inline DominatorBase(bool isPostDom) : Root(0), IsPostDominators(isPostDom) {}
public:
- inline const BasicBlock *getRoot() const { return Root; }
- inline BasicBlock *getRoot() { return Root; }
+ inline BasicBlock *getRoot() const { return Root; }
// Returns true if analysis based of postdoms
bool isPostDominator() const { return IsPostDominators; }
//===----------------------------------------------------------------------===//
//
-// DominatorSet - Maintain a set<const BasicBlock*> for every basic block in a
+// DominatorSet - Maintain a set<BasicBlock*> for every basic block in a
// function, that represents the blocks that dominate the block.
//
class DominatorSet : public DominatorBase {
public:
- typedef std::set<const BasicBlock*> DomSetType; // Dom set for a bb
+ typedef std::set<BasicBlock*> DomSetType; // Dom set for a bb
// Map of dom sets
- typedef std::map<const BasicBlock*, DomSetType> DomSetMapType;
+ typedef std::map<BasicBlock*, DomSetType> DomSetMapType;
private:
DomSetMapType Doms;
inline iterator begin() { return Doms.begin(); }
inline const_iterator end() const { return Doms.end(); }
inline iterator end() { return Doms.end(); }
- inline const_iterator find(const BasicBlock* B) const { return Doms.find(B); }
- inline iterator find( BasicBlock* B) { return Doms.find(B); }
+ inline const_iterator find(BasicBlock* B) const { return Doms.find(B); }
+ inline iterator find(BasicBlock* B) { return Doms.find(B); }
// getDominators - Return the set of basic blocks that dominate the specified
// block.
//
- inline const DomSetType &getDominators(const BasicBlock *BB) const {
+ inline const DomSetType &getDominators(BasicBlock *BB) const {
const_iterator I = find(BB);
assert(I != end() && "BB not in function!");
return I->second;
// dominates - Return true if A dominates B.
//
- inline bool dominates(const BasicBlock *A, const BasicBlock *B) const {
+ inline bool dominates(BasicBlock *A, BasicBlock *B) const {
return getDominators(B).count(A) != 0;
}
// function.
//
class ImmediateDominators : public DominatorBase {
- std::map<const BasicBlock*, const BasicBlock*> IDoms;
+ std::map<BasicBlock*, BasicBlock*> IDoms;
void calcIDoms(const DominatorSet &DS);
public:
}
// Accessor interface:
- typedef std::map<const BasicBlock*, const BasicBlock*> IDomMapType;
+ typedef std::map<BasicBlock*, BasicBlock*> IDomMapType;
typedef IDomMapType::const_iterator const_iterator;
inline const_iterator begin() const { return IDoms.begin(); }
inline const_iterator end() const { return IDoms.end(); }
- inline const_iterator find(const BasicBlock* B) const { return IDoms.find(B);}
+ inline const_iterator find(BasicBlock* B) const { return IDoms.find(B);}
// operator[] - Return the idom for the specified basic block. The start
// node returns null, because it does not have an immediate dominator.
//
- inline const BasicBlock *operator[](const BasicBlock *BB) const {
- std::map<const BasicBlock*, const BasicBlock*>::const_iterator I =
- IDoms.find(BB);
+ inline BasicBlock *operator[](BasicBlock *BB) const {
+ std::map<BasicBlock*, BasicBlock*>::const_iterator I = IDoms.find(BB);
return I != IDoms.end() ? I->second : 0;
}
public:
typedef Node2 Node;
private:
- std::map<const BasicBlock*, Node*> Nodes;
+ std::map<BasicBlock*, Node*> Nodes;
void calculate(const DominatorSet &DS);
void reset();
- typedef std::map<const BasicBlock*, Node*> NodeMapType;
+ typedef std::map<BasicBlock*, Node*> NodeMapType;
public:
class Node2 : public std::vector<Node*> {
friend class DominatorTree;
- const BasicBlock *TheNode;
- Node2 * const IDom;
+ BasicBlock *TheNode;
+ Node2 *IDom;
public:
- inline const BasicBlock *getNode() const { return TheNode; }
+ inline BasicBlock *getNode() const { return TheNode; }
inline Node2 *getIDom() const { return IDom; }
inline const std::vector<Node*> &getChildren() const { return *this; }
}
private:
- inline Node2(const BasicBlock *node, Node *iDom)
+ inline Node2(BasicBlock *node, Node *iDom)
: TheNode(node), IDom(iDom) {}
inline Node2 *addChild(Node *C) { push_back(C); return C; }
};
return false;
}
- inline const Node *operator[](const BasicBlock *BB) const {
+ inline Node *operator[](BasicBlock *BB) const {
NodeMapType::const_iterator i = Nodes.find(BB);
return (i != Nodes.end()) ? i->second : 0;
}
//
class DominanceFrontier : public DominatorBase {
public:
- typedef std::set<const BasicBlock*> DomSetType; // Dom set for a bb
- typedef std::map<const BasicBlock*, DomSetType> DomSetMapType; // Dom set map
+ typedef std::set<BasicBlock*> DomSetType; // Dom set for a bb
+ typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
private:
DomSetMapType Frontiers;
const DomSetType &calcDomFrontier(const DominatorTree &DT,
typedef DomSetMapType::const_iterator const_iterator;
inline const_iterator begin() const { return Frontiers.begin(); }
inline const_iterator end() const { return Frontiers.end(); }
- inline const_iterator find(const BasicBlock* B) const { return Frontiers.find(B); }
+ inline const_iterator find(BasicBlock* B) const { return Frontiers.find(B); }
// getAnalysisUsage - This obviously provides the dominance frontier, but it
// uses dominator sets
//
class Loop {
Loop *ParentLoop;
- std::vector<const BasicBlock *> Blocks; // First entry is the header node
+ std::vector<BasicBlock *> Blocks; // First entry is the header node
std::vector<Loop*> SubLoops; // Loops contained entirely within this one
unsigned LoopDepth; // Nesting depth of this loop
public:
inline unsigned getLoopDepth() const { return LoopDepth; }
- inline const BasicBlock *getHeader() const { return Blocks.front(); }
+ inline BasicBlock *getHeader() const { return Blocks.front(); }
// contains - Return true of the specified basic block is in this loop
- bool contains(const BasicBlock *BB) const;
+ bool contains(BasicBlock *BB) const;
// getSubLoops - Return the loops contained entirely within this loop
inline const std::vector<Loop*> &getSubLoops() const { return SubLoops; }
- inline const std::vector<const BasicBlock*> &getBlocks() const {
- return Blocks;
- }
+ inline const std::vector<BasicBlock*> &getBlocks() const { return Blocks; }
private:
friend class LoopInfo;
- inline Loop(const BasicBlock *BB) { Blocks.push_back(BB); LoopDepth = 0; }
+ inline Loop(BasicBlock *BB) { Blocks.push_back(BB); LoopDepth = 0; }
~Loop() {
for (unsigned i = 0, e = SubLoops.size(); i != e; ++i)
delete SubLoops[i];
//
class LoopInfo : public FunctionPass {
// BBMap - Mapping of basic blocks to the inner most loop they occur in
- std::map<const BasicBlock *, Loop*> BBMap;
+ std::map<BasicBlock*, Loop*> BBMap;
std::vector<Loop*> TopLevelLoops;
public:
static AnalysisID ID; // cfg::LoopInfo Analysis ID
// getLoopFor - Return the inner most loop that BB lives in. If a basic block
// is in no loop (for example the entry node), null is returned.
//
- const Loop *getLoopFor(const BasicBlock *BB) const {
- std::map<const BasicBlock *, Loop*>::const_iterator I = BBMap.find(BB);
+ const Loop *getLoopFor(BasicBlock *BB) const {
+ std::map<BasicBlock *, Loop*>::const_iterator I = BBMap.find(BB);
return I != BBMap.end() ? I->second : 0;
}
- inline const Loop *operator[](const BasicBlock *BB) const {
+ inline const Loop *operator[](BasicBlock *BB) const {
return getLoopFor(BB);
}
// getLoopDepth - Return the loop nesting level of the specified block...
- unsigned getLoopDepth(const BasicBlock *BB) const {
+ unsigned getLoopDepth(BasicBlock *BB) const {
const Loop *L = getLoopFor(BB);
return L ? L->getLoopDepth() : 0;
}
#if 0
// isLoopHeader - True if the block is a loop header node
- bool isLoopHeader(const BasicBlock *BB) const {
+ bool isLoopHeader(BasicBlock *BB) const {
return getLoopFor(BB)->getHeader() == BB;
}
// isLoopEnd - True if block jumps to loop entry
- bool isLoopEnd(const BasicBlock *BB) const;
+ bool isLoopEnd(BasicBlock *BB) const;
// isLoopExit - True if block is the loop exit
- bool isLoopExit(const BasicBlock *BB) const;
+ bool isLoopExit(BasicBlock *BB) const;
#endif
// runOnFunction - Pass framework implementation
private:
void Calculate(const DominatorSet &DS);
- Loop *ConsiderForLoop(const BasicBlock *BB, const DominatorSet &DS);
+ Loop *ConsiderForLoop(BasicBlock *BB, const DominatorSet &DS);
};
} // End namespace cfg
if (isa<Constant>(V) || isa<Argument>(V) || isa<GlobalValue>(V))
return true;
- const Instruction *I = cast<Instruction>(V);
- const BasicBlock *BB = I->getParent();
+ Instruction *I = cast<Instruction>(V);
+ BasicBlock *BB = I->getParent();
return !L->contains(BB);
}
//===----------------------------------------------------------------------===//
// cfg::Loop implementation
//
-bool cfg::Loop::contains(const BasicBlock *BB) const {
+bool cfg::Loop::contains(BasicBlock *BB) const {
return find(Blocks.begin(), Blocks.end(), BB) != Blocks.end();
}
}
void cfg::LoopInfo::Calculate(const DominatorSet &DS) {
- const BasicBlock *RootNode = DS.getRoot();
+ BasicBlock *RootNode = DS.getRoot();
- for (df_iterator<const BasicBlock*> NI = df_begin(RootNode),
+ for (df_iterator<BasicBlock*> NI = df_begin(RootNode),
NE = df_end(RootNode); NI != NE; ++NI)
if (Loop *L = ConsiderForLoop(*NI, DS))
TopLevelLoops.push_back(L);
}
-cfg::Loop *cfg::LoopInfo::ConsiderForLoop(const BasicBlock *BB,
- const DominatorSet &DS) {
+cfg::Loop *cfg::LoopInfo::ConsiderForLoop(BasicBlock *BB,
+ const DominatorSet &DS) {
if (BBMap.find(BB) != BBMap.end()) return 0; // Havn't processed this node?
- std::vector<const BasicBlock *> TodoStack;
+ std::vector<BasicBlock *> TodoStack;
// Scan the predecessors of BB, checking to see if BB dominates any of
// them.
- for (pred_const_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I)
+ for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I)
if (DS.dominates(BB, *I)) // If BB dominates it's predecessor...
TodoStack.push_back(*I);
BBMap[BB] = L;
while (!TodoStack.empty()) { // Process all the nodes in the loop
- const BasicBlock *X = TodoStack.back();
+ BasicBlock *X = TodoStack.back();
TodoStack.pop_back();
if (!L->contains(X)) { // As of yet unprocessed??
// loop can be found for them. Also check subsidary basic blocks to see if
// they start subloops of their own.
//
- for (std::vector<const BasicBlock*>::reverse_iterator I = L->Blocks.rbegin(),
+ for (std::vector<BasicBlock*>::reverse_iterator I = L->Blocks.rbegin(),
E = L->Blocks.rend(); I != E; ++I) {
// Check to see if this block starts a new loop
DomSetType WorkingSet;
df_iterator<Function*> It = df_begin(M), End = df_end(M);
for ( ; It != End; ++It) {
- const BasicBlock *BB = *It;
- pred_const_iterator PI = pred_begin(BB), PEnd = pred_end(BB);
+ BasicBlock *BB = *It;
+ pred_iterator PI = pred_begin(BB), PEnd = pred_end(BB);
if (PI != PEnd) { // Is there SOME predecessor?
// Loop until we get to a predecessor that has had it's dom set filled
// in at least once. We are guaranteed to have this because we are
// only have a single exit node (return stmt), then calculates the post
// dominance sets for the function.
//
-void cfg::DominatorSet::calcPostDominatorSet(Function *M) {
+void cfg::DominatorSet::calcPostDominatorSet(Function *F) {
// Since we require that the unify all exit nodes pass has been run, we know
// that there can be at most one return instruction in the function left.
// Get it.
Root = getAnalysis<UnifyFunctionExitNodes>().getExitNode();
if (Root == 0) { // No exit node for the function? Postdomsets are all empty
- for (Function::const_iterator MI = M->begin(), ME = M->end(); MI!=ME; ++MI)
- Doms[*MI] = DomSetType();
+ for (Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
+ Doms[*FI] = DomSetType();
return;
}
DomSetType WorkingSet;
idf_iterator<BasicBlock*> It = idf_begin(Root), End = idf_end(Root);
for ( ; It != End; ++It) {
- const BasicBlock *BB = *It;
- succ_const_iterator PI = succ_begin(BB), PEnd = succ_end(BB);
+ BasicBlock *BB = *It;
+ succ_iterator PI = succ_begin(BB), PEnd = succ_end(BB);
if (PI != PEnd) { // Is there SOME predecessor?
// Loop until we get to a successor that has had it's dom set filled
// in at least once. We are guaranteed to have this because we are
//
for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end();
DI != DEnd; ++DI) {
- const BasicBlock *BB = DI->first;
+ BasicBlock *BB = DI->first;
const DominatorSet::DomSetType &Dominators = DI->second;
unsigned DomSetSize = Dominators.size();
if (DomSetSize == 1) continue; // Root node... IDom = null
// Iterate over all nodes in depth first order...
for (df_iterator<BasicBlock*> I = df_begin(Root), E = df_end(Root);
I != E; ++I) {
- const BasicBlock *BB = *I;
+ BasicBlock *BB = *I;
const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
unsigned DomSetSize = Dominators.size();
if (DomSetSize == 1) continue; // Root node... IDom = null
// Iterate over all nodes in depth first order...
for (idf_iterator<BasicBlock*> I = idf_begin(Root), E = idf_end(Root);
I != E; ++I) {
- const BasicBlock *BB = *I;
+ BasicBlock *BB = *I;
const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
unsigned DomSetSize = Dominators.size();
if (DomSetSize == 1) continue; // Root node... IDom = null
cfg::DominanceFrontier::calcDomFrontier(const DominatorTree &DT,
const DominatorTree::Node *Node) {
// Loop over CFG successors to calculate DFlocal[Node]
- const BasicBlock *BB = Node->getNode();
+ BasicBlock *BB = Node->getNode();
DomSetType &S = Frontiers[BB]; // The new set to fill in...
- for (succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB);
+ for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
SI != SE; ++SI) {
// Does Node immediately dominate this successor?
if (DT[*SI]->getIDom() != Node)
cfg::DominanceFrontier::calcPostDomFrontier(const DominatorTree &DT,
const DominatorTree::Node *Node) {
// Loop over CFG successors to calculate DFlocal[Node]
- const BasicBlock *BB = Node->getNode();
+ BasicBlock *BB = Node->getNode();
DomSetType &S = Frontiers[BB]; // The new set to fill in...
if (!Root) return S;
- for (pred_const_iterator SI = pred_begin(BB), SE = pred_end(BB);
+ for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB);
SI != SE; ++SI) {
// Does Node immediately dominate this predeccessor?
if (DT[*SI]->getIDom() != Node)
// Dominator Printing Routines
//===----------------------------------------------------------------------===//
-ostream &operator<<(ostream &o, const set<const BasicBlock*> &BBs) {
- copy(BBs.begin(),BBs.end(), std::ostream_iterator<const BasicBlock*>(o,"\n"));
+ostream &operator<<(ostream &o, const set<BasicBlock*> &BBs) {
+ copy(BBs.begin(),BBs.end(), std::ostream_iterator<BasicBlock*>(o, "\n"));
return o;
}
DominanceFrontier::DomSetType s = (*it).second;
for (DominanceFrontier::DomSetType::iterator p = s.begin();p!=s.end(); ++p)
{
- if (queuePhiNode((BasicBlock *)*p, i))
- PhiNodes[i].push_back((BasicBlock *)*p);
+ if (queuePhiNode(*p, i))
+ PhiNodes[i].push_back(*p);
}
}
// perform iterative step
DominanceFrontier::DomSetType s = it->second;
for (DominanceFrontier::DomSetType::iterator p = s.begin(); p!=s.end(); ++p)
{
- if (queuePhiNode((BasicBlock *)*p,i))
- PhiNodes[i].push_back((BasicBlock*)*p);
+ if (queuePhiNode(*p,i))
+ PhiNodes[i].push_back(*p);
}
}
}
DomSetType WorkingSet;
df_iterator<Function*> It = df_begin(M), End = df_end(M);
for ( ; It != End; ++It) {
- const BasicBlock *BB = *It;
- pred_const_iterator PI = pred_begin(BB), PEnd = pred_end(BB);
+ BasicBlock *BB = *It;
+ pred_iterator PI = pred_begin(BB), PEnd = pred_end(BB);
if (PI != PEnd) { // Is there SOME predecessor?
// Loop until we get to a predecessor that has had it's dom set filled
// in at least once. We are guaranteed to have this because we are
// only have a single exit node (return stmt), then calculates the post
// dominance sets for the function.
//
-void cfg::DominatorSet::calcPostDominatorSet(Function *M) {
+void cfg::DominatorSet::calcPostDominatorSet(Function *F) {
// Since we require that the unify all exit nodes pass has been run, we know
// that there can be at most one return instruction in the function left.
// Get it.
Root = getAnalysis<UnifyFunctionExitNodes>().getExitNode();
if (Root == 0) { // No exit node for the function? Postdomsets are all empty
- for (Function::const_iterator MI = M->begin(), ME = M->end(); MI!=ME; ++MI)
- Doms[*MI] = DomSetType();
+ for (Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
+ Doms[*FI] = DomSetType();
return;
}
DomSetType WorkingSet;
idf_iterator<BasicBlock*> It = idf_begin(Root), End = idf_end(Root);
for ( ; It != End; ++It) {
- const BasicBlock *BB = *It;
- succ_const_iterator PI = succ_begin(BB), PEnd = succ_end(BB);
+ BasicBlock *BB = *It;
+ succ_iterator PI = succ_begin(BB), PEnd = succ_end(BB);
if (PI != PEnd) { // Is there SOME predecessor?
// Loop until we get to a successor that has had it's dom set filled
// in at least once. We are guaranteed to have this because we are
//
for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end();
DI != DEnd; ++DI) {
- const BasicBlock *BB = DI->first;
+ BasicBlock *BB = DI->first;
const DominatorSet::DomSetType &Dominators = DI->second;
unsigned DomSetSize = Dominators.size();
if (DomSetSize == 1) continue; // Root node... IDom = null
// Iterate over all nodes in depth first order...
for (df_iterator<BasicBlock*> I = df_begin(Root), E = df_end(Root);
I != E; ++I) {
- const BasicBlock *BB = *I;
+ BasicBlock *BB = *I;
const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
unsigned DomSetSize = Dominators.size();
if (DomSetSize == 1) continue; // Root node... IDom = null
// Iterate over all nodes in depth first order...
for (idf_iterator<BasicBlock*> I = idf_begin(Root), E = idf_end(Root);
I != E; ++I) {
- const BasicBlock *BB = *I;
+ BasicBlock *BB = *I;
const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
unsigned DomSetSize = Dominators.size();
if (DomSetSize == 1) continue; // Root node... IDom = null
cfg::DominanceFrontier::calcDomFrontier(const DominatorTree &DT,
const DominatorTree::Node *Node) {
// Loop over CFG successors to calculate DFlocal[Node]
- const BasicBlock *BB = Node->getNode();
+ BasicBlock *BB = Node->getNode();
DomSetType &S = Frontiers[BB]; // The new set to fill in...
- for (succ_const_iterator SI = succ_begin(BB), SE = succ_end(BB);
+ for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
SI != SE; ++SI) {
// Does Node immediately dominate this successor?
if (DT[*SI]->getIDom() != Node)
cfg::DominanceFrontier::calcPostDomFrontier(const DominatorTree &DT,
const DominatorTree::Node *Node) {
// Loop over CFG successors to calculate DFlocal[Node]
- const BasicBlock *BB = Node->getNode();
+ BasicBlock *BB = Node->getNode();
DomSetType &S = Frontiers[BB]; // The new set to fill in...
if (!Root) return S;
- for (pred_const_iterator SI = pred_begin(BB), SE = pred_end(BB);
+ for (pred_iterator SI = pred_begin(BB), SE = pred_end(BB);
SI != SE; ++SI) {
// Does Node immediately dominate this predeccessor?
if (DT[*SI]->getIDom() != Node)