-//===- llvm/Transforms/DecomposeArrayRefs.cpp - Lower array refs to 1D -----=//
+//===- llvm/Transforms/DecomposeMultiDimRefs.cpp - Lower array refs to 1D -----=//
//
-// DecomposeArrayRefs -
-// Convert multi-dimensional array references into a sequence of
+// DecomposeMultiDimRefs -
+// Convert multi-dimensional references consisting of any combination
+// of 2 or more array and structure indices into a sequence of
// instructions (using getelementpr and cast) so that each instruction
-// has at most one array offset.
+// has at most one index (except structure references,
+// which need an extra leading index of [0]).
//
//===---------------------------------------------------------------------===//
-#include "llvm/Transforms/DecomposeArrayRefs.h"
+#include "llvm/Transforms/Scalar/DecomposeMultiDimRefs.h"
+#include "llvm/ConstantVals.h"
#include "llvm/iMemory.h"
#include "llvm/iOther.h"
#include "llvm/BasicBlock.h"
//
-// This function repeats until we have a one-dim. reference: {
-// // For an N-dim array ref, where N > 1, insert:
-// aptr1 = getElementPtr [N-dim array] * lastPtr, uint firstIndex
-// aptr2 = cast [N-dim-arry] * aptr to [<N-1>-dim-array] *
+// For any combination of 2 or more array and structure indices,
+// this function repeats the foll. until we have a one-dim. reference: {
+// ptr1 = getElementPtr [CompositeType-N] * lastPtr, uint firstIndex
+// ptr2 = cast [CompositeType-N] * ptr1 to [CompositeType-N] *
// }
// Then it replaces the original instruction with an equivalent one that
-// uses the last aptr2 generated in the loop and a single index.
+// uses the last ptr2 generated in the loop and a single index.
+// If any index is (uint) 0, we omit the getElementPtr instruction.
//
-static BasicBlock::reverse_iterator
-decomposeArrayRef(BasicBlock::reverse_iterator& BBI)
+static BasicBlock::iterator
+decomposeArrayRef(BasicBlock::iterator& BBI)
{
MemAccessInst *memI = cast<MemAccessInst>(*BBI);
BasicBlock* BB = memI->getParent();
Value* lastPtr = memI->getPointerOperand();
vector<Instruction*> newIvec;
+ // Process each index except the last one.
+ //
MemAccessInst::const_op_iterator OI = memI->idx_begin();
- for (MemAccessInst::const_op_iterator OE = memI->idx_end(); OI != OE; ++OI)
+ MemAccessInst::const_op_iterator OE = memI->idx_end();
+ for ( ; OI != OE; ++OI)
{
- if (OI+1 == OE) // skip the last operand
+ assert(isa<PointerType>(lastPtr->getType()));
+
+ if (OI+1 == OE) // stop before the last operand
break;
- assert(isa<PointerType>(lastPtr->getType()));
+ // Check for a zero index. This will need a cast instead of
+ // a getElementPtr, or it may need neither.
+ bool indexIsZero = bool(isa<ConstantUInt>(*OI) &&
+ cast<ConstantUInt>(*OI)->getValue() == 0);
+
+ // Extract the first index. If the ptr is a pointer to a structure
+ // and the next index is a structure offset (i.e., not an array offset),
+ // we need to include an initial [0] to index into the pointer.
vector<Value*> idxVec(1, *OI);
-
- // The first index does not change the type of the pointer
- // since all pointers are treated as potential arrays (i.e.,
- // int *X is either a scalar X[0] or an array at X[i]).
- //
- const Type* nextPtrType;
- // if (OI == memI->idx_begin())
- // nextPtrType = lastPtr->getType();
- // else
- // {
- const Type* nextArrayType =
- MemAccessInst::getIndexedType(lastPtr->getType(), idxVec,
- /*allowCompositeLeaf*/ true);
- nextPtrType = PointerType::get(cast<SequentialType>(nextArrayType)
- ->getElementType());
- // }
+ PointerType* ptrType = cast<PointerType>(lastPtr->getType());
+ if (isa<StructType>(ptrType->getElementType())
+ && ! ptrType->indexValid(*OI))
+ idxVec.insert(idxVec.begin(), ConstantUInt::get(Type::UIntTy, 0));
- Instruction* gepInst = new GetElementPtrInst(lastPtr, idxVec, "aptr1");
- Instruction* castInst = new CastInst(gepInst, nextPtrType, "aptr2");
- lastPtr = castInst;
+ // Get the type obtained by applying the first index.
+ // It must be a structure or array.
+ const Type* nextType = MemAccessInst::getIndexedType(lastPtr->getType(),
+ idxVec, true);
+ assert(isa<StructType>(nextType) || isa<ArrayType>(nextType));
- newIvec.push_back(gepInst);
- newIvec.push_back(castInst);
+ // Get a pointer to the structure or to the elements of the array.
+ const Type* nextPtrType =
+ PointerType::get(isa<StructType>(nextType)? nextType
+ : cast<ArrayType>(nextType)->getElementType());
+
+ // Instruction 1: nextPtr1 = GetElementPtr lastPtr, idxVec
+ // This is not needed if the index is zero.
+ Value* gepValue;
+ if (indexIsZero)
+ gepValue = lastPtr;
+ else
+ {
+ gepValue = new GetElementPtrInst(lastPtr, idxVec,"ptr1");
+ newIvec.push_back(cast<Instruction>(gepValue));
+ }
+
+ // Instruction 2: nextPtr2 = cast nextPtr1 to nextPtrType
+ // This is not needed if the two types are identical.
+ Value* castInst;
+ if (gepValue->getType() == nextPtrType)
+ castInst = gepValue;
+ else
+ {
+ castInst = new CastInst(gepValue, nextPtrType, "ptr2");
+ newIvec.push_back(cast<Instruction>(castInst));
+ }
+
+ lastPtr = castInst;
}
+ //
// Now create a new instruction to replace the original one
- assert(lastPtr != memI->getPointerOperand() && "the above loop did not execute?");
- assert(isa<PointerType>(lastPtr->getType()));
+ //
+ PointerType* ptrType = cast<PointerType>(lastPtr->getType());
+ assert(ptrType);
+
+ // First, get the final index vector. As above, we may need an initial [0].
vector<Value*> idxVec(1, *OI);
+ if (isa<StructType>(ptrType->getElementType())
+ && ! ptrType->indexValid(*OI))
+ idxVec.insert(idxVec.begin(), ConstantUInt::get(Type::UIntTy, 0));
+
const std::string newInstName = memI->hasName()? memI->getName()
- : string("oneDimRef");
+ : string("finalRef");
Instruction* newInst = NULL;
switch(memI->getOpcode())
// Replace all uses of the old instruction with the new
memI->replaceAllUsesWith(newInst);
- // Insert the instructions created in reverse order. insert is destructive
- // so we always have to use the new pointer returned by insert.
- BasicBlock::iterator newI = BBI.base(); // gives ptr to instr. after memI
- --newI; // step back to memI
+ BasicBlock::iterator newI = BBI;;
for (int i = newIvec.size()-1; i >= 0; i--)
newI = BB->getInstList().insert(newI, newIvec[i]);
- // Now delete the old instruction and return a pointer to the first new one
+ // Now delete the old instruction and return a pointer to the last new one
BB->getInstList().remove(memI);
delete memI;
- BasicBlock::reverse_iterator retI(newI); // reverse ptr to instr before newI
- return --retI; // reverse pointer to newI
+ return newI + newIvec.size() - 1; // pointer to last new instr
}
//---------------------------------------------------------------------------
-// Entry point for decomposing multi-dimensional array references
+// Entry point for array or structure references with multiple indices.
//---------------------------------------------------------------------------
static bool
-doDecomposeArrayRefs(Method *M)
+doDecomposeMultiDimRefs(Method *M)
{
bool changed = false;
for (Method::iterator BI = M->begin(), BE = M->end(); BI != BE; ++BI)
- for (BasicBlock::reverse_iterator newI, II=(*BI)->rbegin();
- II != (*BI)->rend(); II = ++newI)
+ for (BasicBlock::iterator newI, II=(*BI)->begin();
+ II != (*BI)->end(); II = ++newI)
{
newI = II;
if (MemAccessInst *memI = dyn_cast<MemAccessInst>(*II))
- { // Check for a multi-dimensional array access
- const PointerType* ptrType =
- cast<PointerType>(memI->getPointerOperand()->getType());
- if (isa<ArrayType>(ptrType->getElementType()) &&
- memI->getNumOperands() > 1+ memI->getFirstIndexOperandNumber())
- {
- newI = decomposeArrayRef(II);
- changed = true;
- }
- }
+ if (memI->getNumOperands() > 1 + memI->getFirstIndexOperandNumber())
+ {
+ newI = decomposeArrayRef(II);
+ changed = true;
+ }
}
return changed;
namespace {
- struct DecomposeArrayRefsPass : public MethodPass {
- virtual bool runOnMethod(Method *M) { return doDecomposeArrayRefs(M); }
+ struct DecomposeMultiDimRefsPass : public MethodPass {
+ virtual bool runOnMethod(Method *M) { return doDecomposeMultiDimRefs(M); }
};
}
-Pass *createDecomposeArrayRefsPass() { return new DecomposeArrayRefsPass(); }
+Pass *createDecomposeMultiDimRefsPass() { return new DecomposeMultiDimRefsPass(); }