+++ /dev/null
-//===-- IA64ISelPattern.cpp - A pattern matching inst selector for IA64 ---===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by Duraid Madina and is distributed under the
-// University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file defines a pattern matching instruction selector for IA64.
-//
-//===----------------------------------------------------------------------===//
-
-#include "IA64.h"
-#include "IA64InstrBuilder.h"
-#include "IA64RegisterInfo.h"
-#include "IA64MachineFunctionInfo.h"
-#include "llvm/Constants.h" // FIXME: REMOVE
-#include "llvm/Function.h"
-#include "llvm/CodeGen/MachineConstantPool.h" // FIXME: REMOVE
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/SelectionDAG.h"
-#include "llvm/CodeGen/SelectionDAGISel.h"
-#include "llvm/CodeGen/SSARegMap.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Target/TargetLowering.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/ADT/Statistic.h"
-#include <set>
-#include <map>
-#include <algorithm>
-using namespace llvm;
-
-//===----------------------------------------------------------------------===//
-// IA64TargetLowering - IA64 Implementation of the TargetLowering interface
-namespace {
- class IA64TargetLowering : public TargetLowering {
- int VarArgsFrameIndex; // FrameIndex for start of varargs area.
-
- //int ReturnAddrIndex; // FrameIndex for return slot.
- unsigned GP, SP, RP; // FIXME - clean this mess up
- public:
-
- unsigned VirtGPR; // this is public so it can be accessed in the selector
- // for ISD::RET down below. add an accessor instead? FIXME
-
- IA64TargetLowering(TargetMachine &TM) : TargetLowering(TM) {
-
- // register class for general registers
- addRegisterClass(MVT::i64, IA64::GRRegisterClass);
-
- // register class for FP registers
- addRegisterClass(MVT::f64, IA64::FPRegisterClass);
-
- // register class for predicate registers
- addRegisterClass(MVT::i1, IA64::PRRegisterClass);
-
- setOperationAction(ISD::BRCONDTWOWAY , MVT::Other, Expand);
- setOperationAction(ISD::BRTWOWAY_CC , MVT::Other, Expand);
- setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
-
- setSetCCResultType(MVT::i1);
- setShiftAmountType(MVT::i64);
-
- setOperationAction(ISD::EXTLOAD , MVT::i1 , Promote);
-
- setOperationAction(ISD::ZEXTLOAD , MVT::i1 , Expand);
-
- setOperationAction(ISD::SEXTLOAD , MVT::i1 , Expand);
- setOperationAction(ISD::SEXTLOAD , MVT::i8 , Expand);
- setOperationAction(ISD::SEXTLOAD , MVT::i16 , Expand);
- setOperationAction(ISD::SEXTLOAD , MVT::i32 , Expand);
-
- setOperationAction(ISD::FREM , MVT::f32 , Expand);
- setOperationAction(ISD::FREM , MVT::f64 , Expand);
-
- setOperationAction(ISD::UREM , MVT::f32 , Expand);
- setOperationAction(ISD::UREM , MVT::f64 , Expand);
-
- setOperationAction(ISD::MEMMOVE , MVT::Other, Expand);
- setOperationAction(ISD::MEMSET , MVT::Other, Expand);
- setOperationAction(ISD::MEMCPY , MVT::Other, Expand);
-
- setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
- setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
-
- // We don't support sin/cos/sqrt
- setOperationAction(ISD::FSIN , MVT::f64, Expand);
- setOperationAction(ISD::FCOS , MVT::f64, Expand);
- setOperationAction(ISD::FSQRT, MVT::f64, Expand);
- setOperationAction(ISD::FSIN , MVT::f32, Expand);
- setOperationAction(ISD::FCOS , MVT::f32, Expand);
- setOperationAction(ISD::FSQRT, MVT::f32, Expand);
-
- //IA64 has these, but they are not implemented
- setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
- setOperationAction(ISD::CTLZ , MVT::i64 , Expand);
- setOperationAction(ISD::ROTL , MVT::i64 , Expand);
- setOperationAction(ISD::ROTR , MVT::i64 , Expand);
- setOperationAction(ISD::BSWAP, MVT::i64 , Expand); // mux @rev
- // FIXME: implement mulhs (xma.h) and mulhu (xma.hu)
- setOperationAction(ISD::MULHS , MVT::i64 , Expand);
- setOperationAction(ISD::MULHU , MVT::i64 , Expand);
-
- // We don't have line number support yet.
- setOperationAction(ISD::LOCATION, MVT::Other, Expand);
- setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
- setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
-
- // Not implemented yet.
- setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
- setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
-
- computeRegisterProperties();
-
- addLegalFPImmediate(+0.0);
- addLegalFPImmediate(+1.0);
- addLegalFPImmediate(-0.0);
- addLegalFPImmediate(-1.0);
- }
-
- /// LowerArguments - This hook must be implemented to indicate how we should
- /// lower the arguments for the specified function, into the specified DAG.
- virtual std::vector<SDOperand>
- LowerArguments(Function &F, SelectionDAG &DAG);
-
- /// LowerCallTo - This hook lowers an abstract call to a function into an
- /// actual call.
- virtual std::pair<SDOperand, SDOperand>
- LowerCallTo(SDOperand Chain, const Type *RetTy, bool isVarArg, unsigned CC,
- bool isTailCall, SDOperand Callee, ArgListTy &Args,
- SelectionDAG &DAG);
-
- virtual SDOperand LowerVAStart(SDOperand Chain, SDOperand VAListP,
- Value *VAListV, SelectionDAG &DAG);
- virtual std::pair<SDOperand,SDOperand>
- LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV,
- const Type *ArgTy, SelectionDAG &DAG);
-
- void restoreGP_SP_RP(MachineBasicBlock* BB)
- {
- BuildMI(BB, IA64::MOV, 1, IA64::r1).addReg(GP);
- BuildMI(BB, IA64::MOV, 1, IA64::r12).addReg(SP);
- BuildMI(BB, IA64::MOV, 1, IA64::rp).addReg(RP);
- }
-
- void restoreSP_RP(MachineBasicBlock* BB)
- {
- BuildMI(BB, IA64::MOV, 1, IA64::r12).addReg(SP);
- BuildMI(BB, IA64::MOV, 1, IA64::rp).addReg(RP);
- }
-
- void restoreRP(MachineBasicBlock* BB)
- {
- BuildMI(BB, IA64::MOV, 1, IA64::rp).addReg(RP);
- }
-
- void restoreGP(MachineBasicBlock* BB)
- {
- BuildMI(BB, IA64::MOV, 1, IA64::r1).addReg(GP);
- }
-
- };
-}
-
-
-std::vector<SDOperand>
-IA64TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
- std::vector<SDOperand> ArgValues;
-
- //
- // add beautiful description of IA64 stack frame format
- // here (from intel 24535803.pdf most likely)
- //
- MachineFunction &MF = DAG.getMachineFunction();
- MachineFrameInfo *MFI = MF.getFrameInfo();
-
- GP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
- SP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
- RP = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
-
- MachineBasicBlock& BB = MF.front();
-
- unsigned args_int[] = {IA64::r32, IA64::r33, IA64::r34, IA64::r35,
- IA64::r36, IA64::r37, IA64::r38, IA64::r39};
-
- unsigned args_FP[] = {IA64::F8, IA64::F9, IA64::F10, IA64::F11,
- IA64::F12,IA64::F13,IA64::F14, IA64::F15};
-
- unsigned argVreg[8];
- unsigned argPreg[8];
- unsigned argOpc[8];
-
- unsigned used_FPArgs = 0; // how many FP args have been used so far?
-
- unsigned ArgOffset = 0;
- int count = 0;
-
- for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
- {
- SDOperand newroot, argt;
- if(count < 8) { // need to fix this logic? maybe.
-
- switch (getValueType(I->getType())) {
- default:
- std::cerr << "ERROR in LowerArgs: unknown type "
- << getValueType(I->getType()) << "\n";
- abort();
- case MVT::f32:
- // fixme? (well, will need to for weird FP structy stuff,
- // see intel ABI docs)
- case MVT::f64:
-//XXX BuildMI(&BB, IA64::IDEF, 0, args_FP[used_FPArgs]);
- MF.addLiveIn(args_FP[used_FPArgs]); // mark this reg as liveIn
- // floating point args go into f8..f15 as-needed, the increment
- argVreg[count] = // is below..:
- MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::f64));
- // FP args go into f8..f15 as needed: (hence the ++)
- argPreg[count] = args_FP[used_FPArgs++];
- argOpc[count] = IA64::FMOV;
- argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), argVreg[count],
- MVT::f64);
- if (I->getType() == Type::FloatTy)
- argt = DAG.getNode(ISD::FP_ROUND, MVT::f32, argt);
- break;
- case MVT::i1: // NOTE: as far as C abi stuff goes,
- // bools are just boring old ints
- case MVT::i8:
- case MVT::i16:
- case MVT::i32:
- case MVT::i64:
-//XXX BuildMI(&BB, IA64::IDEF, 0, args_int[count]);
- MF.addLiveIn(args_int[count]); // mark this register as liveIn
- argVreg[count] =
- MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
- argPreg[count] = args_int[count];
- argOpc[count] = IA64::MOV;
- argt = newroot =
- DAG.getCopyFromReg(DAG.getRoot(), argVreg[count], MVT::i64);
- if ( getValueType(I->getType()) != MVT::i64)
- argt = DAG.getNode(ISD::TRUNCATE, getValueType(I->getType()),
- newroot);
- break;
- }
- } else { // more than 8 args go into the frame
- // Create the frame index object for this incoming parameter...
- ArgOffset = 16 + 8 * (count - 8);
- int FI = MFI->CreateFixedObject(8, ArgOffset);
-
- // Create the SelectionDAG nodes corresponding to a load
- //from this parameter
- SDOperand FIN = DAG.getFrameIndex(FI, MVT::i64);
- argt = newroot = DAG.getLoad(getValueType(I->getType()),
- DAG.getEntryNode(), FIN, DAG.getSrcValue(NULL));
- }
- ++count;
- DAG.setRoot(newroot.getValue(1));
- ArgValues.push_back(argt);
- }
-
-
- // Create a vreg to hold the output of (what will become)
- // the "alloc" instruction
- VirtGPR = MF.getSSARegMap()->createVirtualRegister(getRegClassFor(MVT::i64));
- BuildMI(&BB, IA64::PSEUDO_ALLOC, 0, VirtGPR);
- // we create a PSEUDO_ALLOC (pseudo)instruction for now
-
- BuildMI(&BB, IA64::IDEF, 0, IA64::r1);
-
- // hmm:
- BuildMI(&BB, IA64::IDEF, 0, IA64::r12);
- BuildMI(&BB, IA64::IDEF, 0, IA64::rp);
- // ..hmm.
-
- BuildMI(&BB, IA64::MOV, 1, GP).addReg(IA64::r1);
-
- // hmm:
- BuildMI(&BB, IA64::MOV, 1, SP).addReg(IA64::r12);
- BuildMI(&BB, IA64::MOV, 1, RP).addReg(IA64::rp);
- // ..hmm.
-
- unsigned tempOffset=0;
-
- // if this is a varargs function, we simply lower llvm.va_start by
- // pointing to the first entry
- if(F.isVarArg()) {
- tempOffset=0;
- VarArgsFrameIndex = MFI->CreateFixedObject(8, tempOffset);
- }
-
- // here we actually do the moving of args, and store them to the stack
- // too if this is a varargs function:
- for (int i = 0; i < count && i < 8; ++i) {
- BuildMI(&BB, argOpc[i], 1, argVreg[i]).addReg(argPreg[i]);
- if(F.isVarArg()) {
- // if this is a varargs function, we copy the input registers to the stack
- int FI = MFI->CreateFixedObject(8, tempOffset);
- tempOffset+=8; //XXX: is it safe to use r22 like this?
- BuildMI(&BB, IA64::MOV, 1, IA64::r22).addFrameIndex(FI);
- // FIXME: we should use st8.spill here, one day
- BuildMI(&BB, IA64::ST8, 1, IA64::r22).addReg(argPreg[i]);
- }
- }
-
- // Finally, inform the code generator which regs we return values in.
- // (see the ISD::RET: case down below)
- switch (getValueType(F.getReturnType())) {
- default: assert(0 && "i have no idea where to return this type!");
- case MVT::isVoid: break;
- case MVT::i1:
- case MVT::i8:
- case MVT::i16:
- case MVT::i32:
- case MVT::i64:
- MF.addLiveOut(IA64::r8);
- break;
- case MVT::f32:
- case MVT::f64:
- MF.addLiveOut(IA64::F8);
- break;
- }
-
- return ArgValues;
-}
-
-std::pair<SDOperand, SDOperand>
-IA64TargetLowering::LowerCallTo(SDOperand Chain,
- const Type *RetTy, bool isVarArg,
- unsigned CallingConv, bool isTailCall,
- SDOperand Callee, ArgListTy &Args,
- SelectionDAG &DAG) {
-
- MachineFunction &MF = DAG.getMachineFunction();
-
- unsigned NumBytes = 16;
- unsigned outRegsUsed = 0;
-
- if (Args.size() > 8) {
- NumBytes += (Args.size() - 8) * 8;
- outRegsUsed = 8;
- } else {
- outRegsUsed = Args.size();
- }
-
- // FIXME? this WILL fail if we ever try to pass around an arg that
- // consumes more than a single output slot (a 'real' double, int128
- // some sort of aggregate etc.), as we'll underestimate how many 'outX'
- // registers we use. Hopefully, the assembler will notice.
- MF.getInfo<IA64FunctionInfo>()->outRegsUsed=
- std::max(outRegsUsed, MF.getInfo<IA64FunctionInfo>()->outRegsUsed);
-
- Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain,
- DAG.getConstant(NumBytes, getPointerTy()));
-
- std::vector<SDOperand> args_to_use;
- for (unsigned i = 0, e = Args.size(); i != e; ++i)
- {
- switch (getValueType(Args[i].second)) {
- default: assert(0 && "unexpected argument type!");
- case MVT::i1:
- case MVT::i8:
- case MVT::i16:
- case MVT::i32:
- //promote to 64-bits, sign/zero extending based on type
- //of the argument
- if(Args[i].second->isSigned())
- Args[i].first = DAG.getNode(ISD::SIGN_EXTEND, MVT::i64,
- Args[i].first);
- else
- Args[i].first = DAG.getNode(ISD::ZERO_EXTEND, MVT::i64,
- Args[i].first);
- break;
- case MVT::f32:
- //promote to 64-bits
- Args[i].first = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Args[i].first);
- case MVT::f64:
- case MVT::i64:
- break;
- }
- args_to_use.push_back(Args[i].first);
- }
-
- std::vector<MVT::ValueType> RetVals;
- MVT::ValueType RetTyVT = getValueType(RetTy);
- if (RetTyVT != MVT::isVoid)
- RetVals.push_back(RetTyVT);
- RetVals.push_back(MVT::Other);
-
- SDOperand TheCall = SDOperand(DAG.getCall(RetVals, Chain,
- Callee, args_to_use), 0);
- Chain = TheCall.getValue(RetTyVT != MVT::isVoid);
- Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
- DAG.getConstant(NumBytes, getPointerTy()));
- return std::make_pair(TheCall, Chain);
-}
-
-SDOperand
-IA64TargetLowering::LowerVAStart(SDOperand Chain, SDOperand VAListP,
- Value *VAListV, SelectionDAG &DAG) {
- // vastart just stores the address of the VarArgsFrameIndex slot.
- SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i64);
- return DAG.getNode(ISD::STORE, MVT::Other, Chain, FR,
- VAListP, DAG.getSrcValue(VAListV));
-}
-
-std::pair<SDOperand,SDOperand> IA64TargetLowering::
-LowerVAArg(SDOperand Chain, SDOperand VAListP, Value *VAListV,
- const Type *ArgTy, SelectionDAG &DAG) {
-
- MVT::ValueType ArgVT = getValueType(ArgTy);
- SDOperand Val = DAG.getLoad(MVT::i64, Chain,
- VAListP, DAG.getSrcValue(VAListV));
- SDOperand Result = DAG.getLoad(ArgVT, DAG.getEntryNode(), Val,
- DAG.getSrcValue(NULL));
- unsigned Amt;
- if (ArgVT == MVT::i32 || ArgVT == MVT::f32)
- Amt = 8;
- else {
- assert((ArgVT == MVT::i64 || ArgVT == MVT::f64) &&
- "Other types should have been promoted for varargs!");
- Amt = 8;
- }
- Val = DAG.getNode(ISD::ADD, Val.getValueType(), Val,
- DAG.getConstant(Amt, Val.getValueType()));
- Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain,
- Val, VAListP, DAG.getSrcValue(VAListV));
- return std::make_pair(Result, Chain);
-}
-
-namespace {
-
- //===--------------------------------------------------------------------===//
- /// ISel - IA64 specific code to select IA64 machine instructions for
- /// SelectionDAG operations.
- ///
- class ISel : public SelectionDAGISel {
- /// IA64Lowering - This object fully describes how to lower LLVM code to an
- /// IA64-specific SelectionDAG.
- IA64TargetLowering IA64Lowering;
- SelectionDAG *ISelDAG; // Hack to support us having a dag->dag transform
- // for sdiv and udiv until it is put into the future
- // dag combiner
-
- /// ExprMap - As shared expressions are codegen'd, we keep track of which
- /// vreg the value is produced in, so we only emit one copy of each compiled
- /// tree.
- std::map<SDOperand, unsigned> ExprMap;
- std::set<SDOperand> LoweredTokens;
-
- public:
- ISel(TargetMachine &TM) : SelectionDAGISel(IA64Lowering), IA64Lowering(TM),
- ISelDAG(0) { }
-
- /// InstructionSelectBasicBlock - This callback is invoked by
- /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
- virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
-
- unsigned SelectExpr(SDOperand N);
- void Select(SDOperand N);
- // a dag->dag to transform mul-by-constant-int to shifts+adds/subs
- SDOperand BuildConstmulSequence(SDOperand N);
-
- const char *getPassName() const { return "IA64 Instruction Selector"; }
- };
-}
-
-/// InstructionSelectBasicBlock - This callback is invoked by SelectionDAGISel
-/// when it has created a SelectionDAG for us to codegen.
-void ISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
-
- // Codegen the basic block.
- ISelDAG = &DAG;
- Select(DAG.getRoot());
-
- // Clear state used for selection.
- ExprMap.clear();
- LoweredTokens.clear();
- ISelDAG = 0;
-}
-
-// strip leading '0' characters from a string
-void munchLeadingZeros(std::string& inString) {
- while(inString.c_str()[0]=='0') {
- inString.erase(0, 1);
- }
-}
-
-// strip trailing '0' characters from a string
-void munchTrailingZeros(std::string& inString) {
- int curPos=inString.length()-1;
-
- while(inString.c_str()[curPos]=='0') {
- inString.erase(curPos, 1);
- curPos--;
- }
-}
-
-// return how many consecutive '0' characters are at the end of a string
-unsigned int countTrailingZeros(std::string& inString) {
- int curPos=inString.length()-1;
- unsigned int zeroCount=0;
- // assert goes here
- while(inString.c_str()[curPos--]=='0') {
- zeroCount++;
- }
- return zeroCount;
-}
-
-// booth encode a string of '1' and '0' characters (returns string of 'P' (+1)
-// '0' and 'N' (-1) characters)
-void boothEncode(std::string inString, std::string& boothEncodedString) {
-
- int curpos=0;
- int replacements=0;
- int lim=inString.size();
-
- while(curpos<lim) {
- if(inString[curpos]=='1') { // if we see a '1', look for a run of them
- int runlength=0;
- std::string replaceString="N";
-
- // find the run length
- for(;inString[curpos+runlength]=='1';runlength++) ;
-
- for(int i=0; i<runlength-1; i++)
- replaceString+="0";
- replaceString+="1";
-
- if(runlength>1) {
- inString.replace(curpos, runlength+1, replaceString);
- curpos+=runlength-1;
- } else
- curpos++;
- } else { // a zero, we just keep chugging along
- curpos++;
- }
- }
-
- // clean up (trim the string, reverse it and turn '1's into 'P's)
- munchTrailingZeros(inString);
- boothEncodedString="";
-
- for(int i=inString.size()-1;i>=0;i--)
- if(inString[i]=='1')
- boothEncodedString+="P";
- else
- boothEncodedString+=inString[i];
-
-}
-
-struct shiftaddblob { // this encodes stuff like (x=) "A << B [+-] C << D"
- unsigned firstVal; // A
- unsigned firstShift; // B
- unsigned secondVal; // C
- unsigned secondShift; // D
- bool isSub;
-};
-
-/* this implements Lefevre's "pattern-based" constant multiplication,
- * see "Multiplication by an Integer Constant", INRIA report 1999-06
- *
- * TODO: implement a method to try rewriting P0N<->0PP / N0P<->0NN
- * to get better booth encodings - this does help in practice
- * TODO: weight shifts appropriately (most architectures can't
- * fuse a shift and an add for arbitrary shift amounts) */
-unsigned lefevre(const std::string inString,
- std::vector<struct shiftaddblob> &ops) {
- std::string retstring;
- std::string s = inString;
- munchTrailingZeros(s);
-
- int length=s.length()-1;
-
- if(length==0) {
- return(0);
- }
-
- std::vector<int> p,n;
-
- for(int i=0; i<=length; i++) {
- if (s.c_str()[length-i]=='P') {
- p.push_back(i);
- } else if (s.c_str()[length-i]=='N') {
- n.push_back(i);
- }
- }
-
- std::string t, u;
- int c = 0;
- bool f;
- std::map<const int, int> w;
-
- for(unsigned i=0; i<p.size(); i++) {
- for(unsigned j=0; j<i; j++) {
- w[p[i]-p[j]]++;
- }
- }
-
- for(unsigned i=1; i<n.size(); i++) {
- for(unsigned j=0; j<i; j++) {
- w[n[i]-n[j]]++;
- }
- }
-
- for(unsigned i=0; i<p.size(); i++) {
- for(unsigned j=0; j<n.size(); j++) {
- w[-abs(p[i]-n[j])]++;
- }
- }
-
- std::map<const int, int>::const_iterator ii;
- std::vector<int> d;
- std::multimap<int, int> sorted_by_value;
-
- for(ii = w.begin(); ii!=w.end(); ii++)
- sorted_by_value.insert(std::pair<int, int>((*ii).second,(*ii).first));
-
- for (std::multimap<int, int>::iterator it = sorted_by_value.begin();
- it != sorted_by_value.end(); ++it) {
- d.push_back((*it).second);
- }
-
- int int_W=0;
- int int_d;
-
- while(d.size()>0 && (w[int_d=d.back()] > int_W)) {
- d.pop_back();
- retstring=s; // hmmm
- int x=0;
- int z=abs(int_d)-1;
-
- if(int_d>0) {
-
- for(unsigned base=0; base<retstring.size(); base++) {
- if( ((base+z+1) < retstring.size()) &&
- retstring.c_str()[base]=='P' &&
- retstring.c_str()[base+z+1]=='P')
- {
- // match
- x++;
- retstring.replace(base, 1, "0");
- retstring.replace(base+z+1, 1, "p");
- }
- }
-
- for(unsigned base=0; base<retstring.size(); base++) {
- if( ((base+z+1) < retstring.size()) &&
- retstring.c_str()[base]=='N' &&
- retstring.c_str()[base+z+1]=='N')
- {
- // match
- x++;
- retstring.replace(base, 1, "0");
- retstring.replace(base+z+1, 1, "n");
- }
- }
-
- } else {
- for(unsigned base=0; base<retstring.size(); base++) {
- if( ((base+z+1) < retstring.size()) &&
- ((retstring.c_str()[base]=='P' &&
- retstring.c_str()[base+z+1]=='N') ||
- (retstring.c_str()[base]=='N' &&
- retstring.c_str()[base+z+1]=='P')) ) {
- // match
- x++;
-
- if(retstring.c_str()[base]=='P') {
- retstring.replace(base, 1, "0");
- retstring.replace(base+z+1, 1, "p");
- } else { // retstring[base]=='N'
- retstring.replace(base, 1, "0");
- retstring.replace(base+z+1, 1, "n");
- }
- }
- }
- }
-
- if(x>int_W) {
- int_W = x;
- t = retstring;
- c = int_d; // tofix
- }
-
- } d.pop_back(); // hmm
-
- u = t;
-
- for(unsigned i=0; i<t.length(); i++) {
- if(t.c_str()[i]=='p' || t.c_str()[i]=='n')
- t.replace(i, 1, "0");
- }
-
- for(unsigned i=0; i<u.length(); i++) {
- if(u[i]=='P' || u[i]=='N')
- u.replace(i, 1, "0");
- if(u[i]=='p')
- u.replace(i, 1, "P");
- if(u[i]=='n')
- u.replace(i, 1, "N");
- }
-
- if( c<0 ) {
- f=true;
- c=-c;
- } else
- f=false;
-
- int pos=0;
- while(u[pos]=='0')
- pos++;
-
- bool hit=(u[pos]=='N');
-
- int g=0;
- if(hit) {
- g=1;
- for(unsigned p=0; p<u.length(); p++) {
- bool isP=(u[p]=='P');
- bool isN=(u[p]=='N');
-
- if(isP)
- u.replace(p, 1, "N");
- if(isN)
- u.replace(p, 1, "P");
- }
- }
-
- munchLeadingZeros(u);
-
- int i = lefevre(u, ops);
-
- shiftaddblob blob;
-
- blob.firstVal=i; blob.firstShift=c;
- blob.isSub=f;
- blob.secondVal=i; blob.secondShift=0;
-
- ops.push_back(blob);
-
- i = ops.size();
-
- munchLeadingZeros(t);
-
- if(t.length()==0)
- return i;
-
- if(t.c_str()[0]!='P') {
- g=2;
- for(unsigned p=0; p<t.length(); p++) {
- bool isP=(t.c_str()[p]=='P');
- bool isN=(t.c_str()[p]=='N');
-
- if(isP)
- t.replace(p, 1, "N");
- if(isN)
- t.replace(p, 1, "P");
- }
- }
-
- int j = lefevre(t, ops);
-
- int trail=countTrailingZeros(u);
- blob.secondVal=i; blob.secondShift=trail;
-
- trail=countTrailingZeros(t);
- blob.firstVal=j; blob.firstShift=trail;
-
- switch(g) {
- case 0:
- blob.isSub=false; // first + second
- break;
- case 1:
- blob.isSub=true; // first - second
- break;
- case 2:
- blob.isSub=true; // second - first
- int tmpval, tmpshift;
- tmpval=blob.firstVal;
- tmpshift=blob.firstShift;
- blob.firstVal=blob.secondVal;
- blob.firstShift=blob.secondShift;
- blob.secondVal=tmpval;
- blob.secondShift=tmpshift;
- break;
- //assert
- }
-
- ops.push_back(blob);
- return ops.size();
-}
-
-SDOperand ISel::BuildConstmulSequence(SDOperand N) {
- //FIXME: we should shortcut this stuff for multiplies by 2^n+1
- // in particular, *3 is nicer as *2+1, not *4-1
- int64_t constant=cast<ConstantSDNode>(N.getOperand(1))->getValue();
-
- bool flippedSign;
- unsigned preliminaryShift=0;
-
- assert(constant != 0 && "erk, you're trying to multiply by constant zero\n");
-
- // first, we make the constant to multiply by positive
- if(constant<0) {
- constant=-constant;
- flippedSign=true;
- } else {
- flippedSign=false;
- }
-
- // next, we make it odd.
- for(; (constant%2==0); preliminaryShift++)
- constant>>=1;
-
- //OK, we have a positive, odd number of 64 bits or less. Convert it
- //to a binary string, constantString[0] is the LSB
- char constantString[65];
- for(int i=0; i<64; i++)
- constantString[i]='0'+((constant>>i)&0x1);
- constantString[64]=0;
-
- // now, Booth encode it
- std::string boothEncodedString;
- boothEncode(constantString, boothEncodedString);
-
- std::vector<struct shiftaddblob> ops;
- // do the transformation, filling out 'ops'
- lefevre(boothEncodedString, ops);
-
- assert(ops.size() < 80 && "constmul code has gone haywire\n");
- SDOperand results[80]; // temporary results (of adds/subs of shifts)
-
- // now turn 'ops' into DAG bits
- for(unsigned i=0; i<ops.size(); i++) {
- SDOperand amt = ISelDAG->getConstant(ops[i].firstShift, MVT::i64);
- SDOperand val = (ops[i].firstVal == 0) ? N.getOperand(0) :
- results[ops[i].firstVal-1];
- SDOperand left = ISelDAG->getNode(ISD::SHL, MVT::i64, val, amt);
- amt = ISelDAG->getConstant(ops[i].secondShift, MVT::i64);
- val = (ops[i].secondVal == 0) ? N.getOperand(0) :
- results[ops[i].secondVal-1];
- SDOperand right = ISelDAG->getNode(ISD::SHL, MVT::i64, val, amt);
- if(ops[i].isSub)
- results[i] = ISelDAG->getNode(ISD::SUB, MVT::i64, left, right);
- else
- results[i] = ISelDAG->getNode(ISD::ADD, MVT::i64, left, right);
- }
-
- // don't forget flippedSign and preliminaryShift!
- SDOperand shiftedresult;
- if(preliminaryShift) {
- SDOperand finalshift = ISelDAG->getConstant(preliminaryShift, MVT::i64);
- shiftedresult = ISelDAG->getNode(ISD::SHL, MVT::i64,
- results[ops.size()-1], finalshift);
- } else { // there was no preliminary divide-by-power-of-2 required
- shiftedresult = results[ops.size()-1];
- }
-
- SDOperand finalresult;
- if(flippedSign) { // if we were multiplying by a negative constant:
- SDOperand zero = ISelDAG->getConstant(0, MVT::i64);
- // subtract the result from 0 to flip its sign
- finalresult = ISelDAG->getNode(ISD::SUB, MVT::i64, zero, shiftedresult);
- } else { // there was no preliminary multiply by -1 required
- finalresult = shiftedresult;
- }
-
- return finalresult;
-}
-
-/// ponderIntegerDivisionBy - When handling integer divides, if the divide
-/// is by a constant such that we can efficiently codegen it, this
-/// function says what to do. Currently, it returns 0 if the division must
-/// become a genuine divide, and 1 if the division can be turned into a
-/// right shift.
-static unsigned ponderIntegerDivisionBy(SDOperand N, bool isSigned,
- unsigned& Imm) {
- if (N.getOpcode() != ISD::Constant) return 0; // if not a divide by
- // a constant, give up.
-
- int64_t v = (int64_t)cast<ConstantSDNode>(N)->getSignExtended();
-
- if (isPowerOf2_64(v)) { // if a division by a power of two, say so
- Imm = Log2_64(v);
- return 1;
- }
-
- return 0; // fallthrough
-}
-
-static unsigned ponderIntegerAndWith(SDOperand N, unsigned& Imm) {
- if (N.getOpcode() != ISD::Constant) return 0; // if not ANDing with
- // a constant, give up.
-
- int64_t v = (int64_t)cast<ConstantSDNode>(N)->getSignExtended();
-
- if (isMask_64(v)) { // if ANDing with ((2^n)-1) for some n
- Imm = Log2_64(v) + 1;
- return 1; // say so
- }
-
- return 0; // fallthrough
-}
-
-static unsigned ponderIntegerAdditionWith(SDOperand N, unsigned& Imm) {
- if (N.getOpcode() != ISD::Constant) return 0; // if not adding a
- // constant, give up.
- int64_t v = (int64_t)cast<ConstantSDNode>(N)->getSignExtended();
-
- if (v <= 8191 && v >= -8192) { // if this constants fits in 14 bits, say so
- Imm = v & 0x3FFF; // 14 bits
- return 1;
- }
- return 0; // fallthrough
-}
-
-static unsigned ponderIntegerSubtractionFrom(SDOperand N, unsigned& Imm) {
- if (N.getOpcode() != ISD::Constant) return 0; // if not subtracting a
- // constant, give up.
- int64_t v = (int64_t)cast<ConstantSDNode>(N)->getSignExtended();
-
- if (v <= 127 && v >= -128) { // if this constants fits in 8 bits, say so
- Imm = v & 0xFF; // 8 bits
- return 1;
- }
- return 0; // fallthrough
-}
-
-unsigned ISel::SelectExpr(SDOperand N) {
- unsigned Result;
- unsigned Tmp1, Tmp2, Tmp3;
- unsigned Opc = 0;
- MVT::ValueType DestType = N.getValueType();
-
- unsigned opcode = N.getOpcode();
-
- SDNode *Node = N.Val;
- SDOperand Op0, Op1;
-
- if (Node->getOpcode() == ISD::CopyFromReg)
- // Just use the specified register as our input.
- return cast<RegisterSDNode>(Node->getOperand(1))->getReg();
-
- unsigned &Reg = ExprMap[N];
- if (Reg) return Reg;
-
- if (N.getOpcode() != ISD::CALL && N.getOpcode() != ISD::TAILCALL)
- Reg = Result = (N.getValueType() != MVT::Other) ?
- MakeReg(N.getValueType()) : 1;
- else {
- // If this is a call instruction, make sure to prepare ALL of the result
- // values as well as the chain.
- if (Node->getNumValues() == 1)
- Reg = Result = 1; // Void call, just a chain.
- else {
- Result = MakeReg(Node->getValueType(0));
- ExprMap[N.getValue(0)] = Result;
- for (unsigned i = 1, e = N.Val->getNumValues()-1; i != e; ++i)
- ExprMap[N.getValue(i)] = MakeReg(Node->getValueType(i));
- ExprMap[SDOperand(Node, Node->getNumValues()-1)] = 1;
- }
- }
-
- switch (N.getOpcode()) {
- default:
- Node->dump();
- assert(0 && "Node not handled!\n");
-
- case ISD::FrameIndex: {
- Tmp1 = cast<FrameIndexSDNode>(N)->getIndex();
- BuildMI(BB, IA64::MOV, 1, Result).addFrameIndex(Tmp1);
- return Result;
- }
-
- case ISD::ConstantPool: {
- Tmp1 = BB->getParent()->getConstantPool()->
- getConstantPoolIndex(cast<ConstantPoolSDNode>(N)->get());
- IA64Lowering.restoreGP(BB); // FIXME: do i really need this?
- BuildMI(BB, IA64::ADD, 2, Result).addConstantPoolIndex(Tmp1)
- .addReg(IA64::r1);
- return Result;
- }
-
- case ISD::ConstantFP: {
- Tmp1 = Result; // Intermediate Register
- if (cast<ConstantFPSDNode>(N)->getValue() < 0.0 ||
- cast<ConstantFPSDNode>(N)->isExactlyValue(-0.0))
- Tmp1 = MakeReg(MVT::f64);
-
- if (cast<ConstantFPSDNode>(N)->isExactlyValue(+0.0) ||
- cast<ConstantFPSDNode>(N)->isExactlyValue(-0.0))
- BuildMI(BB, IA64::FMOV, 1, Tmp1).addReg(IA64::F0); // load 0.0
- else if (cast<ConstantFPSDNode>(N)->isExactlyValue(+1.0) ||
- cast<ConstantFPSDNode>(N)->isExactlyValue(-1.0))
- BuildMI(BB, IA64::FMOV, 1, Tmp1).addReg(IA64::F1); // load 1.0
- else
- assert(0 && "Unexpected FP constant!");
- if (Tmp1 != Result)
- // we multiply by +1.0, negate (this is FNMA), and then add 0.0
- BuildMI(BB, IA64::FNMA, 3, Result).addReg(Tmp1).addReg(IA64::F1)
- .addReg(IA64::F0);
- return Result;
- }
-
- case ISD::DYNAMIC_STACKALLOC: {
- // Generate both result values.
- if (Result != 1)
- ExprMap[N.getValue(1)] = 1; // Generate the token
- else
- Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
-
- // FIXME: We are currently ignoring the requested alignment for handling
- // greater than the stack alignment. This will need to be revisited at some
- // point. Align = N.getOperand(2);
-
- if (!isa<ConstantSDNode>(N.getOperand(2)) ||
- cast<ConstantSDNode>(N.getOperand(2))->getValue() != 0) {
- std::cerr << "Cannot allocate stack object with greater alignment than"
- << " the stack alignment yet!";
- abort();
- }
-
-/*
- Select(N.getOperand(0));
- if (ConstantSDNode* CN = dyn_cast<ConstantSDNode>(N.getOperand(1)))
- {
- if (CN->getValue() < 32000)
- {
- BuildMI(BB, IA64::ADDIMM22, 2, IA64::r12).addReg(IA64::r12)
- .addImm(-CN->getValue());
- } else {
- Tmp1 = SelectExpr(N.getOperand(1));
- // Subtract size from stack pointer, thereby allocating some space.
- BuildMI(BB, IA64::SUB, 2, IA64::r12).addReg(IA64::r12).addReg(Tmp1);
- }
- } else {
- Tmp1 = SelectExpr(N.getOperand(1));
- // Subtract size from stack pointer, thereby allocating some space.
- BuildMI(BB, IA64::SUB, 2, IA64::r12).addReg(IA64::r12).addReg(Tmp1);
- }
-*/
- Select(N.getOperand(0));
- Tmp1 = SelectExpr(N.getOperand(1));
- // Subtract size from stack pointer, thereby allocating some space.
- BuildMI(BB, IA64::SUB, 2, IA64::r12).addReg(IA64::r12).addReg(Tmp1);
- // Put a pointer to the space into the result register, by copying the
- // stack pointer.
- BuildMI(BB, IA64::MOV, 1, Result).addReg(IA64::r12);
- return Result;
- }
-
- case ISD::SELECT: {
- Tmp1 = SelectExpr(N.getOperand(0)); //Cond
- Tmp2 = SelectExpr(N.getOperand(1)); //Use if TRUE
- Tmp3 = SelectExpr(N.getOperand(2)); //Use if FALSE
-
- unsigned bogoResult;
-
- switch (N.getOperand(1).getValueType()) {
- default: assert(0 &&
- "ISD::SELECT: 'select'ing something other than i1, i64 or f64!\n");
- // for i1, we load the condition into an integer register, then
- // conditionally copy Tmp2 and Tmp3 to Tmp1 in parallel (only one
- // of them will go through, since the integer register will hold
- // either 0 or 1)
- case MVT::i1: {
- bogoResult=MakeReg(MVT::i1);
-
- // load the condition into an integer register
- unsigned condReg=MakeReg(MVT::i64);
- unsigned dummy=MakeReg(MVT::i64);
- BuildMI(BB, IA64::MOV, 1, dummy).addReg(IA64::r0);
- BuildMI(BB, IA64::TPCADDIMM22, 2, condReg).addReg(dummy)
- .addImm(1).addReg(Tmp1);
-
- // initialize Result (bool) to false (hence UNC) and if
- // the select condition (condReg) is false (0), copy Tmp3
- BuildMI(BB, IA64::PCMPEQUNC, 3, bogoResult)
- .addReg(condReg).addReg(IA64::r0).addReg(Tmp3);
-
- // now, if the selection condition is true, write 1 to the
- // result if Tmp2 is 1
- BuildMI(BB, IA64::TPCMPNE, 3, Result).addReg(bogoResult)
- .addReg(condReg).addReg(IA64::r0).addReg(Tmp2);
- break;
- }
- // for i64/f64, we just copy Tmp3 and then conditionally overwrite it
- // with Tmp2 if Tmp1 is true
- case MVT::i64:
- bogoResult=MakeReg(MVT::i64);
- BuildMI(BB, IA64::MOV, 1, bogoResult).addReg(Tmp3);
- BuildMI(BB, IA64::CMOV, 2, Result).addReg(bogoResult).addReg(Tmp2)
- .addReg(Tmp1);
- break;
- case MVT::f64:
- bogoResult=MakeReg(MVT::f64);
- BuildMI(BB, IA64::FMOV, 1, bogoResult).addReg(Tmp3);
- BuildMI(BB, IA64::CFMOV, 2, Result).addReg(bogoResult).addReg(Tmp2)
- .addReg(Tmp1);
- break;
- }
-
- return Result;
- }
-
- case ISD::Constant: {
- unsigned depositPos=0;
- unsigned depositLen=0;
- switch (N.getValueType()) {
- default: assert(0 && "Cannot use constants of this type!");
- case MVT::i1: { // if a bool, we don't 'load' so much as generate
- // the constant:
- if(cast<ConstantSDNode>(N)->getValue()) // true:
- BuildMI(BB, IA64::CMPEQ, 2, Result).addReg(IA64::r0).addReg(IA64::r0);
- else // false:
- BuildMI(BB, IA64::CMPNE, 2, Result).addReg(IA64::r0).addReg(IA64::r0);
- return Result; // early exit
- }
- case MVT::i64: break;
- }
-
- int64_t immediate = cast<ConstantSDNode>(N)->getValue();
-
- if(immediate==0) { // if the constant is just zero,
- BuildMI(BB, IA64::MOV, 1, Result).addReg(IA64::r0); // just copy r0
- return Result; // early exit
- }
-
- if (immediate <= 8191 && immediate >= -8192) {
- // if this constants fits in 14 bits, we use a mov the assembler will
- // turn into: "adds rDest=imm,r0" (and _not_ "andl"...)
- BuildMI(BB, IA64::MOVSIMM14, 1, Result).addSImm(immediate);
- return Result; // early exit
- }
-
- if (immediate <= 2097151 && immediate >= -2097152) {
- // if this constants fits in 22 bits, we use a mov the assembler will
- // turn into: "addl rDest=imm,r0"
- BuildMI(BB, IA64::MOVSIMM22, 1, Result).addSImm(immediate);
- return Result; // early exit
- }
-
- /* otherwise, our immediate is big, so we use movl */
- uint64_t Imm = immediate;
- BuildMI(BB, IA64::MOVLIMM64, 1, Result).addImm64(Imm);
- return Result;
- }
-
- case ISD::UNDEF: {
- BuildMI(BB, IA64::IDEF, 0, Result);
- return Result;
- }
-
- case ISD::GlobalAddress: {
- GlobalValue *GV = cast<GlobalAddressSDNode>(N)->getGlobal();
- unsigned Tmp1 = MakeReg(MVT::i64);
-
- BuildMI(BB, IA64::ADD, 2, Tmp1).addGlobalAddress(GV).addReg(IA64::r1);
- BuildMI(BB, IA64::LD8, 1, Result).addReg(Tmp1);
-
- return Result;
- }
-
- case ISD::ExternalSymbol: {
- const char *Sym = cast<ExternalSymbolSDNode>(N)->getSymbol();
-// assert(0 && "sorry, but what did you want an ExternalSymbol for again?");
- BuildMI(BB, IA64::MOV, 1, Result).addExternalSymbol(Sym); // XXX
- return Result;
- }
-
- case ISD::FP_EXTEND: {
- Tmp1 = SelectExpr(N.getOperand(0));
- BuildMI(BB, IA64::FMOV, 1, Result).addReg(Tmp1);
- return Result;
- }
-
- case ISD::ANY_EXTEND:
- case ISD::ZERO_EXTEND: {
- Tmp1 = SelectExpr(N.getOperand(0)); // value
-
- assert(N.getOperand(0).getValueType() == MVT::i1 &&
- "Cannot zero-extend this type!");
-
- // if the predicate reg has 1, we want a '1' in our GR.
- unsigned dummy = MakeReg(MVT::i64);
- // first load zero:
- BuildMI(BB, IA64::MOV, 1, dummy).addReg(IA64::r0);
- // ...then conditionally (PR:Tmp1) add 1:
- BuildMI(BB, IA64::TPCADDIMM22, 2, Result).addReg(dummy)
- .addImm(1).addReg(Tmp1);
- return Result; // XXX early exit!
- }
-
- case ISD::SIGN_EXTEND:
- assert(N.getOperand(0).getValueType() == MVT::i1 &&
- "Cannot zero-extend this type!");
-
- Tmp1 = SelectExpr(N.getOperand(0)); // value
- assert(0 && "don't know how to sign_extend from bool yet!");
- abort();
-
- case ISD::TRUNCATE:
- // we use the funky dep.z (deposit (zero)) instruction to deposit bits
- // of R0 appropriately.
- assert(N.getOperand(0).getValueType() == MVT::i64 &&
- N.getValueType() == MVT::i1 && "Unknown truncate!");
- Tmp1 = SelectExpr(N.getOperand(0));
-
- // if input (normal reg) is 0, 0!=0 -> false (0), if 1, 1!=0 ->true (1):
- BuildMI(BB, IA64::CMPNE, 2, Result).addReg(Tmp1).addReg(IA64::r0);
- return Result; // XXX early exit!
-
-/*
- case ISD::FP_ROUND: {
- assert (DestType == MVT::f32 && N.getOperand(0).getValueType() == MVT::f64 &&
- "error: trying to FP_ROUND something other than f64 -> f32!\n");
- Tmp1 = SelectExpr(N.getOperand(0));
- BuildMI(BB, IA64::FADDS, 2, Result).addReg(Tmp1).addReg(IA64::F0);
- // we add 0.0 using a single precision add to do rounding
- return Result;
- }
-*/
-
-// FIXME: the following 4 cases need cleaning
- case ISD::SINT_TO_FP: {
- Tmp1 = SelectExpr(N.getOperand(0));
- Tmp2 = MakeReg(MVT::f64);
- unsigned dummy = MakeReg(MVT::f64);
- BuildMI(BB, IA64::SETFSIG, 1, Tmp2).addReg(Tmp1);
- BuildMI(BB, IA64::FCVTXF, 1, dummy).addReg(Tmp2);
- BuildMI(BB, IA64::FNORMD, 1, Result).addReg(dummy);
- return Result;
- }
-
- case ISD::UINT_TO_FP: {
- Tmp1 = SelectExpr(N.getOperand(0));
- Tmp2 = MakeReg(MVT::f64);
- unsigned dummy = MakeReg(MVT::f64);
- BuildMI(BB, IA64::SETFSIG, 1, Tmp2).addReg(Tmp1);
- BuildMI(BB, IA64::FCVTXUF, 1, dummy).addReg(Tmp2);
- BuildMI(BB, IA64::FNORMD, 1, Result).addReg(dummy);
- return Result;
- }
-
- case ISD::FP_TO_SINT: {
- Tmp1 = SelectExpr(N.getOperand(0));
- Tmp2 = MakeReg(MVT::f64);
- BuildMI(BB, IA64::FCVTFXTRUNC, 1, Tmp2).addReg(Tmp1);
- BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(Tmp2);
- return Result;
- }
-
- case ISD::FP_TO_UINT: {
- Tmp1 = SelectExpr(N.getOperand(0));
- Tmp2 = MakeReg(MVT::f64);
- BuildMI(BB, IA64::FCVTFXUTRUNC, 1, Tmp2).addReg(Tmp1);
- BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(Tmp2);
- return Result;
- }
-
- case ISD::FADD: {
- if (N.getOperand(0).getOpcode() == ISD::FMUL &&
- N.getOperand(0).Val->hasOneUse()) { // if we can fold this add
- // into an fma, do so:
- // ++FusedFP; // Statistic
- Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
- Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
- Tmp3 = SelectExpr(N.getOperand(1));
- BuildMI(BB, IA64::FMA, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
- return Result; // early exit
- }
-
- //else, fallthrough:
- Tmp1 = SelectExpr(N.getOperand(0));
- Tmp2 = SelectExpr(N.getOperand(1));
- BuildMI(BB, IA64::FADD, 2, Result).addReg(Tmp1).addReg(Tmp2);
- return Result;
- }
-
- case ISD::ADD: {
- if (N.getOperand(0).getOpcode() == ISD::SHL &&
- N.getOperand(0).Val->hasOneUse()) { // if we might be able to fold
- // this add into a shladd, try:
- ConstantSDNode *CSD = NULL;
- if((CSD = dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) &&
- (CSD->getValue() >= 1) && (CSD->getValue() <= 4) ) { // we can:
-
- // ++FusedSHLADD; // Statistic
- Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
- int shl_amt = CSD->getValue();
- Tmp3 = SelectExpr(N.getOperand(1));
-
- BuildMI(BB, IA64::SHLADD, 3, Result)
- .addReg(Tmp1).addImm(shl_amt).addReg(Tmp3);
- return Result; // early exit
- }
- }
-
- //else, fallthrough:
- Tmp1 = SelectExpr(N.getOperand(0));
- switch (ponderIntegerAdditionWith(N.getOperand(1), Tmp3)) {
- case 1: // adding a constant that's 14 bits
- BuildMI(BB, IA64::ADDIMM14, 2, Result).addReg(Tmp1).addSImm(Tmp3);
- return Result; // early exit
- } // fallthrough and emit a reg+reg ADD:
- Tmp2 = SelectExpr(N.getOperand(1));
- BuildMI(BB, IA64::ADD, 2, Result).addReg(Tmp1).addReg(Tmp2);
- return Result;
- }
-
- case ISD::FMUL:
- Tmp1 = SelectExpr(N.getOperand(0));
- Tmp2 = SelectExpr(N.getOperand(1));
- BuildMI(BB, IA64::FMPY, 2, Result).addReg(Tmp1).addReg(Tmp2);
- return Result;
-
- case ISD::MUL: {
-
- // TODO: speed!
-/* FIXME if(N.getOperand(1).getOpcode() != ISD::Constant) { // if not a const mul
- */
- // boring old integer multiply with xma
- Tmp1 = SelectExpr(N.getOperand(0));
- Tmp2 = SelectExpr(N.getOperand(1));
-
- unsigned TempFR1=MakeReg(MVT::f64);
- unsigned TempFR2=MakeReg(MVT::f64);
- unsigned TempFR3=MakeReg(MVT::f64);
- BuildMI(BB, IA64::SETFSIG, 1, TempFR1).addReg(Tmp1);
- BuildMI(BB, IA64::SETFSIG, 1, TempFR2).addReg(Tmp2);
- BuildMI(BB, IA64::XMAL, 1, TempFR3).addReg(TempFR1).addReg(TempFR2)
- .addReg(IA64::F0);
- BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(TempFR3);
- return Result; // early exit
- /* FIXME } else { // we are multiplying by an integer constant! yay
- return Reg = SelectExpr(BuildConstmulSequence(N)); // avert your eyes!
- } */
- }
-
- case ISD::FSUB:
- if(N.getOperand(0).getOpcode() == ISD::FMUL &&
- N.getOperand(0).Val->hasOneUse()) { // if we can fold this sub
- // into an fms, do so:
- // ++FusedFP; // Statistic
- Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
- Tmp2 = SelectExpr(N.getOperand(0).getOperand(1));
- Tmp3 = SelectExpr(N.getOperand(1));
- BuildMI(BB, IA64::FMS, 3, Result).addReg(Tmp1).addReg(Tmp2).addReg(Tmp3);
- return Result; // early exit
- }
-
- Tmp2 = SelectExpr(N.getOperand(1));
- Tmp1 = SelectExpr(N.getOperand(0));
- BuildMI(BB, IA64::FSUB, 2, Result).addReg(Tmp1).addReg(Tmp2);
- return Result;
-
- case ISD::SUB: {
- Tmp2 = SelectExpr(N.getOperand(1));
- switch (ponderIntegerSubtractionFrom(N.getOperand(0), Tmp3)) {
- case 1: // subtracting *from* an 8 bit constant:
- BuildMI(BB, IA64::SUBIMM8, 2, Result).addSImm(Tmp3).addReg(Tmp2);
- return Result; // early exit
- } // fallthrough and emit a reg+reg SUB:
- Tmp1 = SelectExpr(N.getOperand(0));
- BuildMI(BB, IA64::SUB, 2, Result).addReg(Tmp1).addReg(Tmp2);
- return Result;
- }
-
- case ISD::FABS: {
- Tmp1 = SelectExpr(N.getOperand(0));
- assert(DestType == MVT::f64 && "trying to fabs something other than f64?");
- BuildMI(BB, IA64::FABS, 1, Result).addReg(Tmp1);
- return Result;
- }
-
- case ISD::FNEG: {
- assert(DestType == MVT::f64 && "trying to fneg something other than f64?");
-
- if (ISD::FABS == N.getOperand(0).getOpcode()) { // && hasOneUse()?
- Tmp1 = SelectExpr(N.getOperand(0).getOperand(0));
- BuildMI(BB, IA64::FNEGABS, 1, Result).addReg(Tmp1); // fold in abs
- } else {
- Tmp1 = SelectExpr(N.getOperand(0));
- BuildMI(BB, IA64::FNEG, 1, Result).addReg(Tmp1); // plain old fneg
- }
-
- return Result;
- }
-
- case ISD::AND: {
- switch (N.getValueType()) {
- default: assert(0 && "Cannot AND this type!");
- case MVT::i1: { // if a bool, we emit a pseudocode AND
- unsigned pA = SelectExpr(N.getOperand(0));
- unsigned pB = SelectExpr(N.getOperand(1));
-
-/* our pseudocode for AND is:
- *
-(pA) cmp.eq.unc pC,p0 = r0,r0 // pC = pA
- cmp.eq pTemp,p0 = r0,r0 // pTemp = NOT pB
- ;;
-(pB) cmp.ne pTemp,p0 = r0,r0
- ;;
-(pTemp)cmp.ne pC,p0 = r0,r0 // if (NOT pB) pC = 0
-
-*/
- unsigned pTemp = MakeReg(MVT::i1);
-
- unsigned bogusTemp1 = MakeReg(MVT::i1);
- unsigned bogusTemp2 = MakeReg(MVT::i1);
- unsigned bogusTemp3 = MakeReg(MVT::i1);
- unsigned bogusTemp4 = MakeReg(MVT::i1);
-
- BuildMI(BB, IA64::PCMPEQUNC, 3, bogusTemp1)
- .addReg(IA64::r0).addReg(IA64::r0).addReg(pA);
- BuildMI(BB, IA64::CMPEQ, 2, bogusTemp2)
- .addReg(IA64::r0).addReg(IA64::r0);
- BuildMI(BB, IA64::TPCMPNE, 3, pTemp)
- .addReg(bogusTemp2).addReg(IA64::r0).addReg(IA64::r0).addReg(pB);
- BuildMI(BB, IA64::TPCMPNE, 3, Result)
- .addReg(bogusTemp1).addReg(IA64::r0).addReg(IA64::r0).addReg(pTemp);
- break;
- }
-
- // if not a bool, we just AND away:
- case MVT::i8:
- case MVT::i16:
- case MVT::i32:
- case MVT::i64: {
- Tmp1 = SelectExpr(N.getOperand(0));
- switch (ponderIntegerAndWith(N.getOperand(1), Tmp3)) {
- case 1: // ANDing a constant that is 2^n-1 for some n
- switch (Tmp3) {
- case 8: // if AND 0x00000000000000FF, be quaint and use zxt1
- BuildMI(BB, IA64::ZXT1, 1, Result).addReg(Tmp1);
- break;
- case 16: // if AND 0x000000000000FFFF, be quaint and use zxt2
- BuildMI(BB, IA64::ZXT2, 1, Result).addReg(Tmp1);
- break;
- case 32: // if AND 0x00000000FFFFFFFF, be quaint and use zxt4
- BuildMI(BB, IA64::ZXT4, 1, Result).addReg(Tmp1);
- break;
- default: // otherwise, use dep.z to paste zeros
- // FIXME: assert the dep.z is in bounds
- BuildMI(BB, IA64::DEPZ, 3, Result).addReg(Tmp1)
- .addImm(0).addImm(Tmp3);
- break;
- }
- return Result; // early exit
- } // fallthrough and emit a simple AND:
- Tmp2 = SelectExpr(N.getOperand(1));
- BuildMI(BB, IA64::AND, 2, Result).addReg(Tmp1).addReg(Tmp2);
- }
- }
- return Result;
- }
-
- case ISD::OR: {
- switch (N.getValueType()) {
- default: assert(0 && "Cannot OR this type!");
- case MVT::i1: { // if a bool, we emit a pseudocode OR
- unsigned pA = SelectExpr(N.getOperand(0));
- unsigned pB = SelectExpr(N.getOperand(1));
-
- unsigned pTemp1 = MakeReg(MVT::i1);
-
-/* our pseudocode for OR is:
- *
-
-pC = pA OR pB
--------------
-
-(pA) cmp.eq.unc pC,p0 = r0,r0 // pC = pA
- ;;
-(pB) cmp.eq pC,p0 = r0,r0 // if (pB) pC = 1
-
-*/
- BuildMI(BB, IA64::PCMPEQUNC, 3, pTemp1)
- .addReg(IA64::r0).addReg(IA64::r0).addReg(pA);
- BuildMI(BB, IA64::TPCMPEQ, 4, Result)
- .addReg(pTemp1).addReg(IA64::r0).addReg(IA64::r0).addReg(pB);
- break;
- }
- // if not a bool, we just OR away:
- case MVT::i8:
- case MVT::i16:
- case MVT::i32:
- case MVT::i64: {
- Tmp1 = SelectExpr(N.getOperand(0));
- Tmp2 = SelectExpr(N.getOperand(1));
- BuildMI(BB, IA64::OR, 2, Result).addReg(Tmp1).addReg(Tmp2);
- break;
- }
- }
- return Result;
- }
-
- case ISD::XOR: {
- switch (N.getValueType()) {
- default: assert(0 && "Cannot XOR this type!");
- case MVT::i1: { // if a bool, we emit a pseudocode XOR
- unsigned pY = SelectExpr(N.getOperand(0));
- unsigned pZ = SelectExpr(N.getOperand(1));
-
-/* one possible routine for XOR is:
-
- // Compute px = py ^ pz
- // using sum of products: px = (py & !pz) | (pz & !py)
- // Uses 5 instructions in 3 cycles.
- // cycle 1
-(pz) cmp.eq.unc px = r0, r0 // px = pz
-(py) cmp.eq.unc pt = r0, r0 // pt = py
- ;;
- // cycle 2
-(pt) cmp.ne.and px = r0, r0 // px = px & !pt (px = pz & !pt)
-(pz) cmp.ne.and pt = r0, r0 // pt = pt & !pz
- ;;
- } { .mmi
- // cycle 3
-(pt) cmp.eq.or px = r0, r0 // px = px | pt
-
-*** Another, which we use here, requires one scratch GR. it is:
-
- mov rt = 0 // initialize rt off critical path
- ;;
-
- // cycle 1
-(pz) cmp.eq.unc px = r0, r0 // px = pz
-(pz) mov rt = 1 // rt = pz
- ;;
- // cycle 2
-(py) cmp.ne px = 1, rt // if (py) px = !pz
-
-.. these routines kindly provided by Jim Hull
-*/
- unsigned rt = MakeReg(MVT::i64);
-
- // these two temporaries will never actually appear,
- // due to the two-address form of some of the instructions below
- unsigned bogoPR = MakeReg(MVT::i1); // becomes Result
- unsigned bogoGR = MakeReg(MVT::i64); // becomes rt
-
- BuildMI(BB, IA64::MOV, 1, bogoGR).addReg(IA64::r0);
- BuildMI(BB, IA64::PCMPEQUNC, 3, bogoPR)
- .addReg(IA64::r0).addReg(IA64::r0).addReg(pZ);
- BuildMI(BB, IA64::TPCADDIMM22, 2, rt)
- .addReg(bogoGR).addImm(1).addReg(pZ);
- BuildMI(BB, IA64::TPCMPIMM8NE, 3, Result)
- .addReg(bogoPR).addImm(1).addReg(rt).addReg(pY);
- break;
- }
- // if not a bool, we just XOR away:
- case MVT::i8:
- case MVT::i16:
- case MVT::i32:
- case MVT::i64: {
- Tmp1 = SelectExpr(N.getOperand(0));
- Tmp2 = SelectExpr(N.getOperand(1));
- BuildMI(BB, IA64::XOR, 2, Result).addReg(Tmp1).addReg(Tmp2);
- break;
- }
- }
- return Result;
- }
-
- case ISD::CTPOP: {
- Tmp1 = SelectExpr(N.getOperand(0));
- BuildMI(BB, IA64::POPCNT, 1, Result).addReg(Tmp1);
- return Result;
- }
-
- case ISD::SHL: {
- Tmp1 = SelectExpr(N.getOperand(0));
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
- Tmp2 = CN->getValue();
- BuildMI(BB, IA64::SHLI, 2, Result).addReg(Tmp1).addImm(Tmp2);
- } else {
- Tmp2 = SelectExpr(N.getOperand(1));
- BuildMI(BB, IA64::SHL, 2, Result).addReg(Tmp1).addReg(Tmp2);
- }
- return Result;
- }
-
- case ISD::SRL: {
- Tmp1 = SelectExpr(N.getOperand(0));
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
- Tmp2 = CN->getValue();
- BuildMI(BB, IA64::SHRUI, 2, Result).addReg(Tmp1).addImm(Tmp2);
- } else {
- Tmp2 = SelectExpr(N.getOperand(1));
- BuildMI(BB, IA64::SHRU, 2, Result).addReg(Tmp1).addReg(Tmp2);
- }
- return Result;
- }
-
- case ISD::SRA: {
- Tmp1 = SelectExpr(N.getOperand(0));
- if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
- Tmp2 = CN->getValue();
- BuildMI(BB, IA64::SHRSI, 2, Result).addReg(Tmp1).addImm(Tmp2);
- } else {
- Tmp2 = SelectExpr(N.getOperand(1));
- BuildMI(BB, IA64::SHRS, 2, Result).addReg(Tmp1).addReg(Tmp2);
- }
- return Result;
- }
-
- case ISD::FDIV:
- case ISD::SDIV:
- case ISD::UDIV:
- case ISD::SREM:
- case ISD::UREM: {
-
- Tmp1 = SelectExpr(N.getOperand(0));
- Tmp2 = SelectExpr(N.getOperand(1));
-
- bool isFP=false;
-
- if(DestType == MVT::f64) // XXX: we're not gonna be fed MVT::f32, are we?
- isFP=true;
-
- bool isModulus=false; // is it a division or a modulus?
- bool isSigned=false;
-
- switch(N.getOpcode()) {
- case ISD::FDIV:
- case ISD::SDIV: isModulus=false; isSigned=true; break;
- case ISD::UDIV: isModulus=false; isSigned=false; break;
- case ISD::FREM:
- case ISD::SREM: isModulus=true; isSigned=true; break;
- case ISD::UREM: isModulus=true; isSigned=false; break;
- }
-
- if(!isModulus && !isFP) { // if this is an integer divide,
- switch (ponderIntegerDivisionBy(N.getOperand(1), isSigned, Tmp3)) {
- case 1: // division by a constant that's a power of 2
- Tmp1 = SelectExpr(N.getOperand(0));
- if(isSigned) { // argument could be negative, so emit some code:
- unsigned divAmt=Tmp3;
- unsigned tempGR1=MakeReg(MVT::i64);
- unsigned tempGR2=MakeReg(MVT::i64);
- unsigned tempGR3=MakeReg(MVT::i64);
- BuildMI(BB, IA64::SHRS, 2, tempGR1)
- .addReg(Tmp1).addImm(divAmt-1);
- BuildMI(BB, IA64::EXTRU, 3, tempGR2)
- .addReg(tempGR1).addImm(64-divAmt).addImm(divAmt);
- BuildMI(BB, IA64::ADD, 2, tempGR3)
- .addReg(Tmp1).addReg(tempGR2);
- BuildMI(BB, IA64::SHRS, 2, Result)
- .addReg(tempGR3).addImm(divAmt);
- }
- else // unsigned div-by-power-of-2 becomes a simple shift right:
- BuildMI(BB, IA64::SHRU, 2, Result).addReg(Tmp1).addImm(Tmp3);
- return Result; // early exit
- }
- }
-
- unsigned TmpPR=MakeReg(MVT::i1); // we need two scratch
- unsigned TmpPR2=MakeReg(MVT::i1); // predicate registers,
- unsigned TmpF1=MakeReg(MVT::f64); // and one metric truckload of FP regs.
- unsigned TmpF2=MakeReg(MVT::f64); // lucky we have IA64?
- unsigned TmpF3=MakeReg(MVT::f64); // well, the real FIXME is to have
- unsigned TmpF4=MakeReg(MVT::f64); // isTwoAddress forms of these
- unsigned TmpF5=MakeReg(MVT::f64); // FP instructions so we can end up with
- unsigned TmpF6=MakeReg(MVT::f64); // stuff like setf.sig f10=f10 etc.
- unsigned TmpF7=MakeReg(MVT::f64);
- unsigned TmpF8=MakeReg(MVT::f64);
- unsigned TmpF9=MakeReg(MVT::f64);
- unsigned TmpF10=MakeReg(MVT::f64);
- unsigned TmpF11=MakeReg(MVT::f64);
- unsigned TmpF12=MakeReg(MVT::f64);
- unsigned TmpF13=MakeReg(MVT::f64);
- unsigned TmpF14=MakeReg(MVT::f64);
- unsigned TmpF15=MakeReg(MVT::f64);
-
- // OK, emit some code:
-
- if(!isFP) {
- // first, load the inputs into FP regs.
- BuildMI(BB, IA64::SETFSIG, 1, TmpF1).addReg(Tmp1);
- BuildMI(BB, IA64::SETFSIG, 1, TmpF2).addReg(Tmp2);
-
- // next, convert the inputs to FP
- if(isSigned) {
- BuildMI(BB, IA64::FCVTXF, 1, TmpF3).addReg(TmpF1);
- BuildMI(BB, IA64::FCVTXF, 1, TmpF4).addReg(TmpF2);
- } else {
- BuildMI(BB, IA64::FCVTXUFS1, 1, TmpF3).addReg(TmpF1);
- BuildMI(BB, IA64::FCVTXUFS1, 1, TmpF4).addReg(TmpF2);
- }
-
- } else { // this is an FP divide/remainder, so we 'leak' some temp
- // regs and assign TmpF3=Tmp1, TmpF4=Tmp2
- TmpF3=Tmp1;
- TmpF4=Tmp2;
- }
-
- // we start by computing an approximate reciprocal (good to 9 bits?)
- // note, this instruction writes _both_ TmpF5 (answer) and TmpPR (predicate)
- BuildMI(BB, IA64::FRCPAS1, 4)
- .addReg(TmpF5, MachineOperand::Def)
- .addReg(TmpPR, MachineOperand::Def)
- .addReg(TmpF3).addReg(TmpF4);
-
- if(!isModulus) { // if this is a divide, we worry about div-by-zero
- unsigned bogusPR=MakeReg(MVT::i1); // won't appear, due to twoAddress
- // TPCMPNE below
- BuildMI(BB, IA64::CMPEQ, 2, bogusPR).addReg(IA64::r0).addReg(IA64::r0);
- BuildMI(BB, IA64::TPCMPNE, 3, TmpPR2).addReg(bogusPR)
- .addReg(IA64::r0).addReg(IA64::r0).addReg(TmpPR);
- }
-
- // now we apply newton's method, thrice! (FIXME: this is ~72 bits of
- // precision, don't need this much for f32/i32)
- BuildMI(BB, IA64::CFNMAS1, 4, TmpF6)
- .addReg(TmpF4).addReg(TmpF5).addReg(IA64::F1).addReg(TmpPR);
- BuildMI(BB, IA64::CFMAS1, 4, TmpF7)
- .addReg(TmpF3).addReg(TmpF5).addReg(IA64::F0).addReg(TmpPR);
- BuildMI(BB, IA64::CFMAS1, 4, TmpF8)
- .addReg(TmpF6).addReg(TmpF6).addReg(IA64::F0).addReg(TmpPR);
- BuildMI(BB, IA64::CFMAS1, 4, TmpF9)
- .addReg(TmpF6).addReg(TmpF7).addReg(TmpF7).addReg(TmpPR);
- BuildMI(BB, IA64::CFMAS1, 4,TmpF10)
- .addReg(TmpF6).addReg(TmpF5).addReg(TmpF5).addReg(TmpPR);
- BuildMI(BB, IA64::CFMAS1, 4,TmpF11)
- .addReg(TmpF8).addReg(TmpF9).addReg(TmpF9).addReg(TmpPR);
- BuildMI(BB, IA64::CFMAS1, 4,TmpF12)
- .addReg(TmpF8).addReg(TmpF10).addReg(TmpF10).addReg(TmpPR);
- BuildMI(BB, IA64::CFNMAS1, 4,TmpF13)
- .addReg(TmpF4).addReg(TmpF11).addReg(TmpF3).addReg(TmpPR);
-
- // FIXME: this is unfortunate :(
- // the story is that the dest reg of the fnma above and the fma below
- // (and therefore possibly the src of the fcvt.fx[u] as well) cannot
- // be the same register, or this code breaks if the first argument is
- // zero. (e.g. without this hack, 0%8 yields -64, not 0.)
- BuildMI(BB, IA64::CFMAS1, 4,TmpF14)
- .addReg(TmpF13).addReg(TmpF12).addReg(TmpF11).addReg(TmpPR);
-
- if(isModulus) { // XXX: fragile! fixes _only_ mod, *breaks* div! !
- BuildMI(BB, IA64::IUSE, 1).addReg(TmpF13); // hack :(
- }
-
- if(!isFP) {
- // round to an integer
- if(isSigned)
- BuildMI(BB, IA64::FCVTFXTRUNCS1, 1, TmpF15).addReg(TmpF14);
- else
- BuildMI(BB, IA64::FCVTFXUTRUNCS1, 1, TmpF15).addReg(TmpF14);
- } else {
- BuildMI(BB, IA64::FMOV, 1, TmpF15).addReg(TmpF14);
- // EXERCISE: can you see why TmpF15=TmpF14 does not work here, and
- // we really do need the above FMOV? ;)
- }
-
- if(!isModulus) {
- if(isFP) { // extra worrying about div-by-zero
- unsigned bogoResult=MakeReg(MVT::f64);
-
- // we do a 'conditional fmov' (of the correct result, depending
- // on how the frcpa predicate turned out)
- BuildMI(BB, IA64::PFMOV, 2, bogoResult)
- .addReg(TmpF12).addReg(TmpPR2);
- BuildMI(BB, IA64::CFMOV, 2, Result)
- .addReg(bogoResult).addReg(TmpF15).addReg(TmpPR);
- }
- else {
- BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(TmpF15);
- }
- } else { // this is a modulus
- if(!isFP) {
- // answer = q * (-b) + a
- unsigned ModulusResult = MakeReg(MVT::f64);
- unsigned TmpF = MakeReg(MVT::f64);
- unsigned TmpI = MakeReg(MVT::i64);
-
- BuildMI(BB, IA64::SUB, 2, TmpI).addReg(IA64::r0).addReg(Tmp2);
- BuildMI(BB, IA64::SETFSIG, 1, TmpF).addReg(TmpI);
- BuildMI(BB, IA64::XMAL, 3, ModulusResult)
- .addReg(TmpF15).addReg(TmpF).addReg(TmpF1);
- BuildMI(BB, IA64::GETFSIG, 1, Result).addReg(ModulusResult);
- } else { // FP modulus! The horror... the horror....
- assert(0 && "sorry, no FP modulus just yet!\n!\n");
- }
- }
-
- return Result;
- }
-
- case ISD::SIGN_EXTEND_INREG: {
- Tmp1 = SelectExpr(N.getOperand(0));
- switch(cast<VTSDNode>(Node->getOperand(1))->getVT()) {
- default:
- Node->dump();
- assert(0 && "don't know how to sign extend this type");
- break;
- case MVT::i8: Opc = IA64::SXT1; break;
- case MVT::i16: Opc = IA64::SXT2; break;
- case MVT::i32: Opc = IA64::SXT4; break;
- }
- BuildMI(BB, Opc, 1, Result).addReg(Tmp1);
- return Result;
- }
-
- case ISD::SETCC: {
- Tmp1 = SelectExpr(N.getOperand(0));
- ISD::CondCode CC = cast<CondCodeSDNode>(Node->getOperand(2))->get();
- if (MVT::isInteger(N.getOperand(0).getValueType())) {
-
- if(ConstantSDNode *CSDN =
- dyn_cast<ConstantSDNode>(N.getOperand(1))) {
- // if we are comparing against a constant zero
- if(CSDN->getValue()==0)
- Tmp2 = IA64::r0; // then we can just compare against r0
- else
- Tmp2 = SelectExpr(N.getOperand(1));
- } else // not comparing against a constant
- Tmp2 = SelectExpr(N.getOperand(1));
-
- switch (CC) {
- default: assert(0 && "Unknown integer comparison!");
- case ISD::SETEQ:
- BuildMI(BB, IA64::CMPEQ, 2, Result).addReg(Tmp1).addReg(Tmp2);
- break;
- case ISD::SETGT:
- BuildMI(BB, IA64::CMPGT, 2, Result).addReg(Tmp1).addReg(Tmp2);
- break;
- case ISD::SETGE:
- BuildMI(BB, IA64::CMPGE, 2, Result).addReg(Tmp1).addReg(Tmp2);
- break;
- case ISD::SETLT:
- BuildMI(BB, IA64::CMPLT, 2, Result).addReg(Tmp1).addReg(Tmp2);
- break;
- case ISD::SETLE:
- BuildMI(BB, IA64::CMPLE, 2, Result).addReg(Tmp1).addReg(Tmp2);
- break;
- case ISD::SETNE:
- BuildMI(BB, IA64::CMPNE, 2, Result).addReg(Tmp1).addReg(Tmp2);
- break;
- case ISD::SETULT:
- BuildMI(BB, IA64::CMPLTU, 2, Result).addReg(Tmp1).addReg(Tmp2);
- break;
- case ISD::SETUGT:
- BuildMI(BB, IA64::CMPGTU, 2, Result).addReg(Tmp1).addReg(Tmp2);
- break;
- case ISD::SETULE:
- BuildMI(BB, IA64::CMPLEU, 2, Result).addReg(Tmp1).addReg(Tmp2);
- break;
- case ISD::SETUGE:
- BuildMI(BB, IA64::CMPGEU, 2, Result).addReg(Tmp1).addReg(Tmp2);
- break;
- }
- } else { // if not integer, should be FP.
- assert(N.getOperand(0).getValueType() != MVT::f32 &&
- "error: SETCC should have had incoming f32 promoted to f64!\n");
-
- if(ConstantFPSDNode *CFPSDN =
- dyn_cast<ConstantFPSDNode>(N.getOperand(1))) {
-
- // if we are comparing against a constant +0.0 or +1.0
- if(CFPSDN->isExactlyValue(+0.0))
- Tmp2 = IA64::F0; // then we can just compare against f0
- else if(CFPSDN->isExactlyValue(+1.0))
- Tmp2 = IA64::F1; // or f1
- else
- Tmp2 = SelectExpr(N.getOperand(1));
- } else // not comparing against a constant
- Tmp2 = SelectExpr(N.getOperand(1));
-
- switch (CC) {
- default: assert(0 && "Unknown FP comparison!");
- case ISD::SETEQ:
- BuildMI(BB, IA64::FCMPEQ, 2, Result).addReg(Tmp1).addReg(Tmp2);
- break;
- case ISD::SETGT:
- BuildMI(BB, IA64::FCMPGT, 2, Result).addReg(Tmp1).addReg(Tmp2);
- break;
- case ISD::SETGE:
- BuildMI(BB, IA64::FCMPGE, 2, Result).addReg(Tmp1).addReg(Tmp2);
- break;
- case ISD::SETLT:
- BuildMI(BB, IA64::FCMPLT, 2, Result).addReg(Tmp1).addReg(Tmp2);
- break;
- case ISD::SETLE:
- BuildMI(BB, IA64::FCMPLE, 2, Result).addReg(Tmp1).addReg(Tmp2);
- break;
- case ISD::SETNE:
- BuildMI(BB, IA64::FCMPNE, 2, Result).addReg(Tmp1).addReg(Tmp2);
- break;
- case ISD::SETULT:
- BuildMI(BB, IA64::FCMPLTU, 2, Result).addReg(Tmp1).addReg(Tmp2);
- break;
- case ISD::SETUGT:
- BuildMI(BB, IA64::FCMPGTU, 2, Result).addReg(Tmp1).addReg(Tmp2);
- break;
- case ISD::SETULE:
- BuildMI(BB, IA64::FCMPLEU, 2, Result).addReg(Tmp1).addReg(Tmp2);
- break;
- case ISD::SETUGE:
- BuildMI(BB, IA64::FCMPGEU, 2, Result).addReg(Tmp1).addReg(Tmp2);
- break;
- }
- }
- return Result;
- }
-
- case ISD::EXTLOAD:
- case ISD::ZEXTLOAD:
- case ISD::LOAD: {
- // Make sure we generate both values.
- if (Result != 1)
- ExprMap[N.getValue(1)] = 1; // Generate the token
- else
- Result = ExprMap[N.getValue(0)] = MakeReg(N.getValue(0).getValueType());
-
- bool isBool=false;
-
- if(opcode == ISD::LOAD) { // this is a LOAD
- switch (Node->getValueType(0)) {
- default: assert(0 && "Cannot load this type!");
- case MVT::i1: Opc = IA64::LD1; isBool=true; break;
- // FIXME: for now, we treat bool loads the same as i8 loads */
- case MVT::i8: Opc = IA64::LD1; break;
- case MVT::i16: Opc = IA64::LD2; break;
- case MVT::i32: Opc = IA64::LD4; break;
- case MVT::i64: Opc = IA64::LD8; break;
-
- case MVT::f32: Opc = IA64::LDF4; break;
- case MVT::f64: Opc = IA64::LDF8; break;
- }
- } else { // this is an EXTLOAD or ZEXTLOAD
- MVT::ValueType TypeBeingLoaded =
- cast<VTSDNode>(Node->getOperand(3))->getVT();
- switch (TypeBeingLoaded) {
- default: assert(0 && "Cannot extload/zextload this type!");
- // FIXME: bools?
- case MVT::i8: Opc = IA64::LD1; break;
- case MVT::i16: Opc = IA64::LD2; break;
- case MVT::i32: Opc = IA64::LD4; break;
- case MVT::f32: Opc = IA64::LDF4; break;
- }
- }
-
- SDOperand Chain = N.getOperand(0);
- SDOperand Address = N.getOperand(1);
-
- if(Address.getOpcode() == ISD::GlobalAddress) {
- Select(Chain);
- unsigned dummy = MakeReg(MVT::i64);
- unsigned dummy2 = MakeReg(MVT::i64);
- BuildMI(BB, IA64::ADD, 2, dummy)
- .addGlobalAddress(cast<GlobalAddressSDNode>(Address)->getGlobal())
- .addReg(IA64::r1);
- BuildMI(BB, IA64::LD8, 1, dummy2).addReg(dummy);
- if(!isBool)
- BuildMI(BB, Opc, 1, Result).addReg(dummy2);
- else { // emit a little pseudocode to load a bool (stored in one byte)
- // into a predicate register
- assert(Opc==IA64::LD1 && "problem loading a bool");
- unsigned dummy3 = MakeReg(MVT::i64);
- BuildMI(BB, Opc, 1, dummy3).addReg(dummy2);
- // we compare to 0. true? 0. false? 1.
- BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy3).addReg(IA64::r0);
- }
- } else if(ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Address)) {
- unsigned CPIdx = BB->getParent()->getConstantPool()->
- getConstantPoolIndex(CP->get());
- Select(Chain);
- IA64Lowering.restoreGP(BB);
- unsigned dummy = MakeReg(MVT::i64);
- unsigned dummy2 = MakeReg(MVT::i64);
- BuildMI(BB, IA64::MOVLIMM64, 1, dummy2).addConstantPoolIndex(CPIdx);
- BuildMI(BB, IA64::ADD, 2, dummy).addReg(dummy2).addReg(IA64::r1); //CPI+GP
-
-
- // OLD BuildMI(BB, IA64::ADD, 2, dummy).addConstantPoolIndex(CPIdx)
- // (FIXME!) .addReg(IA64::r1); // CPI+GP
- if(!isBool)
- BuildMI(BB, Opc, 1, Result).addReg(dummy);
- else { // emit a little pseudocode to load a bool (stored in one byte)
- // into a predicate register
- assert(Opc==IA64::LD1 && "problem loading a bool");
- unsigned dummy3 = MakeReg(MVT::i64);
- BuildMI(BB, Opc, 1, dummy3).addReg(dummy);
- // we compare to 0. true? 0. false? 1.
- BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy3).addReg(IA64::r0);
- }
- } else if(Address.getOpcode() == ISD::FrameIndex) {
- Select(Chain); // FIXME ? what about bools?
- unsigned dummy = MakeReg(MVT::i64);
- BuildMI(BB, IA64::MOV, 1, dummy)
- .addFrameIndex(cast<FrameIndexSDNode>(Address)->getIndex());
- if(!isBool)
- BuildMI(BB, Opc, 1, Result).addReg(dummy);
- else { // emit a little pseudocode to load a bool (stored in one byte)
- // into a predicate register
- assert(Opc==IA64::LD1 && "problem loading a bool");
- unsigned dummy3 = MakeReg(MVT::i64);
- BuildMI(BB, Opc, 1, dummy3).addReg(dummy);
- // we compare to 0. true? 0. false? 1.
- BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy3).addReg(IA64::r0);
- }
- } else { // none of the above...
- Select(Chain);
- Tmp2 = SelectExpr(Address);
- if(!isBool)
- BuildMI(BB, Opc, 1, Result).addReg(Tmp2);
- else { // emit a little pseudocode to load a bool (stored in one byte)
- // into a predicate register
- assert(Opc==IA64::LD1 && "problem loading a bool");
- unsigned dummy = MakeReg(MVT::i64);
- BuildMI(BB, Opc, 1, dummy).addReg(Tmp2);
- // we compare to 0. true? 0. false? 1.
- BuildMI(BB, IA64::CMPNE, 2, Result).addReg(dummy).addReg(IA64::r0);
- }
- }
-
- return Result;
- }
-
- case ISD::CopyFromReg: {
- if (Result == 1)
- Result = ExprMap[N.getValue(0)] =
- MakeReg(N.getValue(0).getValueType());
-
- SDOperand Chain = N.getOperand(0);
-
- Select(Chain);
- unsigned r = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
-
- if(N.getValueType() == MVT::i1) // if a bool, we use pseudocode
- BuildMI(BB, IA64::PCMPEQUNC, 3, Result)
- .addReg(IA64::r0).addReg(IA64::r0).addReg(r);
- // (r) Result =cmp.eq.unc(r0,r0)
- else
- BuildMI(BB, IA64::MOV, 1, Result).addReg(r); // otherwise MOV
- return Result;
- }
-
- case ISD::TAILCALL:
- case ISD::CALL: {
- Select(N.getOperand(0));
-
- // The chain for this call is now lowered.
- ExprMap.insert(std::make_pair(N.getValue(Node->getNumValues()-1), 1));
-
- //grab the arguments
- std::vector<unsigned> argvregs;
-
- for(int i = 2, e = Node->getNumOperands(); i < e; ++i)
- argvregs.push_back(SelectExpr(N.getOperand(i)));
-
- // see section 8.5.8 of "Itanium Software Conventions and
- // Runtime Architecture Guide to see some examples of what's going
- // on here. (in short: int args get mapped 1:1 'slot-wise' to out0->out7,
- // while FP args get mapped to F8->F15 as needed)
-
- unsigned used_FPArgs=0; // how many FP Args have been used so far?
-
- // in reg args
- for(int i = 0, e = std::min(8, (int)argvregs.size()); i < e; ++i)
- {
- unsigned intArgs[] = {IA64::out0, IA64::out1, IA64::out2, IA64::out3,
- IA64::out4, IA64::out5, IA64::out6, IA64::out7 };
- unsigned FPArgs[] = {IA64::F8, IA64::F9, IA64::F10, IA64::F11,
- IA64::F12, IA64::F13, IA64::F14, IA64::F15 };
-
- switch(N.getOperand(i+2).getValueType())
- {
- default: // XXX do we need to support MVT::i1 here?
- Node->dump();
- N.getOperand(i).Val->dump();
- std::cerr << "Type for " << i << " is: " <<
- N.getOperand(i+2).getValueType() << std::endl;
- assert(0 && "Unknown value type for call");
- case MVT::i64:
- BuildMI(BB, IA64::MOV, 1, intArgs[i]).addReg(argvregs[i]);
- break;
- case MVT::f64:
- BuildMI(BB, IA64::FMOV, 1, FPArgs[used_FPArgs++])
- .addReg(argvregs[i]);
- // FIXME: we don't need to do this _all_ the time:
- BuildMI(BB, IA64::GETFD, 1, intArgs[i]).addReg(argvregs[i]);
- break;
- }
- }
-
- //in mem args
- for (int i = 8, e = argvregs.size(); i < e; ++i)
- {
- unsigned tempAddr = MakeReg(MVT::i64);
-
- switch(N.getOperand(i+2).getValueType()) {
- default:
- Node->dump();
- N.getOperand(i).Val->dump();
- std::cerr << "Type for " << i << " is: " <<
- N.getOperand(i+2).getValueType() << "\n";
- assert(0 && "Unknown value type for call");
- case MVT::i1: // FIXME?
- case MVT::i8:
- case MVT::i16:
- case MVT::i32:
- case MVT::i64:
- BuildMI(BB, IA64::ADDIMM22, 2, tempAddr)
- .addReg(IA64::r12).addImm(16 + (i - 8) * 8); // r12 is SP
- BuildMI(BB, IA64::ST8, 2).addReg(tempAddr).addReg(argvregs[i]);
- break;
- case MVT::f32:
- case MVT::f64:
- BuildMI(BB, IA64::ADDIMM22, 2, tempAddr)
- .addReg(IA64::r12).addImm(16 + (i - 8) * 8); // r12 is SP
- BuildMI(BB, IA64::STF8, 2).addReg(tempAddr).addReg(argvregs[i]);
- break;
- }
- }
-
- // build the right kind of call. if we can branch directly, do so:
- if (GlobalAddressSDNode *GASD =
- dyn_cast<GlobalAddressSDNode>(N.getOperand(1)))
- {
- BuildMI(BB, IA64::BRCALL, 1).addGlobalAddress(GASD->getGlobal(),true);
- IA64Lowering.restoreGP_SP_RP(BB);
- } else
- if (ExternalSymbolSDNode *ESSDN =
- dyn_cast<ExternalSymbolSDNode>(N.getOperand(1)))
- { // FIXME : currently need this case for correctness, to avoid
- // "non-pic code with imm relocation against dynamic symbol" errors
- BuildMI(BB, IA64::BRCALL, 1)
- .addExternalSymbol(ESSDN->getSymbol(), true);
- IA64Lowering.restoreGP_SP_RP(BB);
- }
- else { // otherwise we need to get the function descriptor
- // load the branch target (function)'s entry point and
- // GP, then branch
- Tmp1 = SelectExpr(N.getOperand(1));
-
- unsigned targetEntryPoint=MakeReg(MVT::i64);
- unsigned targetGPAddr=MakeReg(MVT::i64);
- unsigned currentGP=MakeReg(MVT::i64);
-
- // b6 is a scratch branch register, we load the target entry point
- // from the base of the function descriptor
- BuildMI(BB, IA64::LD8, 1, targetEntryPoint).addReg(Tmp1);
- BuildMI(BB, IA64::MOV, 1, IA64::B6).addReg(targetEntryPoint);
-
- // save the current GP:
- BuildMI(BB, IA64::MOV, 1, currentGP).addReg(IA64::r1);
-
- /* TODO: we need to make sure doing this never, ever loads a
- * bogus value into r1 (GP). */
- // load the target GP (which is at mem[functiondescriptor+8])
- BuildMI(BB, IA64::ADDIMM22, 2, targetGPAddr)
- .addReg(Tmp1).addImm(8); // FIXME: addimm22? why not postincrement ld
- BuildMI(BB, IA64::LD8, 1, IA64::r1).addReg(targetGPAddr);
-
- // and then jump: (well, call)
- BuildMI(BB, IA64::BRCALL, 1).addReg(IA64::B6);
- // and finally restore the old GP
- BuildMI(BB, IA64::MOV, 1, IA64::r1).addReg(currentGP);
- IA64Lowering.restoreSP_RP(BB);
- }
-
- switch (Node->getValueType(0)) {
- default: assert(0 && "Unknown value type for call result!");
- case MVT::Other: return 1;
- case MVT::i1:
- BuildMI(BB, IA64::CMPNE, 2, Result)
- .addReg(IA64::r8).addReg(IA64::r0);
- break;
- case MVT::i8:
- case MVT::i16:
- case MVT::i32:
- case MVT::i64:
- BuildMI(BB, IA64::MOV, 1, Result).addReg(IA64::r8);
- break;
- case MVT::f64:
- BuildMI(BB, IA64::FMOV, 1, Result).addReg(IA64::F8);
- break;
- }
- return Result+N.ResNo;
- }
-
- } // <- uhhh XXX
- return 0;
-}
-
-void ISel::Select(SDOperand N) {
- unsigned Tmp1, Tmp2, Opc;
- unsigned opcode = N.getOpcode();
-
- if (!LoweredTokens.insert(N).second)
- return; // Already selected.
-
- SDNode *Node = N.Val;
-
- switch (Node->getOpcode()) {
- default:
- Node->dump(); std::cerr << "\n";
- assert(0 && "Node not handled yet!");
-
- case ISD::EntryToken: return; // Noop
-
- case ISD::TokenFactor: {
- for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
- Select(Node->getOperand(i));
- return;
- }
-
- case ISD::CopyToReg: {
- Select(N.getOperand(0));
- Tmp1 = SelectExpr(N.getOperand(2));
- Tmp2 = cast<RegisterSDNode>(N.getOperand(1))->getReg();
-
- if (Tmp1 != Tmp2) {
- // if a bool, we use pseudocode
- if (N.getOperand(2).getValueType() == MVT::i1)
- BuildMI(BB, IA64::PCMPEQUNC, 3, Tmp2)
- .addReg(IA64::r0).addReg(IA64::r0).addReg(Tmp1);
- // (Tmp1) Tmp2 = cmp.eq.unc(r0,r0)
- else
- BuildMI(BB, IA64::MOV, 1, Tmp2).addReg(Tmp1);
- // XXX is this the right way 'round? ;)
- // FIXME: WHAT ABOUT FLOATING POINT?
- }
- return;
- }
-
- case ISD::RET: {
-
- /* what the heck is going on here:
-
-<_sabre_> ret with two operands is obvious: chain and value
-<camel_> yep
-<_sabre_> ret with 3 values happens when 'expansion' occurs
-<_sabre_> e.g. i64 gets split into 2x i32
-<camel_> oh right
-<_sabre_> you don't have this case on ia64
-<camel_> yep
-<_sabre_> so the two returned values go into EAX/EDX on ia32
-<camel_> ahhh *memories*
-<_sabre_> :)
-<camel_> ok, thanks :)
-<_sabre_> so yeah, everything that has a side effect takes a 'token chain'
-<_sabre_> this is the first operand always
-<_sabre_> these operand often define chains, they are the last operand
-<_sabre_> they are printed as 'ch' if you do DAG.dump()
- */
-
- switch (N.getNumOperands()) {
- default:
- assert(0 && "Unknown return instruction!");
- case 2:
- Select(N.getOperand(0));
- Tmp1 = SelectExpr(N.getOperand(1));
- switch (N.getOperand(1).getValueType()) {
- default: assert(0 && "All other types should have been promoted!!");
- // FIXME: do I need to add support for bools here?
- // (return '0' or '1' r8, basically...)
- //
- // FIXME: need to round floats - 80 bits is bad, the tester
- // told me so
- case MVT::i64:
- // we mark r8 as live on exit up above in LowerArguments()
- BuildMI(BB, IA64::MOV, 1, IA64::r8).addReg(Tmp1);
- break;
- case MVT::f64:
- // we mark F8 as live on exit up above in LowerArguments()
- BuildMI(BB, IA64::FMOV, 1, IA64::F8).addReg(Tmp1);
- }
- break;
- case 1:
- Select(N.getOperand(0));
- break;
- }
- // before returning, restore the ar.pfs register (set by the 'alloc' up top)
- BuildMI(BB, IA64::MOV, 1).addReg(IA64::AR_PFS).addReg(IA64Lowering.VirtGPR);
- BuildMI(BB, IA64::RET, 0); // and then just emit a 'ret' instruction
- return;
- }
-
- case ISD::BR: {
- Select(N.getOperand(0));
- MachineBasicBlock *Dest =
- cast<BasicBlockSDNode>(N.getOperand(1))->getBasicBlock();
- BuildMI(BB, IA64::BRLCOND_NOTCALL, 1).addReg(IA64::p0).addMBB(Dest);
- // XXX HACK! we do _not_ need long branches all the time
- return;
- }
-
- case ISD::BRCOND: {
- MachineBasicBlock *Dest =
- cast<BasicBlockSDNode>(N.getOperand(2))->getBasicBlock();
-
- Select(N.getOperand(0));
- Tmp1 = SelectExpr(N.getOperand(1));
- BuildMI(BB, IA64::BRLCOND_NOTCALL, 1).addReg(Tmp1).addMBB(Dest);
- // XXX HACK! we do _not_ need long branches all the time
- return;
- }
-
- case ISD::EXTLOAD:
- case ISD::ZEXTLOAD:
- case ISD::SEXTLOAD:
- case ISD::LOAD:
- case ISD::TAILCALL:
- case ISD::CALL:
- case ISD::CopyFromReg:
- case ISD::DYNAMIC_STACKALLOC:
- SelectExpr(N);
- return;
-
- case ISD::TRUNCSTORE:
- case ISD::STORE: {
- Select(N.getOperand(0));
- Tmp1 = SelectExpr(N.getOperand(1)); // value
-
- bool isBool=false;
-
- if(opcode == ISD::STORE) {
- switch (N.getOperand(1).getValueType()) {
- default: assert(0 && "Cannot store this type!");
- case MVT::i1: Opc = IA64::ST1; isBool=true; break;
- // FIXME?: for now, we treat bool loads the same as i8 stores */
- case MVT::i8: Opc = IA64::ST1; break;
- case MVT::i16: Opc = IA64::ST2; break;
- case MVT::i32: Opc = IA64::ST4; break;
- case MVT::i64: Opc = IA64::ST8; break;
-
- case MVT::f32: Opc = IA64::STF4; break;
- case MVT::f64: Opc = IA64::STF8; break;
- }
- } else { // truncstore
- switch(cast<VTSDNode>(Node->getOperand(4))->getVT()) {
- default: assert(0 && "unknown type in truncstore");
- case MVT::i1: Opc = IA64::ST1; isBool=true; break;
- //FIXME: DAG does not promote this load?
- case MVT::i8: Opc = IA64::ST1; break;
- case MVT::i16: Opc = IA64::ST2; break;
- case MVT::i32: Opc = IA64::ST4; break;
- case MVT::f32: Opc = IA64::STF4; break;
- }
- }
-
- if(N.getOperand(2).getOpcode() == ISD::GlobalAddress) {
- unsigned dummy = MakeReg(MVT::i64);
- unsigned dummy2 = MakeReg(MVT::i64);
- BuildMI(BB, IA64::ADD, 2, dummy)
- .addGlobalAddress(cast<GlobalAddressSDNode>
- (N.getOperand(2))->getGlobal()).addReg(IA64::r1);
- BuildMI(BB, IA64::LD8, 1, dummy2).addReg(dummy);
-
- if(!isBool)
- BuildMI(BB, Opc, 2).addReg(dummy2).addReg(Tmp1);
- else { // we are storing a bool, so emit a little pseudocode
- // to store a predicate register as one byte
- assert(Opc==IA64::ST1);
- unsigned dummy3 = MakeReg(MVT::i64);
- unsigned dummy4 = MakeReg(MVT::i64);
- BuildMI(BB, IA64::MOV, 1, dummy3).addReg(IA64::r0);
- BuildMI(BB, IA64::TPCADDIMM22, 2, dummy4)
- .addReg(dummy3).addImm(1).addReg(Tmp1); // if(Tmp1) dummy=0+1;
- BuildMI(BB, Opc, 2).addReg(dummy2).addReg(dummy4);
- }
- } else if(N.getOperand(2).getOpcode() == ISD::FrameIndex) {
-
- // FIXME? (what about bools?)
-
- unsigned dummy = MakeReg(MVT::i64);
- BuildMI(BB, IA64::MOV, 1, dummy)
- .addFrameIndex(cast<FrameIndexSDNode>(N.getOperand(2))->getIndex());
- BuildMI(BB, Opc, 2).addReg(dummy).addReg(Tmp1);
- } else { // otherwise
- Tmp2 = SelectExpr(N.getOperand(2)); //address
- if(!isBool)
- BuildMI(BB, Opc, 2).addReg(Tmp2).addReg(Tmp1);
- else { // we are storing a bool, so emit a little pseudocode
- // to store a predicate register as one byte
- assert(Opc==IA64::ST1);
- unsigned dummy3 = MakeReg(MVT::i64);
- unsigned dummy4 = MakeReg(MVT::i64);
- BuildMI(BB, IA64::MOV, 1, dummy3).addReg(IA64::r0);
- BuildMI(BB, IA64::TPCADDIMM22, 2, dummy4)
- .addReg(dummy3).addImm(1).addReg(Tmp1); // if(Tmp1) dummy=0+1;
- BuildMI(BB, Opc, 2).addReg(Tmp2).addReg(dummy4);
- }
- }
- return;
- }
-
- case ISD::CALLSEQ_START:
- case ISD::CALLSEQ_END: {
- Select(N.getOperand(0));
- Tmp1 = cast<ConstantSDNode>(N.getOperand(1))->getValue();
-
- Opc = N.getOpcode() == ISD::CALLSEQ_START ? IA64::ADJUSTCALLSTACKDOWN :
- IA64::ADJUSTCALLSTACKUP;
- BuildMI(BB, Opc, 1).addImm(Tmp1);
- return;
- }
-
- return;
- }
- assert(0 && "GAME OVER. INSERT COIN?");
-}
-
-
-/// createIA64PatternInstructionSelector - This pass converts an LLVM function
-/// into a machine code representation using pattern matching and a machine
-/// description file.
-///
-FunctionPass *llvm::createIA64PatternInstructionSelector(TargetMachine &TM) {
- return new ISel(TM);
-}
-
-