V = convertValue(DL, IRB, V, IntTy);
assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
- if (Offset > 0 || NewEndOffset < NewAllocaEndOffset)
- V = extractInteger(DL, IRB, V, cast<IntegerType>(LI.getType()), Offset,
- "extract");
+ if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) {
+ IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8);
+ V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract");
+ }
+ // It is possible that the extracted type is not the load type. This
+ // happens if there is a load past the end of the alloca, and as
+ // a consequence the slice is narrower but still a candidate for integer
+ // lowering. To handle this case, we just zero extend the extracted
+ // integer.
+ assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 &&
+ "Can only handle an extract for an overly wide load");
+ if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8)
+ V = IRB.CreateZExt(V, LI.getType());
return V;
}
%load = load atomic volatile i64, i64* %ptr seq_cst, align 8
ret void
}
+
+define i16 @PR24463() {
+; Ensure we can handle a very interesting case where there is an integer-based
+; rewrite of the uses of the alloca, but where one of the integers in that is
+; a sub-integer that requires extraction *and* extends past the end of the
+; alloca. In this case, we should extract the i8 and then zext it to i16.
+;
+; CHECK-LABEL @PR24463(
+; CHECK-NOT: alloca
+; CHECK: %[[SHIFT:.*]] = lshr i16 0, 8
+; CHECK: %[[TRUNC:.*]] = trunc i16 %[[SHIFT]] to i8
+; CHECK: %[[ZEXT:.*]] = zext i8 %[[TRUNC]] to i16
+; CHECK: ret i16 %[[ZEXT]]
+entry:
+ %alloca = alloca [3 x i8]
+ %gep1 = getelementptr inbounds [3 x i8], [3 x i8]* %alloca, i64 0, i64 1
+ %bc1 = bitcast i8* %gep1 to i16*
+ store i16 0, i16* %bc1
+ %gep2 = getelementptr inbounds [3 x i8], [3 x i8]* %alloca, i64 0, i64 2
+ %bc2 = bitcast i8* %gep2 to i16*
+ %load = load i16, i16* %bc2
+ ret i16 %load
+}