private:
typedef SmallVector<StoreInst *, 8> StoreList;
- StoreList StoreRefs;
+ StoreList StoreRefsForMemset;
+ StoreList StoreRefsForMemcpy;
+ bool HasMemset;
+ bool HasMemsetPattern;
+ bool HasMemcpy;
/// \name Countable Loop Idiom Handling
/// @{
SmallVectorImpl<BasicBlock *> &ExitBlocks);
void collectStores(BasicBlock *BB);
- bool isLegalStore(StoreInst *SI);
+ bool isLegalStore(StoreInst *SI, bool &ForMemset, bool &ForMemcpy);
bool processLoopStore(StoreInst *SI, const SCEV *BECount);
bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);
bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
- unsigned StoreAlignment, Value *SplatValue,
+ unsigned StoreAlignment, Value *StoredVal,
Instruction *TheStore, const SCEVAddRecExpr *Ev,
const SCEV *BECount, bool NegStride);
- bool processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize,
- const SCEVAddRecExpr *StoreEv,
- const SCEV *BECount, bool NegStride);
+ bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
/// @}
/// \name Noncountable Loop Idiom Handling
*CurLoop->getHeader()->getParent());
DL = &CurLoop->getHeader()->getModule()->getDataLayout();
- if (SE->hasLoopInvariantBackedgeTakenCount(L))
- return runOnCountableLoop();
+ HasMemset = TLI->has(LibFunc::memset);
+ HasMemsetPattern = TLI->has(LibFunc::memset_pattern16);
+ HasMemcpy = TLI->has(LibFunc::memcpy);
+
+ if (HasMemset || HasMemsetPattern || HasMemcpy)
+ if (SE->hasLoopInvariantBackedgeTakenCount(L))
+ return runOnCountableLoop();
return runOnNoncountableLoop();
}
return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
}
-bool LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
+bool LoopIdiomRecognize::isLegalStore(StoreInst *SI, bool &ForMemset,
+ bool &ForMemcpy) {
// Don't touch volatile stores.
if (!SI->isSimple())
return false;
if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
return false;
- return true;
+ // See if the store can be turned into a memset.
+
+ // If the stored value is a byte-wise value (like i32 -1), then it may be
+ // turned into a memset of i8 -1, assuming that all the consecutive bytes
+ // are stored. A store of i32 0x01020304 can never be turned into a memset,
+ // but it can be turned into memset_pattern if the target supports it.
+ Value *SplatValue = isBytewiseValue(StoredVal);
+ Constant *PatternValue = nullptr;
+
+ // If we're allowed to form a memset, and the stored value would be
+ // acceptable for memset, use it.
+ if (HasMemset && SplatValue &&
+ // Verify that the stored value is loop invariant. If not, we can't
+ // promote the memset.
+ CurLoop->isLoopInvariant(SplatValue)) {
+ // It looks like we can use SplatValue.
+ ForMemset = true;
+ return true;
+ } else if (HasMemsetPattern &&
+ // Don't create memset_pattern16s with address spaces.
+ StorePtr->getType()->getPointerAddressSpace() == 0 &&
+ (PatternValue = getMemSetPatternValue(StoredVal, DL))) {
+ // It looks like we can use PatternValue!
+ ForMemset = true;
+ return true;
+ }
+
+ // Otherwise, see if the store can be turned into a memcpy.
+ if (HasMemcpy) {
+ // Check to see if the stride matches the size of the store. If so, then we
+ // know that every byte is touched in the loop.
+ unsigned Stride = getStoreStride(StoreEv);
+ unsigned StoreSize = getStoreSizeInBytes(SI, DL);
+ if (StoreSize != Stride && StoreSize != -Stride)
+ return false;
+
+ // The store must be feeding a non-volatile load.
+ LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
+ if (!LI || !LI->isSimple())
+ return false;
+
+ // See if the pointer expression is an AddRec like {base,+,1} on the current
+ // loop, which indicates a strided load. If we have something else, it's a
+ // random load we can't handle.
+ const SCEVAddRecExpr *LoadEv =
+ dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
+ if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
+ return false;
+
+ // The store and load must share the same stride.
+ if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
+ return false;
+
+ // Success. This store can be converted into a memcpy.
+ ForMemcpy = true;
+ return true;
+ }
+ // This store can't be transformed into a memset/memcpy.
+ return false;
}
void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
- StoreRefs.clear();
+ StoreRefsForMemset.clear();
+ StoreRefsForMemcpy.clear();
for (Instruction &I : *BB) {
StoreInst *SI = dyn_cast<StoreInst>(&I);
if (!SI)
continue;
+ bool ForMemset = false;
+ bool ForMemcpy = false;
// Make sure this is a strided store with a constant stride.
- if (!isLegalStore(SI))
+ if (!isLegalStore(SI, ForMemset, ForMemcpy))
continue;
// Save the store locations.
- StoreRefs.push_back(SI);
+ if (ForMemset)
+ StoreRefsForMemset.push_back(SI);
+ else if (ForMemcpy)
+ StoreRefsForMemcpy.push_back(SI);
}
}
bool MadeChange = false;
// Look for store instructions, which may be optimized to memset/memcpy.
collectStores(BB);
- for (auto &SI : StoreRefs)
+
+ // Look for a single store which can be optimized into a memset.
+ for (auto &SI : StoreRefsForMemset)
MadeChange |= processLoopStore(SI, BECount);
+ // Optimize the store into a memcpy, if it feeds an similarly strided load.
+ for (auto &SI : StoreRefsForMemcpy)
+ MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);
+
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
Instruction *Inst = &*I++;
// Look for memset instructions, which may be optimized to a larger memset.
return MadeChange;
}
-/// processLoopStore - See if this store can be promoted to a memset or memcpy.
+/// processLoopStore - See if this store can be promoted to a memset.
bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) {
assert(SI->isSimple() && "Expected only non-volatile stores.");
bool NegStride = StoreSize == -Stride;
// See if we can optimize just this store in isolation.
- if (processLoopStridedStore(StorePtr, StoreSize, SI->getAlignment(),
- StoredVal, SI, StoreEv, BECount, NegStride))
- return true;
-
- // Optimize the store into a memcpy, if it feeds an similarly strided load.
- return processLoopStoreOfLoopLoad(SI, StoreSize, StoreEv, BECount, NegStride);
+ return processLoopStridedStore(StorePtr, StoreSize, SI->getAlignment(),
+ StoredVal, SI, StoreEv, BECount, NegStride);
}
/// processLoopMemSet - See if this memset can be promoted to a large memset.
Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment,
Value *StoredVal, Instruction *TheStore, const SCEVAddRecExpr *Ev,
const SCEV *BECount, bool NegStride) {
-
- // If the stored value is a byte-wise value (like i32 -1), then it may be
- // turned into a memset of i8 -1, assuming that all the consecutive bytes
- // are stored. A store of i32 0x01020304 can never be turned into a memset,
- // but it can be turned into memset_pattern if the target supports it.
Value *SplatValue = isBytewiseValue(StoredVal);
Constant *PatternValue = nullptr;
- unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
- // If we're allowed to form a memset, and the stored value would be acceptable
- // for memset, use it.
- if (SplatValue && TLI->has(LibFunc::memset) &&
- // Verify that the stored value is loop invariant. If not, we can't
- // promote the memset.
- CurLoop->isLoopInvariant(SplatValue)) {
- // Keep and use SplatValue.
- PatternValue = nullptr;
- } else if (DestAS == 0 && TLI->has(LibFunc::memset_pattern16) &&
- (PatternValue = getMemSetPatternValue(StoredVal, DL))) {
- // Don't create memset_pattern16s with address spaces.
- // It looks like we can use PatternValue!
- SplatValue = nullptr;
- } else {
- // Otherwise, this isn't an idiom we can transform. For example, we can't
- // do anything with a 3-byte store.
- return false;
- }
+ if (!SplatValue)
+ PatternValue = getMemSetPatternValue(StoredVal, DL);
+
+ assert((SplatValue || PatternValue) &&
+ "Expected either splat value or pattern value.");
// The trip count of the loop and the base pointer of the addrec SCEV is
// guaranteed to be loop invariant, which means that it should dominate the
// header. This allows us to insert code for it in the preheader.
+ unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
BasicBlock *Preheader = CurLoop->getLoopPreheader();
IRBuilder<> Builder(Preheader->getTerminator());
SCEVExpander Expander(*SE, *DL, "loop-idiom");
/// If the stored value is a strided load in the same loop with the same stride
/// this may be transformable into a memcpy. This kicks in for stuff like
/// for (i) A[i] = B[i];
-bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(
- StoreInst *SI, unsigned StoreSize, const SCEVAddRecExpr *StoreEv,
- const SCEV *BECount, bool NegStride) {
- // If we're not allowed to form memcpy, we fail.
- if (!TLI->has(LibFunc::memcpy))
- return false;
+bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
+ const SCEV *BECount) {
+ assert(SI->isSimple() && "Expected only non-volatile stores.");
+
+ Value *StorePtr = SI->getPointerOperand();
+ const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
+ unsigned Stride = getStoreStride(StoreEv);
+ unsigned StoreSize = getStoreSizeInBytes(SI, DL);
+ bool NegStride = StoreSize == -Stride;
// The store must be feeding a non-volatile load.
- LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());
- if (!LI || !LI->isSimple())
- return false;
+ LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
+ assert(LI->isSimple() && "Expected only non-volatile stores.");
// See if the pointer expression is an AddRec like {base,+,1} on the current
// loop, which indicates a strided load. If we have something else, it's a
// random load we can't handle.
const SCEVAddRecExpr *LoadEv =
- dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
- if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
- return false;
-
- // The store and load must share the same stride.
- if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
- return false;
+ cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
// The trip count of the loop and the base pointer of the addrec SCEV is
// guaranteed to be loop invariant, which means that it should dominate the