#define rcu_enter_nohz() do { } while (0)
#define rcu_exit_nohz() do { } while (0)
+/* A context switch is a grace period for rcuclassic. */
+static inline int rcu_blocking_is_gp(void)
+{
+ return num_online_cpus() == 1;
+}
+
#endif /* __LINUX_RCUCLASSIC_H */
void (*func)(struct rcu_head *head);
};
+/* Internal to kernel, but needed by rcupreempt.h. */
+extern int rcu_scheduler_active;
+
#if defined(CONFIG_CLASSIC_RCU)
#include <linux/rcuclassic.h>
#elif defined(CONFIG_TREE_RCU)
/* Internal to kernel */
extern void rcu_init(void);
+extern void rcu_scheduler_starting(void);
extern int rcu_needs_cpu(int cpu);
#endif /* __LINUX_RCUPDATE_H */
#define rcu_exit_nohz() do { } while (0)
#endif /* CONFIG_NO_HZ */
+/*
+ * A context switch is a grace period for rcupreempt synchronize_rcu()
+ * only during early boot, before the scheduler has been initialized.
+ * So, how the heck do we get a context switch? Well, if the caller
+ * invokes synchronize_rcu(), they are willing to accept a context
+ * switch, so we simply pretend that one happened.
+ *
+ * After boot, there might be a blocked or preempted task in an RCU
+ * read-side critical section, so we cannot then take the fastpath.
+ */
+static inline int rcu_blocking_is_gp(void)
+{
+ return num_online_cpus() == 1 && !rcu_scheduler_active;
+}
+
#endif /* __LINUX_RCUPREEMPT_H */
}
#endif /* CONFIG_NO_HZ */
+/* A context switch is a grace period for rcutree. */
+static inline int rcu_blocking_is_gp(void)
+{
+ return num_online_cpus() == 1;
+}
+
#endif /* __LINUX_RCUTREE_H */
extern void tc_init(void);
#endif
-enum system_states system_state;
+enum system_states system_state __read_mostly;
EXPORT_SYMBOL(system_state);
/*
* at least once to get things moving:
*/
init_idle_bootup_task(current);
+ rcu_scheduler_starting();
preempt_enable_no_resched();
schedule();
preempt_disable();
void rcu_check_callbacks(int cpu, int user)
{
if (user ||
- (idle_cpu(cpu) && !in_softirq() &&
- hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
+ (idle_cpu(cpu) && rcu_scheduler_active &&
+ !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
/*
* Get here if this CPU took its interrupt from user
#include <linux/cpu.h>
#include <linux/mutex.h>
#include <linux/module.h>
+#include <linux/kernel_stat.h>
enum rcu_barrier {
RCU_BARRIER_STD,
static atomic_t rcu_barrier_cpu_count;
static DEFINE_MUTEX(rcu_barrier_mutex);
static struct completion rcu_barrier_completion;
+int rcu_scheduler_active __read_mostly;
/*
* Awaken the corresponding synchronize_rcu() instance now that a
void synchronize_rcu(void)
{
struct rcu_synchronize rcu;
+
+ if (rcu_blocking_is_gp())
+ return;
+
init_completion(&rcu.completion);
/* Will wake me after RCU finished. */
call_rcu(&rcu.head, wakeme_after_rcu);
__rcu_init();
}
+void rcu_scheduler_starting(void)
+{
+ WARN_ON(num_online_cpus() != 1);
+ WARN_ON(nr_context_switches() > 0);
+ rcu_scheduler_active = 1;
+}
{
struct rcu_synchronize rcu;
+ if (num_online_cpus() == 1)
+ return; /* blocking is gp if only one CPU! */
+
init_completion(&rcu.completion);
/* Will wake me after RCU finished. */
call_rcu_sched(&rcu.head, wakeme_after_rcu);
void rcu_check_callbacks(int cpu, int user)
{
if (user ||
- (idle_cpu(cpu) && !in_softirq() &&
- hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
+ (idle_cpu(cpu) && rcu_scheduler_active &&
+ !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT))) {
/*
* Get here if this CPU took its interrupt from user