SimpleLoad,
MayLoad,
MayStore,
- NeverHasSideEffects,
- MayHaveSideEffects,
+ UnmodeledSideEffects,
Commutable,
ConvertibleTo3Addr,
UsesCustomDAGSchedInserter,
return Flags & (1 << TID::MayStore);
}
- /// hasNoSideEffects - Return true if all instances of this instruction are
- /// guaranteed to have no side effects other than:
- /// 1. The register operands that are def/used by the MachineInstr.
- /// 2. Registers that are implicitly def/used by the MachineInstr.
- /// 3. Memory Accesses captured by mayLoad() or mayStore().
+ /// hasUnmodeledSideEffects - Return true if this instruction has side
+ /// effects that are not modeled by other flags. This does not return true
+ /// for instructions whose effects are captured by:
///
- /// Examples of other side effects would be calling a function, modifying
- /// 'invisible' machine state like a control register, etc.
+ /// 1. Their operand list and implicit definition/use list. Register use/def
+ /// info is explicit for instructions.
+ /// 2. Memory accesses. Use mayLoad/mayStore.
+ /// 3. Calling, branching, returning: use isCall/isReturn/isBranch.
///
- /// If some instances of this instruction are side-effect free but others are
- /// not, the hasConditionalSideEffects() property should return true, not this
- /// one.
+ /// Examples of side effects would be modifying 'invisible' machine state like
+ /// a control register, flushing a cache, modifying a register invisible to
+ /// LLVM, etc.
///
- /// Note that you should not call this method directly, instead, call the
- /// TargetInstrInfo::hasUnmodelledSideEffects method, which handles analysis
- /// of the machine instruction.
- bool hasNoSideEffects() const {
- return Flags & (1 << TID::NeverHasSideEffects);
- }
-
- /// hasConditionalSideEffects - Return true if some instances of this
- /// instruction are guaranteed to have no side effects other than those listed
- /// for hasNoSideEffects(). To determine whether a specific machineinstr has
- /// side effects, the TargetInstrInfo::isReallySideEffectFree virtual method
- /// is invoked to decide.
- ///
- /// Note that you should not call this method directly, instead, call the
- /// TargetInstrInfo::hasUnmodelledSideEffects method, which handles analysis
- /// of the machine instruction.
- bool hasConditionalSideEffects() const {
- return Flags & (1 << TID::MayHaveSideEffects);
+ bool hasUnmodeledSideEffects() const {
+ return Flags & (1 << TID::UnmodeledSideEffects);
}
//===--------------------------------------------------------------------===//
isReallyTriviallyReMaterializable(MI);
}
- /// hasUnmodelledSideEffects - Returns true if the instruction has side
- /// effects that are not captured by any operands of the instruction or other
- /// flags.
- bool hasUnmodelledSideEffects(MachineInstr *MI) const {
- const TargetInstrDesc &TID = MI->getDesc();
- if (TID.hasNoSideEffects()) return false;
- if (!TID.hasConditionalSideEffects()) return true;
- return !isReallySideEffectFree(MI); // May have side effects
- }
protected:
/// isReallyTriviallyReMaterializable - For instructions with opcodes for
/// which the M_REMATERIALIZABLE flag is set, this function tests whether the
return true;
}
- /// isReallySideEffectFree - If the M_MAY_HAVE_SIDE_EFFECTS flag is set, this
- /// method is called to determine if the specific instance of this
- /// instruction has side effects. This is useful in cases of instructions,
- /// like loads, which generally always have side effects. A load from a
- /// constant pool doesn't have side effects, though. So we need to
- /// differentiate it from the general case.
- virtual bool isReallySideEffectFree(MachineInstr *MI) const {
- return false;
- }
public:
/// Return true if the instruction is a register to register move
/// and leave the source and dest operands in the passed parameters.
return 0;
}
+ /// isInvariantLoad - Return true if the specified instruction (which is
+ /// marked mayLoad) is loading from a location whose value is invariant across
+ /// the function. For example, loading a value from the constant pool or from
+ /// from the argument area of a function if it does not change. This should
+ /// only return true of *all* loads the instruction does are invariant (if it
+ /// does multiple loads).
+ virtual bool isInvariantLoad(MachineInstr *MI) const {
+ return false;
+ }
+
+
/// convertToThreeAddress - This method must be implemented by targets that
/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
/// may be able to convert a two-address instruction into one or more true
/// effects that aren't captured by the operands or other flags.
///
bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
+ const TargetInstrDesc &TID = I.getDesc();
+
+ // Ignore stuff that we obviously can't hoist.
+ if (TID.mayStore() || TID.isCall() || TID.isReturn() || TID.isBranch() ||
+ TID.hasUnmodeledSideEffects())
+ return false;
+
+ if (TID.mayLoad()) {
+ // Okay, this instruction does a load. As a refinement, allow the target
+ // to decide whether the loaded value is actually a constant. If so, we
+ // can actually use it as a load.
+ if (!TII->isInvariantLoad(&I)) {
+ // FIXME: we should be able to sink loads with no other side effects if
+ // there is nothing that can change memory from here until the end of
+ // block. This is a trivial form of alias analysis.
+ return false;
+ }
+ }
+
+
DEBUG({
DOUT << "--- Checking if we can hoist " << I;
if (I.getDesc().getImplicitUses()) {
DOUT << " -> " << MRI->getName(*ImpDefs) << "\n";
}
- if (TII->hasUnmodelledSideEffects(&I))
- DOUT << " * Instruction has side effects.\n";
+ //if (TII->hasUnmodelledSideEffects(&I))
+ //DOUT << " * Instruction has side effects.\n";
});
// The instruction is loop invariant if all of its operands are loop-invariant
return false;
}
- // Don't hoist something that has unmodelled side effects.
- if (TII->hasUnmodelledSideEffects(&I)) return false;
-
// If we got this far, the instruction is loop invariant!
return true;
}
const TargetInstrDesc &TID = MI->getDesc();
// Ignore stuff that we obviously can't sink.
- if (TID.mayStore() || TID.isCall() || TID.isReturn() || TID.isBranch())
+ if (TID.mayStore() || TID.isCall() || TID.isReturn() || TID.isBranch() ||
+ TID.hasUnmodeledSideEffects())
return false;
- if (TID.mayLoad())
- return false;
-
- // Don't sink things with side-effects we don't understand.
- if (TII->hasUnmodelledSideEffects(MI))
- return false;
-
- // FIXME: we should be able to sink loads with no other side effects if there
- // is nothing that can change memory from here until the end of block. This
- // is a trivial form of alias analysis.
+ if (TID.mayLoad()) {
+ // Okay, this instruction does a load. As a refinement, allow the target
+ // to decide whether the loaded value is actually a constant. If so, we
+ // can actually use it as a load.
+ if (!TII->isInvariantLoad(MI)) {
+ // FIXME: we should be able to sink loads with no other side effects if
+ // there is nothing that can change memory from here until the end of
+ // block. This is a trivial form of alias analysis.
+ return false;
+ }
+ }
// FIXME: This should include support for sinking instructions within the
// block they are currently in to shorten the live ranges. We often get
return true;
}
-/// isReallySideEffectFree - If the M_MAY_HAVE_SIDE_EFFECTS flag is set, this
-/// method is called to determine if the specific instance of this instruction
-/// has side effects. This is useful in cases of instructions, like loads, which
-/// generally always have side effects. A load from a constant pool doesn't have
-/// side effects, though. So we need to differentiate it from the general case.
-bool X86InstrInfo::isReallySideEffectFree(MachineInstr *MI) const {
+/// isInvariantLoad - Return true if the specified instruction (which is marked
+/// mayLoad) is loading from a location whose value is invariant across the
+/// function. For example, loading a value from the constant pool or from
+/// from the argument area of a function if it does not change. This should
+/// only return true of *all* loads the instruction does are invariant (if it
+/// does multiple loads).
+bool X86InstrInfo::isInvariantLoad(MachineInstr *MI) const {
+ // FIXME: This should work with any X86 instruction that does a load, for
+ // example, all load+op instructions.
switch (MI->getOpcode()) {
default: break;
case X86::MOV32rm:
- // Loads from stubs of global addresses are side effect free.
+ // Loads from stubs of global addresses are invariant.
if (MI->getOperand(1).isReg() &&
MI->getOperand(2).isImm() && MI->getOperand(3).isReg() &&
MI->getOperand(4).isGlobal() &&
case X86::MOVAPDrm:
case X86::MMX_MOVD64rm:
case X86::MMX_MOVQ64rm:
- // Loads from constant pools are trivially rematerializable.
+ // Loads from constant pools are trivially invariant.
if (MI->getOperand(1).isReg() && MI->getOperand(2).isImm() &&
MI->getOperand(3).isReg() && MI->getOperand(4).isCPI() &&
MI->getOperand(1).getReg() == 0 &&
return false;
}
- // All other instances of these instructions are presumed to have side
- // effects.
+ // All other instances of these instructions are presumed to have other
+ // issues.
return false;
}
unsigned isLoadFromStackSlot(MachineInstr *MI, int &FrameIndex) const;
unsigned isStoreToStackSlot(MachineInstr *MI, int &FrameIndex) const;
bool isReallyTriviallyReMaterializable(MachineInstr *MI) const;
- bool isReallySideEffectFree(MachineInstr *MI) const;
+ bool isInvariantLoad(MachineInstr *MI) const;
/// convertToThreeAddress - This method must be implemented by targets that
/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
if (Inst.usesCustomDAGSchedInserter)
OS << "|(1<<TID::UsesCustomDAGSchedInserter)";
if (Inst.isVariadic) OS << "|(1<<TID::Variadic)";
- if (Inst.mayHaveSideEffects) OS << "|(1<<TID::MayHaveSideEffects)";
- if (!HasSideEffects) OS << "|(1<<TID::NeverHasSideEffects)";
+ if (HasSideEffects) OS << "|(1<<TID::UnmodeledSideEffects)";
OS << ", 0";
// Emit all of the target-specific flags...