Description of the SPARC as a target architecture.
authorVikram S. Adve <vadve@cs.uiuc.edu>
Sat, 21 Jul 2001 12:42:19 +0000 (12:42 +0000)
committerVikram S. Adve <vadve@cs.uiuc.edu>
Sat, 21 Jul 2001 12:42:19 +0000 (12:42 +0000)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233 91177308-0d34-0410-b5e6-96231b3b80d8

lib/CodeGen/TargetMachine/Sparc/Makefile [new file with mode: 0644]
lib/CodeGen/TargetMachine/Sparc/Sparc.burg [new file with mode: 0644]
lib/CodeGen/TargetMachine/Sparc/Sparc.cpp [new file with mode: 0644]
lib/CodeGen/TargetMachine/Sparc/SparcInstrSelection.cpp [new file with mode: 0644]

diff --git a/lib/CodeGen/TargetMachine/Sparc/Makefile b/lib/CodeGen/TargetMachine/Sparc/Makefile
new file mode 100644 (file)
index 0000000..27105f7
--- /dev/null
@@ -0,0 +1,19 @@
+LEVEL = ../../../..
+
+DIRS  = 
+
+LIBRARYNAME = sparc
+
+## List source files in link order
+Source  = \
+         Sparc.o \
+         Sparc.burm.o \
+         SparcInstrSelection.o
+
+include $(LEVEL)/Makefile.common
+
+BURG = burg -I
+
+%.burm.c: %.burg
+       $(BURG) -o $@ $<
+
diff --git a/lib/CodeGen/TargetMachine/Sparc/Sparc.burg b/lib/CodeGen/TargetMachine/Sparc/Sparc.burg
new file mode 100644 (file)
index 0000000..d2e3e8c
--- /dev/null
@@ -0,0 +1,282 @@
+%{
+#include <stdio.h>
+#include <llvm/Codegen/InstrForest.h>
+
+typedef BasicTreeNode* NODEPTR_TYPE;
+#define OP_LABEL(p)    ((p)->opLabel)
+#define LEFT_CHILD(p)  ((p)->leftChild)
+#define RIGHT_CHILD(p) ((p)->rightChild)
+#define STATE_LABEL(p) ((p)->state)
+#define PANIC          printf
+%}
+
+%start stmt
+
+%term Ret=1            /* return void from a function */
+%term RetValue=101     /* return a value from a function */
+%term BrUncond=2
+%term BrCond=102
+%term Switch=3 
+               /* 4 is unused */
+%term Not=4
+%term Add=5
+%term Sub=6
+%term Mul=7
+%term Div=8
+%term Rem=9
+%term And=10
+%term Or=11
+%term Xor=12
+%term SetCC=113                /* use this to match all SetCC instructions */
+       /* %term SetEQ=13 */
+       /* %term SetNE=14 */
+       /* %term SetLE=15 */
+       /* %term SetGE=16 */
+       /* %term SetLT=17 */
+       /* %term SetGT=18 */
+%term Malloc=19
+%term Free=20
+%term Alloca=21
+%term AllocaN=121      /* alloca with arg N */
+%term Load=22
+%term LoadIdx=122      /* load with index vector */
+%term Store=23
+%term GetElemPtr=24
+%term GetElemPtrIdx=124        /* getElemPtr with index vector */
+
+               /* 25 is PHINode, which is never a real tree node */
+
+%term Cast=26  /* cast that will be ignored.  others are made explicit */
+%term ToBoolTy=126
+%term ToUByteTy=127
+%term ToSByteTy=128
+%term ToUShortTy=129
+%term ToShortTy=130
+%term ToUIntTy=131
+%term ToIntTy=132
+%term ToULongTy=133
+%term ToLongTy=134
+%term ToFloatTy=135
+%term ToDoubleTy=136
+%term ToArrayTy=137
+%term ToPointerTy=138
+
+%term Call=27
+%term Shl=28
+%term Shr=29
+               /* 30...46 are unused */
+    /*
+     * The foll. values should match the constants in InstrForest.h
+     */
+%term VRegList=97
+%term VReg=98
+%term Constant=99
+%term Label=100
+               /* 50+i is a variant of i, as defined above */
+
+
+%%
+/*-----------------------------------------------------------------------*
+ * The productions of the grammar.
+ * Note that all chain rules are numbered 101 and above.
+ * Also, a special case of production X is numbered 100+X.
+ *-----------------------------------------------------------------------*/
+
+       /*
+        * The top-level statements
+        */
+stmt:  Ret                     =   1 (3);
+stmt:  RetValue(reg)           =   2 (3);
+stmt:  Store(reg,reg)          =   3 (1);
+stmt:  Store(reg,ptrreg)       =   4 (1);
+stmt:  BrUncond                =   5 (2);
+stmt:  BrCond(boolconst)       =   6 (1);      /* may save one instruction */
+stmt:  BrCond(bool)            =   7 (2);
+stmt:  BrCond(boolreg)         =   8 (2);      
+stmt:  Switch(reg)             =   9 (3);      /* cost = load + branch */
+
+stmt:  reg                     =  111 (0);
+stmt:  boolconst               =  112 (0);
+stmt:  bool                    =  113 (0);
+
+       /*
+        * List node used for nodes with more than 2 children
+        */
+reg:   VRegList(reg,reg)       =  10 (0);
+
+       /*
+        * The unary operators.  We encode NOT and individual casts into
+        * separate non-terminals to combine instructions for some cases:
+        *      Eg1:  zdouble <- todouble(xfloat) * todouble(yfloat)
+        *      Eg2:  c       <- a AND (NOT b).
+        * Note that the costs are counted for the individual non-terminals
+        * below, not for reg.
+        */
+reg:   not                     =  121 (0);
+reg:   tobool                  =  122 (0);
+reg:   toubyte                 =  123 (0);
+reg:   tosbyte                 =  124 (0);
+reg:   toushort                =  125 (0);
+reg:   toshort                 =  126 (0);
+reg:   touint                  =  127 (0);
+reg:   toint                   =  128 (0);
+reg:   toulong                 =  129 (0);
+reg:   tolong                  =  130 (0);
+reg:   tofloat                 =  131 (0);
+reg:   todouble                =  132 (0);
+
+not:     Not(reg)              =  21 (1);
+tobool:          ToBoolTy(reg)         =  22 (1);
+toubyte:  ToUByteTy(reg)       =  23 (1);
+tosbyte:  ToSByteTy(reg)       =  24 (1);
+toushort: ToUShortTy(reg)      =  25 (1);
+toshort:  ToShortTy(reg)       =  26 (1);
+touint:          ToUIntTy(reg)         =  27 (1);
+toint:   ToIntTy(reg)          =  28 (1);
+toulong:  ToULongTy(reg)       =  29 (1);
+tolong:          ToLongTy(reg)         =  30 (1);
+tofloat:  ToFloatTy(reg)       =  31 (1);
+todouble: ToDoubleTy(reg)      =  32 (1);
+
+reg:     ToArrayTy(reg)        =  19 (1);
+reg:     ToPointerTy(reg)      =  20 (1);
+
+       /*
+        * The binary operators.
+        */
+reg:   Add(reg,reg)            =   33 (1);
+reg:   Sub(reg,reg)            =   34 (1);
+reg:   Mul(reg,reg)            =   35 (3);
+reg:   Mul(todouble,todouble)  =  135 (2);     /* avoids 1-2 type converts */
+reg:   Div(reg,reg)            =   36 (6);
+reg:   Rem(reg,reg)            =   37 (6);
+reg:   And(reg,reg)            =   38 (1);
+reg:   And(reg,not)            =  138 (0);     /* cost is counted for not */
+reg:   Or (reg,reg)            =   39 (1);
+reg:   Or (reg,not)            =  139 (0);     /* cost is counted for not */
+reg:   Xor(reg,reg)            =   40 (1);
+reg:   Xor(reg,not)            =  140 (0);     /* cost is counted for not */
+
+       /*
+        * The SetCC instructions and other boolean values
+        */
+boolconst: SetCC(reg,Constant) =   41 (1);
+bool:     SetCC(reg,reg)       =   42 (1);
+boolreg:   VReg                        =   43 (0);
+
+       /*
+        * Memory access instructions
+        */
+reg:   Load(reg)               =   51 (3);
+reg:   Load(ptrreg)            =   52 (2);     /* 1 counted for ptrreg */
+reg:   LoadIdx(reg,reg)        =   53 (3);
+reg:   LoadIdx(ptrreg,reg)     =   54 (2);     /* 1 counted for ptrreg */
+reg:   ptrreg                  =  155 (0);
+ptrreg:        GetElemPtr(reg)         =   55 (1);
+ptrreg:        GetElemPtrIdx(reg,reg)  =   56 (1);
+reg:   Alloca                  =   57 (1);
+reg:   AllocaN(reg)            =   58 (1);
+
+       /*
+        * Other operators producing register values
+        */
+reg:   Call                    =   61 (0);
+reg:   Shl(reg,reg)            =   62 (1);
+reg:   Shr(reg,reg)            =   63 (1);
+
+       /*
+        * Finally, leaf nodes of expression trees (other than boolreg)
+        */
+reg:   VReg                    =   71 (0);
+reg:   Constant                =   72 (0);
+
+
+
+%%
+/*-----------------------------------------------------------------------*
+ * The rest of this file provides code to print the cover produced
+ * by BURG and information about computed tree cost and matches.
+ * This code was taken from sample.gr provided with BURG.
+ *-----------------------------------------------------------------------*/
+
+static char rcsid[] = "$Id$";
+
+#ifdef __STDC__
+void printcover(NODEPTR_TYPE p, int goalnt, int indent) {
+#else
+void printcover(p, goalnt, indent) NODEPTR_TYPE p; int goalnt; int indent; {
+#endif
+       int eruleno = burm_rule(STATE_LABEL(p), goalnt);
+       short *nts = burm_nts[eruleno];
+       NODEPTR_TYPE kids[10];
+       int i;
+       
+       if (eruleno == 0) {
+               printf("no cover\n");
+               return;
+       }
+       for (i = 0; i < indent; i++)
+               printf(".");
+       printf("%s\n", burm_string[eruleno]);
+       burm_kids(p, eruleno, kids);
+       for (i = 0; nts[i]; i++)
+               printcover(kids[i], nts[i], indent+1);
+}
+
+#ifdef __STDC__
+void printtree(NODEPTR_TYPE p) {
+#else
+void printtree(p) NODEPTR_TYPE p; {
+#endif
+       int op = burm_op_label(p);
+
+       printf("%s", burm_opname[op]);
+       switch (burm_arity[op]) {
+       case 0:
+               break;
+       case 1:
+               printf("(");
+               printtree(burm_child(p, 0));
+               printf(")");
+               break;
+       case 2:
+               printf("(");
+               printtree(burm_child(p, 0));
+               printf(", ");
+               printtree(burm_child(p, 1));
+               printf(")");
+               break;
+       }
+}
+
+#ifdef __STDC__
+int treecost(NODEPTR_TYPE p, int goalnt, int costindex) {
+#else
+int treecost(p, goalnt, costindex) NODEPTR_TYPE p; int goalnt; int costindex; {
+#endif
+       int eruleno = burm_rule(STATE_LABEL(p), goalnt);
+       int cost = burm_cost[eruleno][costindex], i;
+       short *nts = burm_nts[eruleno];
+       NODEPTR_TYPE kids[10];
+
+       burm_kids(p, eruleno, kids);
+       for (i = 0; nts[i]; i++)
+               cost += treecost(kids[i], nts[i], costindex);
+       return cost;
+}
+
+#ifdef __STDC__
+void printMatches(NODEPTR_TYPE p) {
+#else
+void printMatches(p) NODEPTR_TYPE p; {
+#endif
+       int nt;
+       int eruleno;
+
+       printf("Node 0x%lx= ", (unsigned long)p);
+       printtree(p);
+       printf(" matched rules:\n");
+       for (nt = 1; burm_ntname[nt] != (char*)NULL; nt++)
+               if ((eruleno = burm_rule(STATE_LABEL(p), nt)) != 0)
+                       printf("\t%s\n", burm_string[eruleno]);
+}
diff --git a/lib/CodeGen/TargetMachine/Sparc/Sparc.cpp b/lib/CodeGen/TargetMachine/Sparc/Sparc.cpp
new file mode 100644 (file)
index 0000000..08e12ff
--- /dev/null
@@ -0,0 +1,56 @@
+// $Id$
+//***************************************************************************
+// File:
+//     Sparc.cpp
+// 
+// Purpose:
+//     
+// History:
+//     7/15/01  -  Vikram Adve  -  Created
+//**************************************************************************/
+
+
+//************************** System Include Files **************************/
+
+//*************************** User Include Files ***************************/
+
+#include "llvm/DerivedTypes.h"
+#include "llvm/Codegen/Sparc.h"
+
+
+//************************ Exported Constants ******************************/
+
+
+// Set external object describing the machine instructions
+// 
+const MachineInstrInfo* TargetMachineInstrInfo = SparcMachineInstrInfo; 
+
+
+//************************ Class Implementations **************************/
+
+
+//---------------------------------------------------------------------------
+// class UltraSparcMachine 
+// 
+// Purpose:
+//   Machine description.
+// 
+//---------------------------------------------------------------------------
+
+UltraSparc::UltraSparc()
+  : TargetMachine()
+{
+  optSizeForSubWordData = 4;
+  intSize = 4; 
+  floatSize = 4; 
+  longSize = 8; 
+  doubleSize = 8; 
+  longDoubleSize = 16; 
+  pointerSize = 8;
+  minMemOpWordSize = 8; 
+  maxAtomicMemOpWordSize = 8;
+  machineInstrInfo = SparcMachineInstrInfo;
+  zeroRegNum = 0;                      // %g0 always gives 0 on Sparc
+}
+
+//**************************************************************************/
diff --git a/lib/CodeGen/TargetMachine/Sparc/SparcInstrSelection.cpp b/lib/CodeGen/TargetMachine/Sparc/SparcInstrSelection.cpp
new file mode 100644 (file)
index 0000000..13384b8
--- /dev/null
@@ -0,0 +1,1456 @@
+// $Id$
+//***************************************************************************
+// File:
+//     SparcInstrSelection.cpp
+// 
+// Purpose:
+//     
+// History:
+//     7/02/01  -  Vikram Adve  -  Created
+//***************************************************************************
+
+
+//************************** System Include Files **************************/
+
+#include <assert.h>
+
+//*************************** User Include Files ***************************/
+
+#include "llvm/Type.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/SymbolTable.h"
+#include "llvm/Value.h"
+#include "llvm/Instruction.h"
+#include "llvm/InstrTypes.h"
+#include "llvm/iTerminators.h"
+#include "llvm/iMemory.h"
+#include "llvm/iOther.h"
+#include "llvm/BasicBlock.h"
+#include "llvm/Method.h"
+#include "llvm/ConstPoolVals.h"
+#include "llvm/LLC/CompileContext.h"
+#include "llvm/Codegen/Sparc.h"
+#include "llvm/Codegen/MachineInstr.h"
+#include "llvm/Codegen/InstrForest.h"
+#include "llvm/Codegen/InstrSelection.h"
+
+
+//******************** Internal Data Declarations ************************/
+
+// to be used later
+struct BranchPattern {
+  bool         flipCondition; // should the sense of the test be reversed
+  BasicBlock*  targetBB;      // which basic block to branch to
+  MachineInstr* extraBranch;   // if neither branch is fall-through, then this
+                               // BA must be inserted after the cond'l one
+};
+
+//************************* Forward Declarations ***************************/
+
+
+static MachineOpCode   ChooseBprInstruction    (const InstructionNode* instrNode);
+
+static MachineOpCode   ChooseBccInstruction    (const InstructionNode* instrNode,
+                                                bool& isFPBranch);
+
+static MachineOpCode   ChooseBpccInstruction   (const InstructionNode* instrNode,
+                                                const BinaryOperator* setCCInstr);
+
+static MachineOpCode   ChooseBfpccInstruction  (const InstructionNode* instrNode,
+                                                const BinaryOperator* setCCInstr);
+
+static MachineOpCode   ChooseConvertToFloatInstr(const InstructionNode* instrNode,
+                                                 const Type* opType);
+
+static MachineOpCode   ChooseConvertToIntInstr (const InstructionNode* instrNode,
+                                                const Type* opType);
+
+static MachineOpCode   ChooseAddInstruction    (const InstructionNode* instrNode);
+
+static MachineOpCode   ChooseSubInstruction    (const InstructionNode* instrNode);
+
+static MachineOpCode   ChooseFcmpInstruction   (const InstructionNode* instrNode);
+
+static MachineOpCode   ChooseMulInstruction    (const InstructionNode* instrNode,
+                                                bool checkCasts);
+
+static MachineOpCode   ChooseDivInstruction    (const InstructionNode* instrNode);
+
+static MachineOpCode   ChooseLoadInstruction   (const Type* resultType);
+
+static MachineOpCode   ChooseStoreInstruction  (const Type* valueType);
+
+static void            SetOperandsForMemInstr  (MachineInstr* minstr,
+                                        const InstructionNode* vmInstrNode,
+                                        const TargetMachine& targetMachine);
+
+static void            SetMemOperands_Internal (MachineInstr* minstr,
+                                        const InstructionNode* vmInstrNode,
+                                        Value* ptrVal,
+                                        Value* arrayOffsetVal,
+                                        const vector<ConstPoolVal*>& idxVec,
+                                        const TargetMachine& targetMachine);
+
+static unsigned                FixConstantOperands(const InstructionNode* vmInstrNode,
+                                        MachineInstr** mvec,
+                                        unsigned numInstr,
+                                        TargetMachine& targetMachine);
+
+static unsigned                InsertLoadConstInstructions(unsigned loadConstFlags,
+                                        const InstructionNode* vmInstrNode,
+                                        MachineInstr** mvec,
+                                        unsigned numInstr);
+
+static MachineInstr*   MakeOneLoadConstInstr(Instruction* vmInstr,
+                                             Value* val);
+
+
+//******************* Externally Visible Functions *************************/
+
+
+//------------------------------------------------------------------------ 
+// External Function: ThisIsAChainRule
+//
+// Purpose:
+//   Check if a given BURG rule is a chain rule.
+//------------------------------------------------------------------------ 
+
+extern bool
+ThisIsAChainRule(int eruleno)
+{
+  switch(eruleno)
+    {
+    case 111:  // stmt:  reg
+    case 112:  // stmt:  boolconst
+    case 113:  // stmt:  bool
+    case 121:
+    case 122:
+    case 123:
+    case 124:
+    case 125:
+    case 126:
+    case 127:
+    case 128:
+    case 129:
+    case 130:
+    case 131:
+    case 132:
+    case 153: return true; break;
+      
+    default: return false; break;
+    }
+}
+
+//------------------------------------------------------------------------ 
+// External Function: GetInstructionsByRule
+//
+// Purpose:
+//   Choose machine instructions for the SPARC according to the
+//   patterns chosen by the BURG-generated parser.
+//------------------------------------------------------------------------ 
+
+unsigned
+GetInstructionsByRule(InstructionNode* subtreeRoot,
+                     int ruleForNode,
+                     short* nts,
+                     CompileContext& ccontext,
+                     MachineInstr** mvec)
+{
+  int numInstr = 1;                    // initialize for common case
+  bool checkCast = false;              // initialize here to use fall-through
+  Value *leftVal, *rightVal;
+  const Type* opType;
+  int nextRule;
+  BranchPattern brPattern;
+  
+  mvec[0] = mvec[1] = mvec[2] = mvec[3] = NULL;        // just for safety
+  
+  switch(ruleForNode) {
+  case 1:      // stmt:   Ret
+  case 2:      // stmt:   RetValue(reg)
+               // NOTE: Prepass of register allocation is responsible
+               //       for moving return value to appropriate register.
+               // Mark the return-address register as a hidden virtual reg.
+    {          
+    Instruction* returnReg = new TmpInstruction(Instruction::UserOp1,
+                                       subtreeRoot->getInstruction(), NULL);
+    subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(returnReg);
+    
+    mvec[0] = new MachineInstr(RETURN);
+    mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register, returnReg);
+    mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
+                                 (int64_t) 0);
+
+    mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+    break;
+    }  
+    
+  case 3:      // stmt:   Store(reg,reg)
+  case 4:      // stmt:   Store(reg,ptrreg)
+    mvec[0] = new MachineInstr(ChooseStoreInstruction(subtreeRoot->leftChild()->getValue()->getType()));
+    SetOperandsForMemInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 5:      // stmt:   BrUncond
+    mvec[0] = new MachineInstr(BA);
+    mvec[0]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp,
+             ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
+    
+    mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+    break;
+    
+  case 6:      // stmt:   BrCond(boolconst)
+    // boolconst => boolean was computed with `%b = setCC type reg1 constant'
+    // If the constant is ZERO, we can use the branch-on-integer-register
+    // instructions and avoid the SUBcc instruction entirely.
+    // Otherwise this is just the same as case 5, so just fall through.
+    {
+    InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
+    assert(constNode && constNode->getNodeType() ==InstrTreeNode::NTConstNode);
+    ConstPoolVal* constVal = (ConstPoolVal*) constNode->getValue();
+    
+    if (constVal->getType()->isIntegral()
+       && ((constVal->getType()->isSigned()
+            && ((ConstPoolSInt*) constVal)->getValue()==0)
+           || (constVal->getType()->isUnsigned()
+               && ((ConstPoolUInt*) constVal)->getValue()== 0)))
+      {
+       // Whew!  Ok, that was zero after all...
+       // Use the left child of the setCC instruction as the first argument!
+       mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot));
+       mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register,
+                     subtreeRoot->leftChild()->leftChild()->getValue());
+       mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
+             ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
+
+       mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+       
+       mvec[numInstr++] = new MachineInstr(BA); // false branch
+       mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp, ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
+       break;
+      }
+    // ELSE FALL THROUGH
+    }
+    
+  case 7:      // stmt:   BrCond(bool)
+    // bool => boolean was computed with `%b = setcc type reg1 reg2'
+    // Need to check whether the type was a FP, signed int or unsigned int,
+    // nad check the branching condition in order to choose the branch to use.
+    // Also, for FP branches, an extra operand specifies which FCCn reg to use.
+    // 
+    {
+    bool isFPBranch;
+    mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot, isFPBranch));
+    
+    int opNum = 0;
+    if (isFPBranch)
+       mvec[0]->SetMachineOperand(opNum++, MachineOperand::MO_CCRegister,
+                                 subtreeRoot->leftChild()->getValue());
+    
+    mvec[0]->SetMachineOperand(opNum, MachineOperand::MO_PCRelativeDisp,
+             ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
+    
+    mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+    
+    mvec[numInstr++] = new MachineInstr(BA); // false branch
+    mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp, ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
+    break;
+    }
+  
+  case 8:      // stmt:   BrCond(boolreg)
+    // bool => boolean is stored in an existing register.
+    // Just use the branch-on-integer-register instruction!
+    // 
+    mvec[0] = new MachineInstr(BRNZ);
+    mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register,
+                                subtreeRoot->leftChild()->getValue());
+    mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
+             ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
+    mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+    break;
+    
+  case 9:      // stmt:   Switch(reg)
+    assert(0 && "*** SWITCH instruction is not implemented yet.");
+    numInstr = 0;
+    break;
+    
+  case 10:     // reg:   VRegList(reg, reg)
+    assert(0 && "VRegList should never be the topmost non-chain rule");
+    break;
+    
+  case 21:     // reg:   Not(reg):     Implemented as reg = reg XOR-NOT 0
+    mvec[0] = new MachineInstr(XNOR);
+    mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register,
+                                 subtreeRoot->leftChild()->getValue());
+    mvec[0]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+    mvec[0]->SetMachineOperand(2, MachineOperand::MO_Register,
+                                subtreeRoot->getValue());
+    break;
+    
+  case 22:     // reg:   ToBoolTy(reg):
+    opType = subtreeRoot->leftChild()->getValue()->getType();
+    assert(opType->isIntegral() || opType == Type::BoolTy);
+    numInstr = 0;
+    break;
+    
+  case 23:     // reg:   ToUByteTy(reg)
+  case 25:     // reg:   ToUShortTy(reg)
+  case 27:     // reg:   ToUIntTy(reg)
+  case 29:     // reg:   ToULongTy(reg)
+    opType = subtreeRoot->leftChild()->getValue()->getType();
+    assert(opType->isIntegral() || opType == Type::BoolTy);
+    numInstr = 0;
+    break;
+    
+  case 24:     // reg:   ToSByteTy(reg)
+  case 26:     // reg:   ToShortTy(reg)
+  case 28:     // reg:   ToIntTy(reg)
+  case 30:     // reg:   ToLongTy(reg)
+    opType = subtreeRoot->leftChild()->getValue()->getType();
+    if (opType->isIntegral() || opType == Type::BoolTy)
+      numInstr = 0;
+    else
+      {
+       mvec[0] =new MachineInstr(ChooseConvertToIntInstr(subtreeRoot,opType));
+       Set2OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+      }
+    break;
+    
+  case 31:     // reg:   ToFloatTy(reg):
+  case 32:     // reg:   ToDoubleTy(reg):
+    
+    // If this instruction has a parent (a user) in the tree 
+    // and the user is translated as an FsMULd instruction,
+    // then the cast is unnecessary.  So check that first.
+    // In the future, we'll want to do the same for the FdMULq instruction,
+    // so do the check here instead of only for ToFloatTy(reg).
+    // 
+    if (subtreeRoot->parent() != NULL &&
+       ((InstructionNode*) subtreeRoot->parent())->getInstruction()->getMachineInstrVec()[0]->getOpCode() == FSMULD)
+      {
+       numInstr = 0;
+      }
+    else
+      {
+       opType = subtreeRoot->leftChild()->getValue()->getType();
+       mvec[0] = new MachineInstr(ChooseConvertToFloatInstr(subtreeRoot, opType));
+       Set2OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+      }
+    break;
+    
+  case 19:     // reg:   ToArrayTy(reg):
+  case 20:     // reg:   ToPointerTy(reg):
+    numInstr = 0;
+    break;
+    
+  case 33:     // reg:   Add(reg, reg)
+    mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot));
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 34:     // reg:   Sub(reg, reg)
+    mvec[0] = new MachineInstr(ChooseSubInstruction(subtreeRoot));
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 135:    // reg:   Mul(todouble, todouble)
+    checkCast = true;
+    // FALL THROUGH 
+    
+  case 35:     // reg:   Mul(reg, reg)
+    mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot, checkCast));
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 36:     // reg:   Div(reg, reg)
+    mvec[0] = new MachineInstr(ChooseDivInstruction(subtreeRoot));
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 37:     // reg:   Rem(reg, reg)
+    assert(0 && "REM instruction unimplemented for the SPARC.");
+    break;
+    
+  case 38:     // reg:   And(reg, reg)
+    mvec[0] = new MachineInstr(AND);
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 138:    // reg:   And(reg, not)
+    mvec[0] = new MachineInstr(ANDN);
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 39:     // reg:   Or(reg, reg)
+    mvec[0] = new MachineInstr(ORN);
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 139:    // reg:   Or(reg, not)
+    mvec[0] = new MachineInstr(ORN);
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 40:     // reg:   Xor(reg, reg)
+    mvec[0] = new MachineInstr(XOR);
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 140:    // reg:   Xor(reg, not)
+    mvec[0] = new MachineInstr(XNOR);
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 41:     // boolconst:   SetCC(reg, Constant)
+    // Check if this is an integer comparison, and
+    // there is a parent, and the parent decided to use
+    // a branch-on-integer-register instead of branch-on-condition-code.
+    // If so, the SUBcc instruction is not required.
+    // (However, we must still check for constants to be loaded from
+    // the constant pool so that such a load can be associated with
+    // this instruction.)
+    // 
+    // Otherwise this is just the same as case 7, so just fall through.
+    // 
+    if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() &&
+       subtreeRoot->parent() != NULL)
+      {
+       InstructionNode* parentNode = (InstructionNode*) subtreeRoot->parent();
+       assert(parentNode->getNodeType() == InstrTreeNode::NTInstructionNode);
+       const vector<MachineInstr*>&
+         minstrVec = parentNode->getInstruction()->getMachineInstrVec();
+       MachineOpCode parentOpCode;
+       if (minstrVec.size() == 1 &&
+           (parentOpCode = minstrVec[0]->getOpCode()) >= BRZ &&
+           parentOpCode <= BRGEZ)
+         {
+           numInstr = 0;
+           break;
+         }
+      }
+    // ELSE FALL THROUGH
+    
+  case 42:     // bool:   SetCC(reg, reg):
+    if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral())
+      {
+       // integer condition: destination should be %g0
+       mvec[0] = new MachineInstr(SUBcc);
+       Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget(),
+                             /*canDiscardResult*/ true);
+      }
+    else
+      {
+       // FP condition: dest should be a FCCn register chosen by reg-alloc
+       mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot));
+       
+       leftVal = subtreeRoot->leftChild()->getValue();
+       rightVal = subtreeRoot->rightChild()->getValue();
+       mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
+                                    subtreeRoot->getValue());
+       mvec[0]->SetMachineOperand(1, MachineOperand::MO_Register, leftVal);
+       mvec[0]->SetMachineOperand(2, MachineOperand::MO_Register, rightVal);
+      }
+    break;
+    
+  case 43:     // boolreg: VReg
+    numInstr = 0;
+    break;
+
+  case 51:     // reg:   Load(reg)
+  case 52:     // reg:   Load(ptrreg)
+  case 53:     // reg:   LoadIdx(reg,reg)
+  case 54:     // reg:   LoadIdx(ptrreg,reg)
+    mvec[0] = new MachineInstr(ChooseLoadInstruction(subtreeRoot->getValue()->getType()));
+    SetOperandsForMemInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 55:     // reg:   GetElemPtr(reg)
+  case 56:     // reg:   GetElemPtrIdx(reg,reg)
+    if (subtreeRoot->parent() != NULL)
+      {
+       // Check if the parent was an array access.
+       // If so, we still need to generate this instruction.
+       MemAccessInst* memInst =(MemAccessInst*) subtreeRoot->getInstruction();
+       const PointerType* ptrType =
+         (const PointerType*) memInst->getPtrOperand()->getType();
+       if (! ptrType->getValueType()->isArrayType())
+         {// we don't need a separate instr
+           numInstr = 0;
+           break;
+         }
+      }
+    // else in all other cases we need to a separate ADD instruction
+    mvec[0] = new MachineInstr(ADD);
+    SetOperandsForMemInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 57:     // reg:   Alloca: Implement as 2 instructions:
+               //      sub %sp, tmp -> %sp
+    {          //      add %sp, 0   -> result
+    Instruction* instr = subtreeRoot->getInstruction();
+    const PointerType* instrType = (const PointerType*) instr->getType();
+    assert(instrType->isPointerType());
+    int tsize = (int) ccontext.getTarget().findOptimalStorageSize(
+                                                   instrType->getValueType());
+    if (tsize == 0)
+      {
+       numInstr = 0;
+       break;
+      }
+    //else go on to create the instructions needed...
+    
+    // Create a temporary Value to hold the constant type-size
+    ConstPoolSInt* valueForTSize = new ConstPoolSInt(Type::IntTy, tsize);
+    ConstantPool &cpool = instr->getParent()->getParent()->getConstantPool();
+    if (cpool.find(valueForTSize) == 0)
+      cpool.insert(valueForTSize);
+    
+    // Instruction 1: sub %sp, tsize -> %sp
+    // tsize is always constant, but it may have to be put into a
+    // register if it doesn't fit in the immediate field.
+    // 
+    mvec[0] = new MachineInstr(SUB);
+    mvec[0]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+    mvec[0]->SetMachineOperand(1, MachineOperand::MO_Register, valueForTSize);
+    mvec[0]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+    
+    // Instruction 2: add %sp, 0 -> result
+    numInstr++;
+    mvec[1] = new MachineInstr(ADD);
+    mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+    mvec[1]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+    mvec[1]->SetMachineOperand(2, MachineOperand::MO_Register, instr);
+    break;
+    }
+  
+  case 58:     // reg:   Alloca(reg): Implement as 3 instructions:
+               //      mul num, typeSz -> tmp
+               //      sub %sp, tmp    -> %sp
+    {          //      add %sp, 0      -> result
+    Instruction* instr = subtreeRoot->getInstruction();
+    const PointerType* instrType = (const PointerType*) instr->getType();
+    assert(instrType->isPointerType() &&
+          instrType->getValueType()->isArrayType());
+    const Type* eltType =
+      ((ArrayType*) instrType->getValueType())->getElementType();
+    int tsize = (int) ccontext.getTarget().findOptimalStorageSize(eltType);
+    
+    if (tsize == 0)
+      {
+       numInstr = 0;
+       break;
+      }
+    //else go on to create the instructions needed...
+
+    // Create a temporary Value to hold the constant type-size
+    ConstPoolSInt* valueForTSize = new ConstPoolSInt(Type::IntTy, tsize);
+    ConstantPool &cpool = instr->getParent()->getParent()->getConstantPool();
+    if (cpool.find(valueForTSize) == 0)
+      cpool.insert(valueForTSize);
+    
+    // Create a temporary value to hold `tmp'
+    Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1,
+                                         subtreeRoot->leftChild()->getValue(),
+                                         NULL /*could insert tsize here*/);
+    subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr);
+
+    // Instruction 1: mul numElements, typeSize -> tmp
+    mvec[0] = new MachineInstr(MULX);
+    mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register,
+                               subtreeRoot->leftChild()->getValue());
+    mvec[0]->SetMachineOperand(1, MachineOperand::MO_Register, valueForTSize);
+    mvec[0]->SetMachineOperand(2, MachineOperand::MO_Register, tmpInstr);
+
+    // Instruction 2: sub %sp, tmp -> %sp
+    numInstr++;
+    mvec[1] = new MachineInstr(SUB);
+    mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+    mvec[1]->SetMachineOperand(1, MachineOperand::MO_Register, tmpInstr);
+    mvec[1]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+    
+    // Instruction 3: add %sp, 0 -> result
+    numInstr++;
+    mvec[2] = new MachineInstr(ADD);
+    mvec[2]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+    mvec[2]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+    mvec[2]->SetMachineOperand(2, MachineOperand::MO_Register, instr);
+    break;
+    }
+    
+  case 61:     // reg:   Call
+               // Generate a call-indirect (i.e., JMPL) for now to expose
+               // the potential need for registers.  If an absolute address
+               // is available, replace this with a CALL instruction.
+               // Mark both the indirection register and the return-address
+    {          // register as hidden virtual registers.
+      
+    Instruction* targetReg = new TmpInstruction(Instruction::UserOp1,
+       ((CallInst*) subtreeRoot->getInstruction())->getCalledMethod(), NULL);
+    Instruction* returnReg = new TmpInstruction(Instruction::UserOp1,
+                                               subtreeRoot->getValue(), NULL);
+    subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(targetReg);
+    subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(returnReg);
+    
+    mvec[0] = new MachineInstr(JMPL);
+    mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register, targetReg);
+    mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
+                                 (int64_t) 0);
+    mvec[0]->SetMachineOperand(2, MachineOperand::MO_Register, returnReg);
+    
+    mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+    break;
+    }
+    
+  case 62:     // reg:   Shl(reg, reg)
+    opType = subtreeRoot->leftChild()->getValue()->getType();
+    assert(opType->isIntegral() || opType == Type::BoolTy); 
+    mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL);
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 63:     // reg:   Shr(reg, reg)
+    opType = subtreeRoot->leftChild()->getValue()->getType();
+    assert(opType->isIntegral() || opType == Type::BoolTy); 
+    mvec[0] = new MachineInstr((opType->isSigned()
+                               ? ((opType == Type::LongTy)? SRAX : SRA)
+                               : ((opType == Type::LongTy)? SRLX : SRL)));
+    Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+    break;
+    
+  case 71:     // reg:     VReg
+  case 72:     // reg:     Constant
+    numInstr = 0;
+    break;
+
+  case 111:    // stmt:  reg
+  case 112:    // stmt:  boolconst
+  case 113:    // stmt:  bool
+  case 121:
+  case 122:
+  case 123:
+  case 124:
+  case 125:
+  case 126:
+  case 127:
+  case 128:
+  case 129:
+  case 130:
+  case 131:
+  case 132:
+  case 153:
+    // 
+    // These are all chain rules, which have a single nonterminal on the RHS.
+    // Get the rule that matches the RHS non-terminal and use that instead.
+    // 
+    assert(ThisIsAChainRule(ruleForNode));
+    assert(nts[0] && ! nts[1]
+          && "A chain rule should have only one RHS non-terminal!");
+    nextRule = burm_rule(subtreeRoot->getBasicNode()->state, nts[0]);
+    nts = burm_nts[nextRule];
+    numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,ccontext,mvec);
+    break;
+    
+  default:
+    numInstr = 0;
+    break;
+  }
+  
+  numInstr =
+    FixConstantOperands(subtreeRoot, mvec, numInstr, ccontext.getTarget());
+  
+  return numInstr;
+}
+
+
+//---------------------------------------------------------------------------
+// Private helper routines for SPARC instruction selection.
+//---------------------------------------------------------------------------
+
+
+static MachineOpCode 
+ChooseBprInstruction(const InstructionNode* instrNode)
+{
+  MachineOpCode opCode;
+  
+  Instruction* setCCInstr =
+    ((InstructionNode*) instrNode->leftChild())->getInstruction();
+  
+  switch(setCCInstr->getOpcode())
+    {
+    case Instruction::SetEQ: opCode = BRZ;   break;
+    case Instruction::SetNE: opCode = BRNZ;  break;
+    case Instruction::SetLE: opCode = BRLEZ; break;
+    case Instruction::SetGE: opCode = BRGEZ; break;
+    case Instruction::SetLT: opCode = BRLZ;  break;
+    case Instruction::SetGT: opCode = BRGZ;  break;
+    default:
+      assert(0 && "Unrecognized VM instruction!");
+      opCode = INVALID_OPCODE;
+      break; 
+    }
+  
+  return opCode;
+}
+
+
+static MachineOpCode 
+ChooseBccInstruction(const InstructionNode* instrNode,
+                    bool& isFPBranch)
+{
+  InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
+  BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction();
+  const Type* setCCType = setCCInstr->getOperand(0)->getType();
+  
+  isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy); 
+  
+  if (isFPBranch) 
+    return ChooseBfpccInstruction(instrNode, setCCInstr);
+  else
+    return ChooseBpccInstruction(instrNode, setCCInstr);
+}
+
+
+static MachineOpCode 
+ChooseBpccInstruction(const InstructionNode* instrNode,
+                     const BinaryOperator* setCCInstr)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
+  
+  if (isSigned)
+    {
+      switch(setCCInstr->getOpcode())
+       {
+       case Instruction::SetEQ: opCode = BE;  break;
+       case Instruction::SetNE: opCode = BNE; break;
+       case Instruction::SetLE: opCode = BLE; break;
+       case Instruction::SetGE: opCode = BGE; break;
+       case Instruction::SetLT: opCode = BL;  break;
+       case Instruction::SetGT: opCode = BG;  break;
+       default:
+         assert(0 && "Unrecognized VM instruction!");
+         break; 
+       }
+    }
+  else
+    {
+      switch(setCCInstr->getOpcode())
+       {
+       case Instruction::SetEQ: opCode = BE;   break;
+       case Instruction::SetNE: opCode = BNE;  break;
+       case Instruction::SetLE: opCode = BLEU; break;
+       case Instruction::SetGE: opCode = BCC;  break;
+       case Instruction::SetLT: opCode = BCS;  break;
+       case Instruction::SetGT: opCode = BGU;  break;
+       default:
+         assert(0 && "Unrecognized VM instruction!");
+         break; 
+       }
+    }
+  
+  return opCode;
+}
+
+static MachineOpCode 
+ChooseBfpccInstruction(const InstructionNode* instrNode,
+                      const BinaryOperator* setCCInstr)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  switch(setCCInstr->getOpcode())
+    {
+    case Instruction::SetEQ: opCode = FBE;  break;
+    case Instruction::SetNE: opCode = FBNE; break;
+    case Instruction::SetLE: opCode = FBLE; break;
+    case Instruction::SetGE: opCode = FBGE; break;
+    case Instruction::SetLT: opCode = FBL;  break;
+    case Instruction::SetGT: opCode = FBG;  break;
+    default:
+      assert(0 && "Unrecognized VM instruction!");
+      break; 
+    }
+  
+  return opCode;
+}
+
+static MachineOpCode 
+ChooseConvertToFloatInstr(const InstructionNode* instrNode,
+                         const Type* opType)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  switch(instrNode->getOpLabel())
+    {
+    case ToFloatTy: 
+      if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
+       opCode = FITOS;
+      else if (opType == Type::LongTy)
+       opCode = FXTOS;
+      else if (opType == Type::DoubleTy)
+       opCode = FDTOS;
+      else
+         assert(0 && "Cannot convert this type to FLOAT on SPARC");
+      break;
+      
+    case ToDoubleTy: 
+      if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
+       opCode = FITOD;
+      else if (opType == Type::LongTy)
+       opCode = FXTOD;
+      else if (opType == Type::FloatTy)
+       opCode = FSTOD;
+      else
+       assert(0 && "Cannot convert this type to DOUBLE on SPARC");
+      break;
+      
+    default:
+      break;
+    }
+  
+  return opCode;
+}
+
+static MachineOpCode 
+ChooseConvertToIntInstr(const InstructionNode* instrNode,
+                       const Type* opType)
+{
+  MachineOpCode opCode = INVALID_OPCODE;;
+  
+  int instrType = (int) instrNode->getOpLabel();
+  
+  if (instrType == ToSByteTy || instrType == ToShortTy || instrType == ToIntTy)
+    {
+      switch (opType->getPrimitiveID())
+       {
+        case Type::FloatTyID:   opCode = FSTOI; break;
+        case Type::DoubleTyID:  opCode = FDTOI; break;
+       default:
+         assert(0 && "Non-numeric non-bool type cannot be converted to Int");
+         break;
+       }
+    }
+  else if (instrType == ToLongTy)
+    {
+      switch (opType->getPrimitiveID())
+       {
+        case Type::FloatTyID:   opCode = FSTOX; break;
+        case Type::DoubleTyID:  opCode = FDTOX; break;
+       default:
+         assert(0 && "Non-numeric non-bool type cannot be converted to Long");
+         break;
+       }
+    }
+  else
+      assert(0 && "Should not get here, Mo!");
+  
+  return opCode;
+}
+
+
+static MachineOpCode 
+ChooseAddInstruction(const InstructionNode* instrNode)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  const Type* resultType = instrNode->getInstruction()->getType();
+  
+  if (resultType->isIntegral() ||
+      resultType->isPointerType() ||
+      resultType->isMethodType() ||
+      resultType->isLabelType())
+    {
+      opCode = ADD;
+    }
+  else
+    {
+      Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
+      switch(operand->getType()->getPrimitiveID())
+       {
+       case Type::FloatTyID:  opCode = FADDS; break;
+       case Type::DoubleTyID: opCode = FADDD; break;
+       default: assert(0 && "Invalid type for ADD instruction"); break; 
+       }
+    }
+  
+  return opCode;
+}
+
+static MachineOpCode 
+ChooseSubInstruction(const InstructionNode* instrNode)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  const Type* resultType = instrNode->getInstruction()->getType();
+  
+  if (resultType->isIntegral() ||
+      resultType->isPointerType())
+    {
+      opCode = SUB;
+    }
+  else
+    {
+      Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
+      switch(operand->getType()->getPrimitiveID())
+       {
+       case Type::FloatTyID:  opCode = FSUBS; break;
+       case Type::DoubleTyID: opCode = FSUBD; break;
+       default: assert(0 && "Invalid type for SUB instruction"); break; 
+       }
+    }
+  
+  return opCode;
+}
+
+
+static MachineOpCode 
+ChooseFcmpInstruction(const InstructionNode* instrNode)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
+  switch(operand->getType()->getPrimitiveID())
+    {
+    case Type::FloatTyID:  opCode = FCMPS; break;
+    case Type::DoubleTyID: opCode = FCMPD; break;
+    default: assert(0 && "Invalid type for ADD instruction"); break; 
+    }
+  
+  return opCode;
+}
+
+
+static MachineOpCode 
+ChooseMulInstruction(const InstructionNode* instrNode,
+                    bool checkCasts)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  if (checkCasts)
+    {
+      // Assume that leftArg and rightArg are both cast instructions.
+      //
+      InstrTreeNode* leftArg = instrNode->leftChild();
+      InstrTreeNode* rightArg = instrNode->rightChild();
+      InstrTreeNode* leftArgArg = leftArg->leftChild();
+      InstrTreeNode* rightArgArg = rightArg->leftChild();
+      assert(leftArg->getValue()->getType() ==rightArg->getValue()->getType());
+      
+      // If both arguments are floats cast to double, use FsMULd
+      if (leftArg->getValue()->getType() == Type::DoubleTy &&
+         leftArgArg->getValue()->getType() == Type::FloatTy &&
+         rightArgArg->getValue()->getType() == Type::FloatTy)
+       {
+         return opCode = FSMULD;
+       }
+      // else fall through and use the regular multiply instructions
+    }
+  
+  const Type* resultType = instrNode->getInstruction()->getType();
+  
+  if (resultType->isIntegral())
+    {
+      opCode = MULX;
+    }
+  else
+    {
+      switch(instrNode->leftChild()->getValue()->getType()->getPrimitiveID())
+       {
+       case Type::FloatTyID:  opCode = FMULS; break;
+       case Type::DoubleTyID: opCode = FMULD; break;
+       default: assert(0 && "Invalid type for MUL instruction"); break; 
+       }
+    }
+  
+  return opCode;
+}
+
+
+static MachineOpCode 
+ChooseDivInstruction(const InstructionNode* instrNode)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  const Type* resultType = instrNode->getInstruction()->getType();
+  
+  if (resultType->isIntegral())
+    {
+      opCode = resultType->isSigned()? SDIVX : UDIVX;
+    }
+  else
+    {
+      Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
+      switch(operand->getType()->getPrimitiveID())
+       {
+       case Type::FloatTyID:  opCode = FDIVS; break;
+       case Type::DoubleTyID: opCode = FDIVD; break;
+       default: assert(0 && "Invalid type for DIV instruction"); break; 
+       }
+    }
+  
+  return opCode;
+}
+
+
+static MachineOpCode 
+ChooseLoadInstruction(const Type* resultType)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  switch (resultType->getPrimitiveID())
+    {
+    case Type::BoolTyID:       opCode = LDUB; break;
+    case Type::UByteTyID:      opCode = LDUB; break;
+    case Type::SByteTyID:      opCode = LDSB; break;
+    case Type::UShortTyID:     opCode = LDUH; break;
+    case Type::ShortTyID:      opCode = LDSH; break;
+    case Type::UIntTyID:       opCode = LDUW; break;
+    case Type::IntTyID:                opCode = LDSW; break;
+    case Type::ULongTyID:
+    case Type::LongTyID:       opCode = LDX;  break;
+    case Type::FloatTyID:      opCode = LD;   break;
+    case Type::DoubleTyID:     opCode = LDD;  break;
+    default: assert(0 && "Invalid type for Load instruction"); break; 
+    }
+  
+  return opCode;
+}
+
+
+static MachineOpCode 
+ChooseStoreInstruction(const Type* valueType)
+{
+  MachineOpCode opCode = INVALID_OPCODE;
+  
+  switch (valueType->getPrimitiveID())
+    {
+    case Type::BoolTyID:
+    case Type::UByteTyID:
+    case Type::SByteTyID:      opCode = STB; break;
+    case Type::UShortTyID:
+    case Type::ShortTyID:      opCode = STH; break;
+    case Type::UIntTyID:
+    case Type::IntTyID:                opCode = STW; break;
+    case Type::ULongTyID:
+    case Type::LongTyID:       opCode = STX;  break;
+    case Type::FloatTyID:      opCode = ST;   break;
+    case Type::DoubleTyID:     opCode = STD;  break;
+    default: assert(0 && "Invalid type for Store instruction"); break; 
+    }
+  
+  return opCode;
+}
+
+
+//------------------------------------------------------------------------ 
+// Function SetOperandsForMemInstr
+//
+// Choose addressing mode for the given load or store instruction.
+// Use [reg+reg] if it is an indexed reference, and the index offset is
+//              not a constant or if it cannot fit in the offset field.
+// Use [reg+offset] in all other cases.
+// 
+// This assumes that all array refs are "lowered" to one of these forms:
+//     %x = load (subarray*) ptr, constant     ; single constant offset
+//     %x = load (subarray*) ptr, offsetVal    ; single non-constant offset
+// Generally, this should happen via strength reduction + LICM.
+// Also, strength reduction should take care of using the same register for
+// the loop index variable and an array index, when that is profitable.
+//------------------------------------------------------------------------ 
+
+static void
+SetOperandsForMemInstr(MachineInstr* minstr,
+                      const InstructionNode* vmInstrNode,
+                      const TargetMachine& targetMachine)
+{
+  MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
+  
+  // Variables to hold the index vector, ptr value, and offset value.
+  // The major work here is to extract these for all 3 instruction types
+  // and then call the common function SetMemOperands_Internal().
+  // 
+  const vector<ConstPoolVal*>* idxVec = & memInst->getIndexVec();
+  vector<ConstPoolVal*>* newIdxVec = NULL;
+  Value* ptrVal;
+  Value* arrayOffsetVal = NULL;
+  
+  // Test if a GetElemPtr instruction is being folded into this mem instrn.
+  // If so, it will be in the left child for Load and GetElemPtr,
+  // and in the right child for Store instructions.
+  // 
+  InstrTreeNode* ptrChild = (vmInstrNode->getOpLabel() == Instruction::Store
+                            ? vmInstrNode->rightChild()
+                            : vmInstrNode->leftChild()); 
+  
+  if (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
+      ptrChild->getOpLabel() == GetElemPtrIdx)
+    {
+      // There is a GetElemPtr instruction and there may be a chain of
+      // more than one.  Use the pointer value of the last one in the chain.
+      // Fold the index vectors from the entire chain and from the mem
+      // instruction into one single index vector.
+      // Finally, we never fold for an array instruction so make that NULL.
+      
+      newIdxVec = new vector<ConstPoolVal*>;
+      ptrVal = FoldGetElemChain((InstructionNode*) ptrChild, *newIdxVec);
+      
+      newIdxVec->insert(newIdxVec->end(), idxVec->begin(), idxVec->end());
+      idxVec = newIdxVec;
+      
+      assert(! ((PointerType*)ptrVal->getType())->getValueType()->isArrayType()
+            && "GetElemPtr cannot be folded into array refs in selection");
+    }
+  else
+    {
+      // There is no GetElemPtr instruction.
+      // Use the pointer value and the index vector from the Mem instruction.
+      // If it is an array reference, get the array offset value.
+      // 
+      ptrVal = memInst->getPtrOperand();
+
+      const Type* opType =
+       ((const PointerType*) ptrVal->getType())->getValueType();
+      if (opType->isArrayType())
+       {
+         assert((memInst->getNumOperands()
+                 == (unsigned) 1 + memInst->getFirstOffsetIdx())
+                && "Array refs must be lowered before Instruction Selection");
+         
+         arrayOffsetVal = memInst->getOperand(memInst->getFirstOffsetIdx());
+       }
+    }
+  
+  SetMemOperands_Internal(minstr, vmInstrNode, ptrVal, arrayOffsetVal,
+                         *idxVec, targetMachine);
+  
+  if (newIdxVec != NULL)
+    delete newIdxVec;
+}
+
+
+static void
+SetMemOperands_Internal(MachineInstr* minstr,
+                       const InstructionNode* vmInstrNode,
+                       Value* ptrVal,
+                       Value* arrayOffsetVal,
+                       const vector<ConstPoolVal*>& idxVec,
+                       const TargetMachine& targetMachine)
+{
+  MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
+  
+  // Initialize so we default to storing the offset in a register.
+  int64_t smallConstOffset;
+  Value* valueForRegOffset = NULL;
+  MachineOperand::MachineOperandType offsetOpType =MachineOperand::MO_Register;
+
+  // Check if there is an index vector and if so, if it translates to
+  // a small enough constant to fit in the immediate-offset field.
+  // 
+  if (idxVec.size() > 0)
+    {
+      bool isConstantOffset = false;
+      unsigned offset;
+      
+      const PointerType* ptrType = (PointerType*) ptrVal->getType();
+      
+      if (ptrType->getValueType()->isStructType())
+       {
+         // the offset is always constant for structs
+         isConstantOffset = true;
+         
+         // Compute the offset value using the index vector
+         offset = MemAccessInst::getIndexedOfsetForTarget(ptrType,
+                                                      idxVec, targetMachine);
+       }
+      else
+       {
+         // It must be an array ref.  Check if the offset is a constant,
+         // and that the indexing has been lowered to a single offset.
+         // 
+         assert(ptrType->getValueType()->isArrayType());
+         assert(arrayOffsetVal != NULL
+                && "Expect to be given Value* for array offsets");
+         
+         if (arrayOffsetVal->getValueType() == Value::ConstantVal)
+           {
+             isConstantOffset = true;  // always constant for structs
+             assert(arrayOffsetVal->getType()->isIntegral());
+             offset = (arrayOffsetVal->getType()->isSigned())
+                       ? ((ConstPoolSInt*) arrayOffsetVal)->getValue()
+                       : (int64_t) ((ConstPoolUInt*) arrayOffsetVal)->getValue();
+           }
+         else
+           {
+             valueForRegOffset = arrayOffsetVal;
+           }
+       }
+      
+      if (isConstantOffset)
+       {
+         // create a virtual register for the constant
+         valueForRegOffset = new ConstPoolSInt(Type::IntTy, offset);
+       }
+    }
+  else
+    {
+      offsetOpType = MachineOperand::MO_SignExtendedImmed;
+      smallConstOffset = 0;
+    }
+  
+  // Operand 0 is value for STORE, ptr for LOAD or GET_ELEMENT_PTR
+  // It is the left child in the instruction tree in all cases.
+  Value* leftVal = vmInstrNode->leftChild()->getValue();
+  minstr->SetMachineOperand(0, MachineOperand::MO_Register, leftVal);
+  
+  // Operand 1 is ptr for STORE, offset for LOAD or GET_ELEMENT_PTR
+  // Operand 3 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR
+  //
+  unsigned offsetOpNum = (memInst->getOpcode() == Instruction::Store)? 2 : 1;
+  if (offsetOpType == MachineOperand::MO_Register)
+    {
+      assert(valueForRegOffset != NULL);
+      minstr->SetMachineOperand(offsetOpNum, offsetOpType, valueForRegOffset); 
+    }
+  else
+    minstr->SetMachineOperand(offsetOpNum, offsetOpType, smallConstOffset);
+  
+  if (memInst->getOpcode() == Instruction::Store)
+    minstr->SetMachineOperand(1, MachineOperand::MO_Register, ptrVal);
+  else
+    minstr->SetMachineOperand(2, MachineOperand::MO_Register,
+                                vmInstrNode->getValue());
+}
+
+
+// Create one or two load instructions to load constants from the
+// constant pool.  The first instructions is stored in instrA;
+// the second (if any) in instrB.
+//
+static unsigned
+FixConstantOperands(const InstructionNode* vmInstrNode,
+                   MachineInstr** mvec,
+                   unsigned numInstr,
+                   TargetMachine& targetMachine)
+{
+  static MachineInstr* loadConstVec[MAX_INSTR_PER_VMINSTR];
+
+  unsigned numNew = 0;
+  Instruction* vmInstr = vmInstrNode->getInstruction();
+  
+  for (unsigned i=0; i < numInstr; i++)
+    {
+      MachineInstr* minstr = mvec[i];
+      const MachineInstrInfo& instrInfo =
+       targetMachine.machineInstrInfo[minstr->getOpCode()];
+      
+      for (unsigned op=0; op < instrInfo.numOperands; op++)
+       {
+         const MachineOperand& mop = minstr->getOperand(op);
+         Value* opValue = mop.value;
+         
+         // skip the result position and any other positions already
+         // marked as not a virtual register
+         if (instrInfo.resultPos == (int) op || 
+             opValue == NULL ||
+             ! (mop.machineOperandType == MachineOperand::MO_Register &&
+                mop.vregType == MachineOperand::MO_VirtualReg))
+           {
+             break;
+           }
+         
+         if (opValue->getValueType() == Value::ConstantVal)
+           {
+             MachineOperand::VirtualRegisterType vregType;
+             unsigned int machineRegNum;
+             int64_t immedValue;
+             MachineOperand::MachineOperandType opType =
+               ChooseRegOrImmed(opValue, minstr->getOpCode(), targetMachine,
+                                /*canUseImmed*/ (op == 1),
+                                vregType, machineRegNum, immedValue);
+             
+             if (opType == MachineOperand::MO_Register)
+               {
+                 if (vregType == MachineOperand::MO_MachineReg)
+                   minstr->SetMachineOperand(op, machineRegNum);
+                 else
+                   { // value is constant and must be loaded into a register
+                     loadConstVec[numNew++] =
+                       MakeOneLoadConstInstr(vmInstr, opValue);
+                   }
+               }
+             else
+               minstr->SetMachineOperand(op, opType, immedValue);
+           }
+
+#if 0
+             // Either put the constant in the immediate field or
+             // create an instruction to "put" it in a register.
+             // Check first if it is 0 and then just use %g0.
+             //
+
+             bool isValidConstant;
+             int64_t intValue = GetConstantValueAsSignedInt(opValue,
+                                                            isValidConstant);
+             if (intValue == 0 && targetMachine.zeroRegNum >= 0)
+               {// put it in register %g0
+                 minstr->SetMachineOperand(op, targetMachine.zeroRegNum);
+               }
+             else if (op == 1 &&
+                      instrInfo.constantFitsInImmedField(intValue))
+               {// put it in the immediate field
+                 MachineOperand::MachineOperandType opType =
+                   (opValue->getType()->isSigned()
+                    ? MachineOperand::MO_SignExtendedImmed
+                    : MachineOperand::MO_UnextendedImmed);
+                 
+                 minstr->SetMachineOperand(op, opType, intValue);
+               }
+             else
+               {// create an instruction to "put" the value in a register.
+                 loadConstVec[numNew++] =
+                   MakeOneLoadConstInstr(vmInstr, opValue);
+               }
+#endif
+       }
+    }
+  
+  if (numNew > 0)
+    {
+      // Insert the new instructions *before* the old ones by moving
+      // the old ones over `numNew' positions (last-to-first, of course!).
+      // 
+      for (int i=numInstr-1; i >= ((int) numInstr) - (int) numNew; i--)
+       mvec[i+numNew] = mvec[i];
+      
+      for (unsigned i=0; i < numNew; i++)
+       mvec[i] = loadConstVec[i];
+    }
+  
+  return (numInstr + numNew);
+}
+
+
+// Create one or two load instructions to load constants from the
+// constant pool.  The first instructions is stored in instrA;
+// the second (if any) in instrB.
+//
+static unsigned
+InsertLoadConstInstructions(unsigned loadConstFlags,
+                           const InstructionNode* vmInstrNode,
+                           MachineInstr** mvec,
+                           unsigned numInstr)
+{
+  MachineInstr *instrA = NULL, *instrB = NULL;
+    
+  unsigned numNew = 0;
+  
+  if (loadConstFlags & 0x01)
+    {
+      instrA = MakeOneLoadConstInstr(vmInstrNode->getInstruction(),
+                                    vmInstrNode->leftChild()->getValue());
+      numNew++;
+    }
+  
+  if (loadConstFlags & 0x02)
+    {
+      instrB = MakeOneLoadConstInstr(vmInstrNode->getInstruction(),
+                                    vmInstrNode->rightChild()->getValue());
+      numNew++;
+    }
+  
+  // Now insert the new instructions *before* the old ones by
+  // moving the old ones over `numNew' positions (last-to-first, of course!).
+  // 
+  for (int i=numInstr-1; i >= ((int) numInstr) - (int) numNew; i--)
+    mvec[i+numNew] = mvec[i];
+  
+  unsigned whichNew = 0;
+  if (instrA != NULL)
+    mvec[whichNew++] = instrA; 
+  if (instrB != NULL)
+    mvec[whichNew++] = instrB; 
+  assert(whichNew == numNew);
+
+  return numInstr + numNew;
+}
+
+
+static MachineInstr*
+MakeOneLoadConstInstr(Instruction* vmInstr,
+                     Value* val)
+{
+  assert(val->getValueType() == Value::ConstantVal);
+  
+  MachineInstr* minstr;
+  
+  // Use a "set" instruction for known constants that can go in an integer reg.
+  // Use a "load" instruction for all other constants, in particular,
+  // floating point constants.
+  // 
+  const Type* valType = val->getType();
+  if (valType->isIntegral() ||
+      valType->isPointerType() ||
+      valType == Type::BoolTy)
+    {
+      bool isValidConstant;
+      if (val->getType()->isSigned())
+       {
+         minstr = new MachineInstr(SETSW);
+         minstr->SetMachineOperand(0, MachineOperand::MO_SignExtendedImmed,
+                           GetSignedIntConstantValue(val, isValidConstant));
+       }
+      else
+       {
+         minstr = new MachineInstr(SETUW);
+         minstr->SetMachineOperand(0, MachineOperand::MO_UnextendedImmed,
+                           GetUnsignedIntConstantValue(val, isValidConstant));
+       }
+      minstr->SetMachineOperand(1, MachineOperand::MO_Register, val);
+      assert(isValidConstant && "Unrecognized constant");
+    }
+  else
+    {
+      assert(valType == Type::FloatTy || 
+            valType == Type::DoubleTy);
+      
+      int64_t zeroOffset = 0; // to avoid overloading ambiguity with (Value*) 0
+      
+      // Make a Load instruction, and make `val' both the ptr value *and*
+      // the result value, and set the offset field to 0.  Final code
+      // generation will have to generate the base+offset for the constant.
+      // 
+      minstr = new MachineInstr(ChooseLoadInstruction(val->getType()));
+      minstr->SetMachineOperand(0, MachineOperand::MO_Register, val);
+      minstr->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
+                                  zeroOffset);
+      minstr->SetMachineOperand(2, MachineOperand::MO_Register, val);
+      
+    }
+  
+  Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1, val, NULL);
+  vmInstr->getMachineInstrVec().addTempValue(tmpInstr);
+  
+  return minstr;
+}
+
+
+// This function is currently unused and incomplete but will be 
+// used if we have a linear layout of basic blocks in LLVM code.
+// It decides which branch should fall-through, and whether an
+// extra unconditional branch is needed (when neither falls through).
+// 
+void
+ChooseBranchPattern(Instruction* vmInstr, BranchPattern& brPattern)
+{
+  BranchInst* brInstr = (BranchInst*) vmInstr;
+  
+  brPattern.flipCondition = false;
+  brPattern.targetBB     = brInstr->getSuccessor(0);
+  brPattern.extraBranch   = NULL;
+  
+  assert(brInstr->getNumSuccessors() > 1 &&
+        "Unnecessary analysis for unconditional branch");
+  
+  assert(0 && "Fold branches in peephole optimization");
+}
+