--- /dev/null
+// $Id$
+//***************************************************************************
+// File:
+// SparcInstrSelection.cpp
+//
+// Purpose:
+//
+// History:
+// 7/02/01 - Vikram Adve - Created
+//***************************************************************************
+
+
+//************************** System Include Files **************************/
+
+#include <assert.h>
+
+//*************************** User Include Files ***************************/
+
+#include "llvm/Type.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/SymbolTable.h"
+#include "llvm/Value.h"
+#include "llvm/Instruction.h"
+#include "llvm/InstrTypes.h"
+#include "llvm/iTerminators.h"
+#include "llvm/iMemory.h"
+#include "llvm/iOther.h"
+#include "llvm/BasicBlock.h"
+#include "llvm/Method.h"
+#include "llvm/ConstPoolVals.h"
+#include "llvm/LLC/CompileContext.h"
+#include "llvm/Codegen/Sparc.h"
+#include "llvm/Codegen/MachineInstr.h"
+#include "llvm/Codegen/InstrForest.h"
+#include "llvm/Codegen/InstrSelection.h"
+
+
+//******************** Internal Data Declarations ************************/
+
+// to be used later
+struct BranchPattern {
+ bool flipCondition; // should the sense of the test be reversed
+ BasicBlock* targetBB; // which basic block to branch to
+ MachineInstr* extraBranch; // if neither branch is fall-through, then this
+ // BA must be inserted after the cond'l one
+};
+
+//************************* Forward Declarations ***************************/
+
+
+static MachineOpCode ChooseBprInstruction (const InstructionNode* instrNode);
+
+static MachineOpCode ChooseBccInstruction (const InstructionNode* instrNode,
+ bool& isFPBranch);
+
+static MachineOpCode ChooseBpccInstruction (const InstructionNode* instrNode,
+ const BinaryOperator* setCCInstr);
+
+static MachineOpCode ChooseBfpccInstruction (const InstructionNode* instrNode,
+ const BinaryOperator* setCCInstr);
+
+static MachineOpCode ChooseConvertToFloatInstr(const InstructionNode* instrNode,
+ const Type* opType);
+
+static MachineOpCode ChooseConvertToIntInstr (const InstructionNode* instrNode,
+ const Type* opType);
+
+static MachineOpCode ChooseAddInstruction (const InstructionNode* instrNode);
+
+static MachineOpCode ChooseSubInstruction (const InstructionNode* instrNode);
+
+static MachineOpCode ChooseFcmpInstruction (const InstructionNode* instrNode);
+
+static MachineOpCode ChooseMulInstruction (const InstructionNode* instrNode,
+ bool checkCasts);
+
+static MachineOpCode ChooseDivInstruction (const InstructionNode* instrNode);
+
+static MachineOpCode ChooseLoadInstruction (const Type* resultType);
+
+static MachineOpCode ChooseStoreInstruction (const Type* valueType);
+
+static void SetOperandsForMemInstr (MachineInstr* minstr,
+ const InstructionNode* vmInstrNode,
+ const TargetMachine& targetMachine);
+
+static void SetMemOperands_Internal (MachineInstr* minstr,
+ const InstructionNode* vmInstrNode,
+ Value* ptrVal,
+ Value* arrayOffsetVal,
+ const vector<ConstPoolVal*>& idxVec,
+ const TargetMachine& targetMachine);
+
+static unsigned FixConstantOperands(const InstructionNode* vmInstrNode,
+ MachineInstr** mvec,
+ unsigned numInstr,
+ TargetMachine& targetMachine);
+
+static unsigned InsertLoadConstInstructions(unsigned loadConstFlags,
+ const InstructionNode* vmInstrNode,
+ MachineInstr** mvec,
+ unsigned numInstr);
+
+static MachineInstr* MakeOneLoadConstInstr(Instruction* vmInstr,
+ Value* val);
+
+
+//******************* Externally Visible Functions *************************/
+
+
+//------------------------------------------------------------------------
+// External Function: ThisIsAChainRule
+//
+// Purpose:
+// Check if a given BURG rule is a chain rule.
+//------------------------------------------------------------------------
+
+extern bool
+ThisIsAChainRule(int eruleno)
+{
+ switch(eruleno)
+ {
+ case 111: // stmt: reg
+ case 112: // stmt: boolconst
+ case 113: // stmt: bool
+ case 121:
+ case 122:
+ case 123:
+ case 124:
+ case 125:
+ case 126:
+ case 127:
+ case 128:
+ case 129:
+ case 130:
+ case 131:
+ case 132:
+ case 153: return true; break;
+
+ default: return false; break;
+ }
+}
+
+//------------------------------------------------------------------------
+// External Function: GetInstructionsByRule
+//
+// Purpose:
+// Choose machine instructions for the SPARC according to the
+// patterns chosen by the BURG-generated parser.
+//------------------------------------------------------------------------
+
+unsigned
+GetInstructionsByRule(InstructionNode* subtreeRoot,
+ int ruleForNode,
+ short* nts,
+ CompileContext& ccontext,
+ MachineInstr** mvec)
+{
+ int numInstr = 1; // initialize for common case
+ bool checkCast = false; // initialize here to use fall-through
+ Value *leftVal, *rightVal;
+ const Type* opType;
+ int nextRule;
+ BranchPattern brPattern;
+
+ mvec[0] = mvec[1] = mvec[2] = mvec[3] = NULL; // just for safety
+
+ switch(ruleForNode) {
+ case 1: // stmt: Ret
+ case 2: // stmt: RetValue(reg)
+ // NOTE: Prepass of register allocation is responsible
+ // for moving return value to appropriate register.
+ // Mark the return-address register as a hidden virtual reg.
+ {
+ Instruction* returnReg = new TmpInstruction(Instruction::UserOp1,
+ subtreeRoot->getInstruction(), NULL);
+ subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(returnReg);
+
+ mvec[0] = new MachineInstr(RETURN);
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register, returnReg);
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
+ (int64_t) 0);
+
+ mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+ break;
+ }
+
+ case 3: // stmt: Store(reg,reg)
+ case 4: // stmt: Store(reg,ptrreg)
+ mvec[0] = new MachineInstr(ChooseStoreInstruction(subtreeRoot->leftChild()->getValue()->getType()));
+ SetOperandsForMemInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+ break;
+
+ case 5: // stmt: BrUncond
+ mvec[0] = new MachineInstr(BA);
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp,
+ ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
+
+ mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+ break;
+
+ case 6: // stmt: BrCond(boolconst)
+ // boolconst => boolean was computed with `%b = setCC type reg1 constant'
+ // If the constant is ZERO, we can use the branch-on-integer-register
+ // instructions and avoid the SUBcc instruction entirely.
+ // Otherwise this is just the same as case 5, so just fall through.
+ {
+ InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
+ assert(constNode && constNode->getNodeType() ==InstrTreeNode::NTConstNode);
+ ConstPoolVal* constVal = (ConstPoolVal*) constNode->getValue();
+
+ if (constVal->getType()->isIntegral()
+ && ((constVal->getType()->isSigned()
+ && ((ConstPoolSInt*) constVal)->getValue()==0)
+ || (constVal->getType()->isUnsigned()
+ && ((ConstPoolUInt*) constVal)->getValue()== 0)))
+ {
+ // Whew! Ok, that was zero after all...
+ // Use the left child of the setCC instruction as the first argument!
+ mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot));
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register,
+ subtreeRoot->leftChild()->leftChild()->getValue());
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
+ ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
+
+ mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+
+ mvec[numInstr++] = new MachineInstr(BA); // false branch
+ mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp, ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
+ break;
+ }
+ // ELSE FALL THROUGH
+ }
+
+ case 7: // stmt: BrCond(bool)
+ // bool => boolean was computed with `%b = setcc type reg1 reg2'
+ // Need to check whether the type was a FP, signed int or unsigned int,
+ // nad check the branching condition in order to choose the branch to use.
+ // Also, for FP branches, an extra operand specifies which FCCn reg to use.
+ //
+ {
+ bool isFPBranch;
+ mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot, isFPBranch));
+
+ int opNum = 0;
+ if (isFPBranch)
+ mvec[0]->SetMachineOperand(opNum++, MachineOperand::MO_CCRegister,
+ subtreeRoot->leftChild()->getValue());
+
+ mvec[0]->SetMachineOperand(opNum, MachineOperand::MO_PCRelativeDisp,
+ ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
+
+ mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+
+ mvec[numInstr++] = new MachineInstr(BA); // false branch
+ mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp, ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
+ break;
+ }
+
+ case 8: // stmt: BrCond(boolreg)
+ // bool => boolean is stored in an existing register.
+ // Just use the branch-on-integer-register instruction!
+ //
+ mvec[0] = new MachineInstr(BRNZ);
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register,
+ subtreeRoot->leftChild()->getValue());
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
+ ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
+ mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+ break;
+
+ case 9: // stmt: Switch(reg)
+ assert(0 && "*** SWITCH instruction is not implemented yet.");
+ numInstr = 0;
+ break;
+
+ case 10: // reg: VRegList(reg, reg)
+ assert(0 && "VRegList should never be the topmost non-chain rule");
+ break;
+
+ case 21: // reg: Not(reg): Implemented as reg = reg XOR-NOT 0
+ mvec[0] = new MachineInstr(XNOR);
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register,
+ subtreeRoot->leftChild()->getValue());
+ mvec[0]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+ mvec[0]->SetMachineOperand(2, MachineOperand::MO_Register,
+ subtreeRoot->getValue());
+ break;
+
+ case 22: // reg: ToBoolTy(reg):
+ opType = subtreeRoot->leftChild()->getValue()->getType();
+ assert(opType->isIntegral() || opType == Type::BoolTy);
+ numInstr = 0;
+ break;
+
+ case 23: // reg: ToUByteTy(reg)
+ case 25: // reg: ToUShortTy(reg)
+ case 27: // reg: ToUIntTy(reg)
+ case 29: // reg: ToULongTy(reg)
+ opType = subtreeRoot->leftChild()->getValue()->getType();
+ assert(opType->isIntegral() || opType == Type::BoolTy);
+ numInstr = 0;
+ break;
+
+ case 24: // reg: ToSByteTy(reg)
+ case 26: // reg: ToShortTy(reg)
+ case 28: // reg: ToIntTy(reg)
+ case 30: // reg: ToLongTy(reg)
+ opType = subtreeRoot->leftChild()->getValue()->getType();
+ if (opType->isIntegral() || opType == Type::BoolTy)
+ numInstr = 0;
+ else
+ {
+ mvec[0] =new MachineInstr(ChooseConvertToIntInstr(subtreeRoot,opType));
+ Set2OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+ }
+ break;
+
+ case 31: // reg: ToFloatTy(reg):
+ case 32: // reg: ToDoubleTy(reg):
+
+ // If this instruction has a parent (a user) in the tree
+ // and the user is translated as an FsMULd instruction,
+ // then the cast is unnecessary. So check that first.
+ // In the future, we'll want to do the same for the FdMULq instruction,
+ // so do the check here instead of only for ToFloatTy(reg).
+ //
+ if (subtreeRoot->parent() != NULL &&
+ ((InstructionNode*) subtreeRoot->parent())->getInstruction()->getMachineInstrVec()[0]->getOpCode() == FSMULD)
+ {
+ numInstr = 0;
+ }
+ else
+ {
+ opType = subtreeRoot->leftChild()->getValue()->getType();
+ mvec[0] = new MachineInstr(ChooseConvertToFloatInstr(subtreeRoot, opType));
+ Set2OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+ }
+ break;
+
+ case 19: // reg: ToArrayTy(reg):
+ case 20: // reg: ToPointerTy(reg):
+ numInstr = 0;
+ break;
+
+ case 33: // reg: Add(reg, reg)
+ mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot));
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+ break;
+
+ case 34: // reg: Sub(reg, reg)
+ mvec[0] = new MachineInstr(ChooseSubInstruction(subtreeRoot));
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+ break;
+
+ case 135: // reg: Mul(todouble, todouble)
+ checkCast = true;
+ // FALL THROUGH
+
+ case 35: // reg: Mul(reg, reg)
+ mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot, checkCast));
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+ break;
+
+ case 36: // reg: Div(reg, reg)
+ mvec[0] = new MachineInstr(ChooseDivInstruction(subtreeRoot));
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+ break;
+
+ case 37: // reg: Rem(reg, reg)
+ assert(0 && "REM instruction unimplemented for the SPARC.");
+ break;
+
+ case 38: // reg: And(reg, reg)
+ mvec[0] = new MachineInstr(AND);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+ break;
+
+ case 138: // reg: And(reg, not)
+ mvec[0] = new MachineInstr(ANDN);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+ break;
+
+ case 39: // reg: Or(reg, reg)
+ mvec[0] = new MachineInstr(ORN);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+ break;
+
+ case 139: // reg: Or(reg, not)
+ mvec[0] = new MachineInstr(ORN);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+ break;
+
+ case 40: // reg: Xor(reg, reg)
+ mvec[0] = new MachineInstr(XOR);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+ break;
+
+ case 140: // reg: Xor(reg, not)
+ mvec[0] = new MachineInstr(XNOR);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+ break;
+
+ case 41: // boolconst: SetCC(reg, Constant)
+ // Check if this is an integer comparison, and
+ // there is a parent, and the parent decided to use
+ // a branch-on-integer-register instead of branch-on-condition-code.
+ // If so, the SUBcc instruction is not required.
+ // (However, we must still check for constants to be loaded from
+ // the constant pool so that such a load can be associated with
+ // this instruction.)
+ //
+ // Otherwise this is just the same as case 7, so just fall through.
+ //
+ if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() &&
+ subtreeRoot->parent() != NULL)
+ {
+ InstructionNode* parentNode = (InstructionNode*) subtreeRoot->parent();
+ assert(parentNode->getNodeType() == InstrTreeNode::NTInstructionNode);
+ const vector<MachineInstr*>&
+ minstrVec = parentNode->getInstruction()->getMachineInstrVec();
+ MachineOpCode parentOpCode;
+ if (minstrVec.size() == 1 &&
+ (parentOpCode = minstrVec[0]->getOpCode()) >= BRZ &&
+ parentOpCode <= BRGEZ)
+ {
+ numInstr = 0;
+ break;
+ }
+ }
+ // ELSE FALL THROUGH
+
+ case 42: // bool: SetCC(reg, reg):
+ if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral())
+ {
+ // integer condition: destination should be %g0
+ mvec[0] = new MachineInstr(SUBcc);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget(),
+ /*canDiscardResult*/ true);
+ }
+ else
+ {
+ // FP condition: dest should be a FCCn register chosen by reg-alloc
+ mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot));
+
+ leftVal = subtreeRoot->leftChild()->getValue();
+ rightVal = subtreeRoot->rightChild()->getValue();
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
+ subtreeRoot->getValue());
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_Register, leftVal);
+ mvec[0]->SetMachineOperand(2, MachineOperand::MO_Register, rightVal);
+ }
+ break;
+
+ case 43: // boolreg: VReg
+ numInstr = 0;
+ break;
+
+ case 51: // reg: Load(reg)
+ case 52: // reg: Load(ptrreg)
+ case 53: // reg: LoadIdx(reg,reg)
+ case 54: // reg: LoadIdx(ptrreg,reg)
+ mvec[0] = new MachineInstr(ChooseLoadInstruction(subtreeRoot->getValue()->getType()));
+ SetOperandsForMemInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+ break;
+
+ case 55: // reg: GetElemPtr(reg)
+ case 56: // reg: GetElemPtrIdx(reg,reg)
+ if (subtreeRoot->parent() != NULL)
+ {
+ // Check if the parent was an array access.
+ // If so, we still need to generate this instruction.
+ MemAccessInst* memInst =(MemAccessInst*) subtreeRoot->getInstruction();
+ const PointerType* ptrType =
+ (const PointerType*) memInst->getPtrOperand()->getType();
+ if (! ptrType->getValueType()->isArrayType())
+ {// we don't need a separate instr
+ numInstr = 0;
+ break;
+ }
+ }
+ // else in all other cases we need to a separate ADD instruction
+ mvec[0] = new MachineInstr(ADD);
+ SetOperandsForMemInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+ break;
+
+ case 57: // reg: Alloca: Implement as 2 instructions:
+ // sub %sp, tmp -> %sp
+ { // add %sp, 0 -> result
+ Instruction* instr = subtreeRoot->getInstruction();
+ const PointerType* instrType = (const PointerType*) instr->getType();
+ assert(instrType->isPointerType());
+ int tsize = (int) ccontext.getTarget().findOptimalStorageSize(
+ instrType->getValueType());
+ if (tsize == 0)
+ {
+ numInstr = 0;
+ break;
+ }
+ //else go on to create the instructions needed...
+
+ // Create a temporary Value to hold the constant type-size
+ ConstPoolSInt* valueForTSize = new ConstPoolSInt(Type::IntTy, tsize);
+ ConstantPool &cpool = instr->getParent()->getParent()->getConstantPool();
+ if (cpool.find(valueForTSize) == 0)
+ cpool.insert(valueForTSize);
+
+ // Instruction 1: sub %sp, tsize -> %sp
+ // tsize is always constant, but it may have to be put into a
+ // register if it doesn't fit in the immediate field.
+ //
+ mvec[0] = new MachineInstr(SUB);
+ mvec[0]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_Register, valueForTSize);
+ mvec[0]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+
+ // Instruction 2: add %sp, 0 -> result
+ numInstr++;
+ mvec[1] = new MachineInstr(ADD);
+ mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+ mvec[1]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+ mvec[1]->SetMachineOperand(2, MachineOperand::MO_Register, instr);
+ break;
+ }
+
+ case 58: // reg: Alloca(reg): Implement as 3 instructions:
+ // mul num, typeSz -> tmp
+ // sub %sp, tmp -> %sp
+ { // add %sp, 0 -> result
+ Instruction* instr = subtreeRoot->getInstruction();
+ const PointerType* instrType = (const PointerType*) instr->getType();
+ assert(instrType->isPointerType() &&
+ instrType->getValueType()->isArrayType());
+ const Type* eltType =
+ ((ArrayType*) instrType->getValueType())->getElementType();
+ int tsize = (int) ccontext.getTarget().findOptimalStorageSize(eltType);
+
+ if (tsize == 0)
+ {
+ numInstr = 0;
+ break;
+ }
+ //else go on to create the instructions needed...
+
+ // Create a temporary Value to hold the constant type-size
+ ConstPoolSInt* valueForTSize = new ConstPoolSInt(Type::IntTy, tsize);
+ ConstantPool &cpool = instr->getParent()->getParent()->getConstantPool();
+ if (cpool.find(valueForTSize) == 0)
+ cpool.insert(valueForTSize);
+
+ // Create a temporary value to hold `tmp'
+ Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1,
+ subtreeRoot->leftChild()->getValue(),
+ NULL /*could insert tsize here*/);
+ subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr);
+
+ // Instruction 1: mul numElements, typeSize -> tmp
+ mvec[0] = new MachineInstr(MULX);
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register,
+ subtreeRoot->leftChild()->getValue());
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_Register, valueForTSize);
+ mvec[0]->SetMachineOperand(2, MachineOperand::MO_Register, tmpInstr);
+
+ // Instruction 2: sub %sp, tmp -> %sp
+ numInstr++;
+ mvec[1] = new MachineInstr(SUB);
+ mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+ mvec[1]->SetMachineOperand(1, MachineOperand::MO_Register, tmpInstr);
+ mvec[1]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+
+ // Instruction 3: add %sp, 0 -> result
+ numInstr++;
+ mvec[2] = new MachineInstr(ADD);
+ mvec[2]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+ mvec[2]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+ mvec[2]->SetMachineOperand(2, MachineOperand::MO_Register, instr);
+ break;
+ }
+
+ case 61: // reg: Call
+ // Generate a call-indirect (i.e., JMPL) for now to expose
+ // the potential need for registers. If an absolute address
+ // is available, replace this with a CALL instruction.
+ // Mark both the indirection register and the return-address
+ { // register as hidden virtual registers.
+
+ Instruction* targetReg = new TmpInstruction(Instruction::UserOp1,
+ ((CallInst*) subtreeRoot->getInstruction())->getCalledMethod(), NULL);
+ Instruction* returnReg = new TmpInstruction(Instruction::UserOp1,
+ subtreeRoot->getValue(), NULL);
+ subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(targetReg);
+ subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(returnReg);
+
+ mvec[0] = new MachineInstr(JMPL);
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_Register, targetReg);
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
+ (int64_t) 0);
+ mvec[0]->SetMachineOperand(2, MachineOperand::MO_Register, returnReg);
+
+ mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+ break;
+ }
+
+ case 62: // reg: Shl(reg, reg)
+ opType = subtreeRoot->leftChild()->getValue()->getType();
+ assert(opType->isIntegral() || opType == Type::BoolTy);
+ mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+ break;
+
+ case 63: // reg: Shr(reg, reg)
+ opType = subtreeRoot->leftChild()->getValue()->getType();
+ assert(opType->isIntegral() || opType == Type::BoolTy);
+ mvec[0] = new MachineInstr((opType->isSigned()
+ ? ((opType == Type::LongTy)? SRAX : SRA)
+ : ((opType == Type::LongTy)? SRLX : SRL)));
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, ccontext.getTarget());
+ break;
+
+ case 71: // reg: VReg
+ case 72: // reg: Constant
+ numInstr = 0;
+ break;
+
+ case 111: // stmt: reg
+ case 112: // stmt: boolconst
+ case 113: // stmt: bool
+ case 121:
+ case 122:
+ case 123:
+ case 124:
+ case 125:
+ case 126:
+ case 127:
+ case 128:
+ case 129:
+ case 130:
+ case 131:
+ case 132:
+ case 153:
+ //
+ // These are all chain rules, which have a single nonterminal on the RHS.
+ // Get the rule that matches the RHS non-terminal and use that instead.
+ //
+ assert(ThisIsAChainRule(ruleForNode));
+ assert(nts[0] && ! nts[1]
+ && "A chain rule should have only one RHS non-terminal!");
+ nextRule = burm_rule(subtreeRoot->getBasicNode()->state, nts[0]);
+ nts = burm_nts[nextRule];
+ numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,ccontext,mvec);
+ break;
+
+ default:
+ numInstr = 0;
+ break;
+ }
+
+ numInstr =
+ FixConstantOperands(subtreeRoot, mvec, numInstr, ccontext.getTarget());
+
+ return numInstr;
+}
+
+
+//---------------------------------------------------------------------------
+// Private helper routines for SPARC instruction selection.
+//---------------------------------------------------------------------------
+
+
+static MachineOpCode
+ChooseBprInstruction(const InstructionNode* instrNode)
+{
+ MachineOpCode opCode;
+
+ Instruction* setCCInstr =
+ ((InstructionNode*) instrNode->leftChild())->getInstruction();
+
+ switch(setCCInstr->getOpcode())
+ {
+ case Instruction::SetEQ: opCode = BRZ; break;
+ case Instruction::SetNE: opCode = BRNZ; break;
+ case Instruction::SetLE: opCode = BRLEZ; break;
+ case Instruction::SetGE: opCode = BRGEZ; break;
+ case Instruction::SetLT: opCode = BRLZ; break;
+ case Instruction::SetGT: opCode = BRGZ; break;
+ default:
+ assert(0 && "Unrecognized VM instruction!");
+ opCode = INVALID_OPCODE;
+ break;
+ }
+
+ return opCode;
+}
+
+
+static MachineOpCode
+ChooseBccInstruction(const InstructionNode* instrNode,
+ bool& isFPBranch)
+{
+ InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
+ BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction();
+ const Type* setCCType = setCCInstr->getOperand(0)->getType();
+
+ isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy);
+
+ if (isFPBranch)
+ return ChooseBfpccInstruction(instrNode, setCCInstr);
+ else
+ return ChooseBpccInstruction(instrNode, setCCInstr);
+}
+
+
+static MachineOpCode
+ChooseBpccInstruction(const InstructionNode* instrNode,
+ const BinaryOperator* setCCInstr)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
+
+ if (isSigned)
+ {
+ switch(setCCInstr->getOpcode())
+ {
+ case Instruction::SetEQ: opCode = BE; break;
+ case Instruction::SetNE: opCode = BNE; break;
+ case Instruction::SetLE: opCode = BLE; break;
+ case Instruction::SetGE: opCode = BGE; break;
+ case Instruction::SetLT: opCode = BL; break;
+ case Instruction::SetGT: opCode = BG; break;
+ default:
+ assert(0 && "Unrecognized VM instruction!");
+ break;
+ }
+ }
+ else
+ {
+ switch(setCCInstr->getOpcode())
+ {
+ case Instruction::SetEQ: opCode = BE; break;
+ case Instruction::SetNE: opCode = BNE; break;
+ case Instruction::SetLE: opCode = BLEU; break;
+ case Instruction::SetGE: opCode = BCC; break;
+ case Instruction::SetLT: opCode = BCS; break;
+ case Instruction::SetGT: opCode = BGU; break;
+ default:
+ assert(0 && "Unrecognized VM instruction!");
+ break;
+ }
+ }
+
+ return opCode;
+}
+
+static MachineOpCode
+ChooseBfpccInstruction(const InstructionNode* instrNode,
+ const BinaryOperator* setCCInstr)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ switch(setCCInstr->getOpcode())
+ {
+ case Instruction::SetEQ: opCode = FBE; break;
+ case Instruction::SetNE: opCode = FBNE; break;
+ case Instruction::SetLE: opCode = FBLE; break;
+ case Instruction::SetGE: opCode = FBGE; break;
+ case Instruction::SetLT: opCode = FBL; break;
+ case Instruction::SetGT: opCode = FBG; break;
+ default:
+ assert(0 && "Unrecognized VM instruction!");
+ break;
+ }
+
+ return opCode;
+}
+
+static MachineOpCode
+ChooseConvertToFloatInstr(const InstructionNode* instrNode,
+ const Type* opType)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ switch(instrNode->getOpLabel())
+ {
+ case ToFloatTy:
+ if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
+ opCode = FITOS;
+ else if (opType == Type::LongTy)
+ opCode = FXTOS;
+ else if (opType == Type::DoubleTy)
+ opCode = FDTOS;
+ else
+ assert(0 && "Cannot convert this type to FLOAT on SPARC");
+ break;
+
+ case ToDoubleTy:
+ if (opType == Type::SByteTy || opType == Type::ShortTy || opType == Type::IntTy)
+ opCode = FITOD;
+ else if (opType == Type::LongTy)
+ opCode = FXTOD;
+ else if (opType == Type::FloatTy)
+ opCode = FSTOD;
+ else
+ assert(0 && "Cannot convert this type to DOUBLE on SPARC");
+ break;
+
+ default:
+ break;
+ }
+
+ return opCode;
+}
+
+static MachineOpCode
+ChooseConvertToIntInstr(const InstructionNode* instrNode,
+ const Type* opType)
+{
+ MachineOpCode opCode = INVALID_OPCODE;;
+
+ int instrType = (int) instrNode->getOpLabel();
+
+ if (instrType == ToSByteTy || instrType == ToShortTy || instrType == ToIntTy)
+ {
+ switch (opType->getPrimitiveID())
+ {
+ case Type::FloatTyID: opCode = FSTOI; break;
+ case Type::DoubleTyID: opCode = FDTOI; break;
+ default:
+ assert(0 && "Non-numeric non-bool type cannot be converted to Int");
+ break;
+ }
+ }
+ else if (instrType == ToLongTy)
+ {
+ switch (opType->getPrimitiveID())
+ {
+ case Type::FloatTyID: opCode = FSTOX; break;
+ case Type::DoubleTyID: opCode = FDTOX; break;
+ default:
+ assert(0 && "Non-numeric non-bool type cannot be converted to Long");
+ break;
+ }
+ }
+ else
+ assert(0 && "Should not get here, Mo!");
+
+ return opCode;
+}
+
+
+static MachineOpCode
+ChooseAddInstruction(const InstructionNode* instrNode)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ const Type* resultType = instrNode->getInstruction()->getType();
+
+ if (resultType->isIntegral() ||
+ resultType->isPointerType() ||
+ resultType->isMethodType() ||
+ resultType->isLabelType())
+ {
+ opCode = ADD;
+ }
+ else
+ {
+ Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
+ switch(operand->getType()->getPrimitiveID())
+ {
+ case Type::FloatTyID: opCode = FADDS; break;
+ case Type::DoubleTyID: opCode = FADDD; break;
+ default: assert(0 && "Invalid type for ADD instruction"); break;
+ }
+ }
+
+ return opCode;
+}
+
+static MachineOpCode
+ChooseSubInstruction(const InstructionNode* instrNode)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ const Type* resultType = instrNode->getInstruction()->getType();
+
+ if (resultType->isIntegral() ||
+ resultType->isPointerType())
+ {
+ opCode = SUB;
+ }
+ else
+ {
+ Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
+ switch(operand->getType()->getPrimitiveID())
+ {
+ case Type::FloatTyID: opCode = FSUBS; break;
+ case Type::DoubleTyID: opCode = FSUBD; break;
+ default: assert(0 && "Invalid type for SUB instruction"); break;
+ }
+ }
+
+ return opCode;
+}
+
+
+static MachineOpCode
+ChooseFcmpInstruction(const InstructionNode* instrNode)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
+ switch(operand->getType()->getPrimitiveID())
+ {
+ case Type::FloatTyID: opCode = FCMPS; break;
+ case Type::DoubleTyID: opCode = FCMPD; break;
+ default: assert(0 && "Invalid type for ADD instruction"); break;
+ }
+
+ return opCode;
+}
+
+
+static MachineOpCode
+ChooseMulInstruction(const InstructionNode* instrNode,
+ bool checkCasts)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ if (checkCasts)
+ {
+ // Assume that leftArg and rightArg are both cast instructions.
+ //
+ InstrTreeNode* leftArg = instrNode->leftChild();
+ InstrTreeNode* rightArg = instrNode->rightChild();
+ InstrTreeNode* leftArgArg = leftArg->leftChild();
+ InstrTreeNode* rightArgArg = rightArg->leftChild();
+ assert(leftArg->getValue()->getType() ==rightArg->getValue()->getType());
+
+ // If both arguments are floats cast to double, use FsMULd
+ if (leftArg->getValue()->getType() == Type::DoubleTy &&
+ leftArgArg->getValue()->getType() == Type::FloatTy &&
+ rightArgArg->getValue()->getType() == Type::FloatTy)
+ {
+ return opCode = FSMULD;
+ }
+ // else fall through and use the regular multiply instructions
+ }
+
+ const Type* resultType = instrNode->getInstruction()->getType();
+
+ if (resultType->isIntegral())
+ {
+ opCode = MULX;
+ }
+ else
+ {
+ switch(instrNode->leftChild()->getValue()->getType()->getPrimitiveID())
+ {
+ case Type::FloatTyID: opCode = FMULS; break;
+ case Type::DoubleTyID: opCode = FMULD; break;
+ default: assert(0 && "Invalid type for MUL instruction"); break;
+ }
+ }
+
+ return opCode;
+}
+
+
+static MachineOpCode
+ChooseDivInstruction(const InstructionNode* instrNode)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ const Type* resultType = instrNode->getInstruction()->getType();
+
+ if (resultType->isIntegral())
+ {
+ opCode = resultType->isSigned()? SDIVX : UDIVX;
+ }
+ else
+ {
+ Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
+ switch(operand->getType()->getPrimitiveID())
+ {
+ case Type::FloatTyID: opCode = FDIVS; break;
+ case Type::DoubleTyID: opCode = FDIVD; break;
+ default: assert(0 && "Invalid type for DIV instruction"); break;
+ }
+ }
+
+ return opCode;
+}
+
+
+static MachineOpCode
+ChooseLoadInstruction(const Type* resultType)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ switch (resultType->getPrimitiveID())
+ {
+ case Type::BoolTyID: opCode = LDUB; break;
+ case Type::UByteTyID: opCode = LDUB; break;
+ case Type::SByteTyID: opCode = LDSB; break;
+ case Type::UShortTyID: opCode = LDUH; break;
+ case Type::ShortTyID: opCode = LDSH; break;
+ case Type::UIntTyID: opCode = LDUW; break;
+ case Type::IntTyID: opCode = LDSW; break;
+ case Type::ULongTyID:
+ case Type::LongTyID: opCode = LDX; break;
+ case Type::FloatTyID: opCode = LD; break;
+ case Type::DoubleTyID: opCode = LDD; break;
+ default: assert(0 && "Invalid type for Load instruction"); break;
+ }
+
+ return opCode;
+}
+
+
+static MachineOpCode
+ChooseStoreInstruction(const Type* valueType)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ switch (valueType->getPrimitiveID())
+ {
+ case Type::BoolTyID:
+ case Type::UByteTyID:
+ case Type::SByteTyID: opCode = STB; break;
+ case Type::UShortTyID:
+ case Type::ShortTyID: opCode = STH; break;
+ case Type::UIntTyID:
+ case Type::IntTyID: opCode = STW; break;
+ case Type::ULongTyID:
+ case Type::LongTyID: opCode = STX; break;
+ case Type::FloatTyID: opCode = ST; break;
+ case Type::DoubleTyID: opCode = STD; break;
+ default: assert(0 && "Invalid type for Store instruction"); break;
+ }
+
+ return opCode;
+}
+
+
+//------------------------------------------------------------------------
+// Function SetOperandsForMemInstr
+//
+// Choose addressing mode for the given load or store instruction.
+// Use [reg+reg] if it is an indexed reference, and the index offset is
+// not a constant or if it cannot fit in the offset field.
+// Use [reg+offset] in all other cases.
+//
+// This assumes that all array refs are "lowered" to one of these forms:
+// %x = load (subarray*) ptr, constant ; single constant offset
+// %x = load (subarray*) ptr, offsetVal ; single non-constant offset
+// Generally, this should happen via strength reduction + LICM.
+// Also, strength reduction should take care of using the same register for
+// the loop index variable and an array index, when that is profitable.
+//------------------------------------------------------------------------
+
+static void
+SetOperandsForMemInstr(MachineInstr* minstr,
+ const InstructionNode* vmInstrNode,
+ const TargetMachine& targetMachine)
+{
+ MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
+
+ // Variables to hold the index vector, ptr value, and offset value.
+ // The major work here is to extract these for all 3 instruction types
+ // and then call the common function SetMemOperands_Internal().
+ //
+ const vector<ConstPoolVal*>* idxVec = & memInst->getIndexVec();
+ vector<ConstPoolVal*>* newIdxVec = NULL;
+ Value* ptrVal;
+ Value* arrayOffsetVal = NULL;
+
+ // Test if a GetElemPtr instruction is being folded into this mem instrn.
+ // If so, it will be in the left child for Load and GetElemPtr,
+ // and in the right child for Store instructions.
+ //
+ InstrTreeNode* ptrChild = (vmInstrNode->getOpLabel() == Instruction::Store
+ ? vmInstrNode->rightChild()
+ : vmInstrNode->leftChild());
+
+ if (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
+ ptrChild->getOpLabel() == GetElemPtrIdx)
+ {
+ // There is a GetElemPtr instruction and there may be a chain of
+ // more than one. Use the pointer value of the last one in the chain.
+ // Fold the index vectors from the entire chain and from the mem
+ // instruction into one single index vector.
+ // Finally, we never fold for an array instruction so make that NULL.
+
+ newIdxVec = new vector<ConstPoolVal*>;
+ ptrVal = FoldGetElemChain((InstructionNode*) ptrChild, *newIdxVec);
+
+ newIdxVec->insert(newIdxVec->end(), idxVec->begin(), idxVec->end());
+ idxVec = newIdxVec;
+
+ assert(! ((PointerType*)ptrVal->getType())->getValueType()->isArrayType()
+ && "GetElemPtr cannot be folded into array refs in selection");
+ }
+ else
+ {
+ // There is no GetElemPtr instruction.
+ // Use the pointer value and the index vector from the Mem instruction.
+ // If it is an array reference, get the array offset value.
+ //
+ ptrVal = memInst->getPtrOperand();
+
+ const Type* opType =
+ ((const PointerType*) ptrVal->getType())->getValueType();
+ if (opType->isArrayType())
+ {
+ assert((memInst->getNumOperands()
+ == (unsigned) 1 + memInst->getFirstOffsetIdx())
+ && "Array refs must be lowered before Instruction Selection");
+
+ arrayOffsetVal = memInst->getOperand(memInst->getFirstOffsetIdx());
+ }
+ }
+
+ SetMemOperands_Internal(minstr, vmInstrNode, ptrVal, arrayOffsetVal,
+ *idxVec, targetMachine);
+
+ if (newIdxVec != NULL)
+ delete newIdxVec;
+}
+
+
+static void
+SetMemOperands_Internal(MachineInstr* minstr,
+ const InstructionNode* vmInstrNode,
+ Value* ptrVal,
+ Value* arrayOffsetVal,
+ const vector<ConstPoolVal*>& idxVec,
+ const TargetMachine& targetMachine)
+{
+ MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
+
+ // Initialize so we default to storing the offset in a register.
+ int64_t smallConstOffset;
+ Value* valueForRegOffset = NULL;
+ MachineOperand::MachineOperandType offsetOpType =MachineOperand::MO_Register;
+
+ // Check if there is an index vector and if so, if it translates to
+ // a small enough constant to fit in the immediate-offset field.
+ //
+ if (idxVec.size() > 0)
+ {
+ bool isConstantOffset = false;
+ unsigned offset;
+
+ const PointerType* ptrType = (PointerType*) ptrVal->getType();
+
+ if (ptrType->getValueType()->isStructType())
+ {
+ // the offset is always constant for structs
+ isConstantOffset = true;
+
+ // Compute the offset value using the index vector
+ offset = MemAccessInst::getIndexedOfsetForTarget(ptrType,
+ idxVec, targetMachine);
+ }
+ else
+ {
+ // It must be an array ref. Check if the offset is a constant,
+ // and that the indexing has been lowered to a single offset.
+ //
+ assert(ptrType->getValueType()->isArrayType());
+ assert(arrayOffsetVal != NULL
+ && "Expect to be given Value* for array offsets");
+
+ if (arrayOffsetVal->getValueType() == Value::ConstantVal)
+ {
+ isConstantOffset = true; // always constant for structs
+ assert(arrayOffsetVal->getType()->isIntegral());
+ offset = (arrayOffsetVal->getType()->isSigned())
+ ? ((ConstPoolSInt*) arrayOffsetVal)->getValue()
+ : (int64_t) ((ConstPoolUInt*) arrayOffsetVal)->getValue();
+ }
+ else
+ {
+ valueForRegOffset = arrayOffsetVal;
+ }
+ }
+
+ if (isConstantOffset)
+ {
+ // create a virtual register for the constant
+ valueForRegOffset = new ConstPoolSInt(Type::IntTy, offset);
+ }
+ }
+ else
+ {
+ offsetOpType = MachineOperand::MO_SignExtendedImmed;
+ smallConstOffset = 0;
+ }
+
+ // Operand 0 is value for STORE, ptr for LOAD or GET_ELEMENT_PTR
+ // It is the left child in the instruction tree in all cases.
+ Value* leftVal = vmInstrNode->leftChild()->getValue();
+ minstr->SetMachineOperand(0, MachineOperand::MO_Register, leftVal);
+
+ // Operand 1 is ptr for STORE, offset for LOAD or GET_ELEMENT_PTR
+ // Operand 3 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR
+ //
+ unsigned offsetOpNum = (memInst->getOpcode() == Instruction::Store)? 2 : 1;
+ if (offsetOpType == MachineOperand::MO_Register)
+ {
+ assert(valueForRegOffset != NULL);
+ minstr->SetMachineOperand(offsetOpNum, offsetOpType, valueForRegOffset);
+ }
+ else
+ minstr->SetMachineOperand(offsetOpNum, offsetOpType, smallConstOffset);
+
+ if (memInst->getOpcode() == Instruction::Store)
+ minstr->SetMachineOperand(1, MachineOperand::MO_Register, ptrVal);
+ else
+ minstr->SetMachineOperand(2, MachineOperand::MO_Register,
+ vmInstrNode->getValue());
+}
+
+
+// Create one or two load instructions to load constants from the
+// constant pool. The first instructions is stored in instrA;
+// the second (if any) in instrB.
+//
+static unsigned
+FixConstantOperands(const InstructionNode* vmInstrNode,
+ MachineInstr** mvec,
+ unsigned numInstr,
+ TargetMachine& targetMachine)
+{
+ static MachineInstr* loadConstVec[MAX_INSTR_PER_VMINSTR];
+
+ unsigned numNew = 0;
+ Instruction* vmInstr = vmInstrNode->getInstruction();
+
+ for (unsigned i=0; i < numInstr; i++)
+ {
+ MachineInstr* minstr = mvec[i];
+ const MachineInstrInfo& instrInfo =
+ targetMachine.machineInstrInfo[minstr->getOpCode()];
+
+ for (unsigned op=0; op < instrInfo.numOperands; op++)
+ {
+ const MachineOperand& mop = minstr->getOperand(op);
+ Value* opValue = mop.value;
+
+ // skip the result position and any other positions already
+ // marked as not a virtual register
+ if (instrInfo.resultPos == (int) op ||
+ opValue == NULL ||
+ ! (mop.machineOperandType == MachineOperand::MO_Register &&
+ mop.vregType == MachineOperand::MO_VirtualReg))
+ {
+ break;
+ }
+
+ if (opValue->getValueType() == Value::ConstantVal)
+ {
+ MachineOperand::VirtualRegisterType vregType;
+ unsigned int machineRegNum;
+ int64_t immedValue;
+ MachineOperand::MachineOperandType opType =
+ ChooseRegOrImmed(opValue, minstr->getOpCode(), targetMachine,
+ /*canUseImmed*/ (op == 1),
+ vregType, machineRegNum, immedValue);
+
+ if (opType == MachineOperand::MO_Register)
+ {
+ if (vregType == MachineOperand::MO_MachineReg)
+ minstr->SetMachineOperand(op, machineRegNum);
+ else
+ { // value is constant and must be loaded into a register
+ loadConstVec[numNew++] =
+ MakeOneLoadConstInstr(vmInstr, opValue);
+ }
+ }
+ else
+ minstr->SetMachineOperand(op, opType, immedValue);
+ }
+
+#if 0
+ // Either put the constant in the immediate field or
+ // create an instruction to "put" it in a register.
+ // Check first if it is 0 and then just use %g0.
+ //
+
+ bool isValidConstant;
+ int64_t intValue = GetConstantValueAsSignedInt(opValue,
+ isValidConstant);
+ if (intValue == 0 && targetMachine.zeroRegNum >= 0)
+ {// put it in register %g0
+ minstr->SetMachineOperand(op, targetMachine.zeroRegNum);
+ }
+ else if (op == 1 &&
+ instrInfo.constantFitsInImmedField(intValue))
+ {// put it in the immediate field
+ MachineOperand::MachineOperandType opType =
+ (opValue->getType()->isSigned()
+ ? MachineOperand::MO_SignExtendedImmed
+ : MachineOperand::MO_UnextendedImmed);
+
+ minstr->SetMachineOperand(op, opType, intValue);
+ }
+ else
+ {// create an instruction to "put" the value in a register.
+ loadConstVec[numNew++] =
+ MakeOneLoadConstInstr(vmInstr, opValue);
+ }
+#endif
+ }
+ }
+
+ if (numNew > 0)
+ {
+ // Insert the new instructions *before* the old ones by moving
+ // the old ones over `numNew' positions (last-to-first, of course!).
+ //
+ for (int i=numInstr-1; i >= ((int) numInstr) - (int) numNew; i--)
+ mvec[i+numNew] = mvec[i];
+
+ for (unsigned i=0; i < numNew; i++)
+ mvec[i] = loadConstVec[i];
+ }
+
+ return (numInstr + numNew);
+}
+
+
+// Create one or two load instructions to load constants from the
+// constant pool. The first instructions is stored in instrA;
+// the second (if any) in instrB.
+//
+static unsigned
+InsertLoadConstInstructions(unsigned loadConstFlags,
+ const InstructionNode* vmInstrNode,
+ MachineInstr** mvec,
+ unsigned numInstr)
+{
+ MachineInstr *instrA = NULL, *instrB = NULL;
+
+ unsigned numNew = 0;
+
+ if (loadConstFlags & 0x01)
+ {
+ instrA = MakeOneLoadConstInstr(vmInstrNode->getInstruction(),
+ vmInstrNode->leftChild()->getValue());
+ numNew++;
+ }
+
+ if (loadConstFlags & 0x02)
+ {
+ instrB = MakeOneLoadConstInstr(vmInstrNode->getInstruction(),
+ vmInstrNode->rightChild()->getValue());
+ numNew++;
+ }
+
+ // Now insert the new instructions *before* the old ones by
+ // moving the old ones over `numNew' positions (last-to-first, of course!).
+ //
+ for (int i=numInstr-1; i >= ((int) numInstr) - (int) numNew; i--)
+ mvec[i+numNew] = mvec[i];
+
+ unsigned whichNew = 0;
+ if (instrA != NULL)
+ mvec[whichNew++] = instrA;
+ if (instrB != NULL)
+ mvec[whichNew++] = instrB;
+ assert(whichNew == numNew);
+
+ return numInstr + numNew;
+}
+
+
+static MachineInstr*
+MakeOneLoadConstInstr(Instruction* vmInstr,
+ Value* val)
+{
+ assert(val->getValueType() == Value::ConstantVal);
+
+ MachineInstr* minstr;
+
+ // Use a "set" instruction for known constants that can go in an integer reg.
+ // Use a "load" instruction for all other constants, in particular,
+ // floating point constants.
+ //
+ const Type* valType = val->getType();
+ if (valType->isIntegral() ||
+ valType->isPointerType() ||
+ valType == Type::BoolTy)
+ {
+ bool isValidConstant;
+ if (val->getType()->isSigned())
+ {
+ minstr = new MachineInstr(SETSW);
+ minstr->SetMachineOperand(0, MachineOperand::MO_SignExtendedImmed,
+ GetSignedIntConstantValue(val, isValidConstant));
+ }
+ else
+ {
+ minstr = new MachineInstr(SETUW);
+ minstr->SetMachineOperand(0, MachineOperand::MO_UnextendedImmed,
+ GetUnsignedIntConstantValue(val, isValidConstant));
+ }
+ minstr->SetMachineOperand(1, MachineOperand::MO_Register, val);
+ assert(isValidConstant && "Unrecognized constant");
+ }
+ else
+ {
+ assert(valType == Type::FloatTy ||
+ valType == Type::DoubleTy);
+
+ int64_t zeroOffset = 0; // to avoid overloading ambiguity with (Value*) 0
+
+ // Make a Load instruction, and make `val' both the ptr value *and*
+ // the result value, and set the offset field to 0. Final code
+ // generation will have to generate the base+offset for the constant.
+ //
+ minstr = new MachineInstr(ChooseLoadInstruction(val->getType()));
+ minstr->SetMachineOperand(0, MachineOperand::MO_Register, val);
+ minstr->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
+ zeroOffset);
+ minstr->SetMachineOperand(2, MachineOperand::MO_Register, val);
+
+ }
+
+ Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1, val, NULL);
+ vmInstr->getMachineInstrVec().addTempValue(tmpInstr);
+
+ return minstr;
+}
+
+
+// This function is currently unused and incomplete but will be
+// used if we have a linear layout of basic blocks in LLVM code.
+// It decides which branch should fall-through, and whether an
+// extra unconditional branch is needed (when neither falls through).
+//
+void
+ChooseBranchPattern(Instruction* vmInstr, BranchPattern& brPattern)
+{
+ BranchInst* brInstr = (BranchInst*) vmInstr;
+
+ brPattern.flipCondition = false;
+ brPattern.targetBB = brInstr->getSuccessor(0);
+ brPattern.extraBranch = NULL;
+
+ assert(brInstr->getNumSuccessors() > 1 &&
+ "Unnecessary analysis for unconditional branch");
+
+ assert(0 && "Fold branches in peephole optimization");
+}
+