAnalysis::getNonLocalDependency(Instruction* query,
DenseMap<BasicBlock*, Value*>& resp) {
// First check that we don't actually have a local dependency.
- const Instruction* localDep = getDependency(query);
+ Instruction* localDep = getDependency(query);
if (localDep != NonLocal) {
- resp.insert(std::make_pair(query->getParent(),
- const_cast<Instruction*>(localDep)));
+ resp.insert(std::make_pair(query->getParent(),localDep));
return;
}
/// getDependency - Return the instruction on which a memory operation
/// depends. The local paramter indicates if the query should only
/// evaluate dependencies within the same basic block.
-const Instruction* MemoryDependenceAnalysis::getDependency(Instruction* query,
+Instruction* MemoryDependenceAnalysis::getDependency(Instruction* query,
Instruction* start,
BasicBlock* block) {
// Start looking for dependencies with the queried inst
BasicBlock::iterator QI = query;
// Check for a cached result
- std::pair<const Instruction*, bool> cachedResult = depGraphLocal[query];
+ std::pair<Instruction*, bool> cachedResult = depGraphLocal[query];
// If we have a _confirmed_ cached entry, return it
if (cachedResult.second)
return cachedResult.first;
else if (cachedResult.first && cachedResult.first != NonLocal)
// If we have an unconfirmed cached entry, we can start our search from there
- QI = const_cast<Instruction*>(cachedResult.first);
+ QI = cachedResult.first;
if (start)
QI = start;
/// This method attempts to keep the cache coherent using the reverse map.
void MemoryDependenceAnalysis::removeInstruction(Instruction* rem) {
// Figure out the new dep for things that currently depend on rem
- const Instruction* newDep = NonLocal;
+ Instruction* newDep = NonLocal;
depMapType::iterator depGraphEntry = depGraphLocal.find(rem);
// We assume here that it's not in the reverse map if it's not in
if (depGraphEntry->second.first != NonLocal &&
depGraphEntry->second.second) {
// If we have dep info for rem, set them to it
- BasicBlock::iterator RI =
- const_cast<Instruction*>(depGraphEntry->second.first);
+ BasicBlock::iterator RI = depGraphEntry->second.first;
RI++;
newDep = RI;
} else if (depGraphEntry->second.first == NonLocal &&