obj-$(CONFIG_DOUBLEFAULT) += doublefault.o
obj-$(CONFIG_VM86) += vm86_32.o
obj-$(CONFIG_EARLY_PRINTK) += early_printk.o
-obj-$(CONFIG_HPET_TIMER) += hpet.o
+obj-$(CONFIG_HPET_TIMER) += hpet_32.o
obj-$(CONFIG_K8_NB) += k8.o
obj-$(CONFIG_MGEODE_LX) += geode.o
+++ /dev/null
-#include <linux/clocksource.h>
-#include <linux/clockchips.h>
-#include <linux/errno.h>
-#include <linux/hpet.h>
-#include <linux/init.h>
-#include <linux/sysdev.h>
-#include <linux/pm.h>
-#include <linux/delay.h>
-
-#include <asm/hpet.h>
-#include <asm/io.h>
-
-extern struct clock_event_device *global_clock_event;
-
-#define HPET_MASK CLOCKSOURCE_MASK(32)
-#define HPET_SHIFT 22
-
-/* FSEC = 10^-15 NSEC = 10^-9 */
-#define FSEC_PER_NSEC 1000000
-
-/*
- * HPET address is set in acpi/boot.c, when an ACPI entry exists
- */
-unsigned long hpet_address;
-static void __iomem * hpet_virt_address;
-
-static inline unsigned long hpet_readl(unsigned long a)
-{
- return readl(hpet_virt_address + a);
-}
-
-static inline void hpet_writel(unsigned long d, unsigned long a)
-{
- writel(d, hpet_virt_address + a);
-}
-
-/*
- * HPET command line enable / disable
- */
-static int boot_hpet_disable;
-
-static int __init hpet_setup(char* str)
-{
- if (str) {
- if (!strncmp("disable", str, 7))
- boot_hpet_disable = 1;
- }
- return 1;
-}
-__setup("hpet=", hpet_setup);
-
-static inline int is_hpet_capable(void)
-{
- return (!boot_hpet_disable && hpet_address);
-}
-
-/*
- * HPET timer interrupt enable / disable
- */
-static int hpet_legacy_int_enabled;
-
-/**
- * is_hpet_enabled - check whether the hpet timer interrupt is enabled
- */
-int is_hpet_enabled(void)
-{
- return is_hpet_capable() && hpet_legacy_int_enabled;
-}
-
-/*
- * When the hpet driver (/dev/hpet) is enabled, we need to reserve
- * timer 0 and timer 1 in case of RTC emulation.
- */
-#ifdef CONFIG_HPET
-static void hpet_reserve_platform_timers(unsigned long id)
-{
- struct hpet __iomem *hpet = hpet_virt_address;
- struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
- unsigned int nrtimers, i;
- struct hpet_data hd;
-
- nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
-
- memset(&hd, 0, sizeof (hd));
- hd.hd_phys_address = hpet_address;
- hd.hd_address = hpet_virt_address;
- hd.hd_nirqs = nrtimers;
- hd.hd_flags = HPET_DATA_PLATFORM;
- hpet_reserve_timer(&hd, 0);
-
-#ifdef CONFIG_HPET_EMULATE_RTC
- hpet_reserve_timer(&hd, 1);
-#endif
-
- hd.hd_irq[0] = HPET_LEGACY_8254;
- hd.hd_irq[1] = HPET_LEGACY_RTC;
-
- for (i = 2; i < nrtimers; timer++, i++)
- hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >>
- Tn_INT_ROUTE_CNF_SHIFT;
-
- hpet_alloc(&hd);
-
-}
-#else
-static void hpet_reserve_platform_timers(unsigned long id) { }
-#endif
-
-/*
- * Common hpet info
- */
-static unsigned long hpet_period;
-
-static void hpet_set_mode(enum clock_event_mode mode,
- struct clock_event_device *evt);
-static int hpet_next_event(unsigned long delta,
- struct clock_event_device *evt);
-
-/*
- * The hpet clock event device
- */
-static struct clock_event_device hpet_clockevent = {
- .name = "hpet",
- .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
- .set_mode = hpet_set_mode,
- .set_next_event = hpet_next_event,
- .shift = 32,
- .irq = 0,
-};
-
-static void hpet_start_counter(void)
-{
- unsigned long cfg = hpet_readl(HPET_CFG);
-
- cfg &= ~HPET_CFG_ENABLE;
- hpet_writel(cfg, HPET_CFG);
- hpet_writel(0, HPET_COUNTER);
- hpet_writel(0, HPET_COUNTER + 4);
- cfg |= HPET_CFG_ENABLE;
- hpet_writel(cfg, HPET_CFG);
-}
-
-static void hpet_enable_int(void)
-{
- unsigned long cfg = hpet_readl(HPET_CFG);
-
- cfg |= HPET_CFG_LEGACY;
- hpet_writel(cfg, HPET_CFG);
- hpet_legacy_int_enabled = 1;
-}
-
-static void hpet_set_mode(enum clock_event_mode mode,
- struct clock_event_device *evt)
-{
- unsigned long cfg, cmp, now;
- uint64_t delta;
-
- switch(mode) {
- case CLOCK_EVT_MODE_PERIODIC:
- delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
- delta >>= hpet_clockevent.shift;
- now = hpet_readl(HPET_COUNTER);
- cmp = now + (unsigned long) delta;
- cfg = hpet_readl(HPET_T0_CFG);
- cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
- HPET_TN_SETVAL | HPET_TN_32BIT;
- hpet_writel(cfg, HPET_T0_CFG);
- /*
- * The first write after writing TN_SETVAL to the
- * config register sets the counter value, the second
- * write sets the period.
- */
- hpet_writel(cmp, HPET_T0_CMP);
- udelay(1);
- hpet_writel((unsigned long) delta, HPET_T0_CMP);
- break;
-
- case CLOCK_EVT_MODE_ONESHOT:
- cfg = hpet_readl(HPET_T0_CFG);
- cfg &= ~HPET_TN_PERIODIC;
- cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
- hpet_writel(cfg, HPET_T0_CFG);
- break;
-
- case CLOCK_EVT_MODE_UNUSED:
- case CLOCK_EVT_MODE_SHUTDOWN:
- cfg = hpet_readl(HPET_T0_CFG);
- cfg &= ~HPET_TN_ENABLE;
- hpet_writel(cfg, HPET_T0_CFG);
- break;
-
- case CLOCK_EVT_MODE_RESUME:
- hpet_enable_int();
- break;
- }
-}
-
-static int hpet_next_event(unsigned long delta,
- struct clock_event_device *evt)
-{
- unsigned long cnt;
-
- cnt = hpet_readl(HPET_COUNTER);
- cnt += delta;
- hpet_writel(cnt, HPET_T0_CMP);
-
- return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
-}
-
-/*
- * Clock source related code
- */
-static cycle_t read_hpet(void)
-{
- return (cycle_t)hpet_readl(HPET_COUNTER);
-}
-
-static struct clocksource clocksource_hpet = {
- .name = "hpet",
- .rating = 250,
- .read = read_hpet,
- .mask = HPET_MASK,
- .shift = HPET_SHIFT,
- .flags = CLOCK_SOURCE_IS_CONTINUOUS,
- .resume = hpet_start_counter,
-};
-
-/*
- * Try to setup the HPET timer
- */
-int __init hpet_enable(void)
-{
- unsigned long id;
- uint64_t hpet_freq;
- u64 tmp, start, now;
- cycle_t t1;
-
- if (!is_hpet_capable())
- return 0;
-
- hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
-
- /*
- * Read the period and check for a sane value:
- */
- hpet_period = hpet_readl(HPET_PERIOD);
- if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
- goto out_nohpet;
-
- /*
- * The period is a femto seconds value. We need to calculate the
- * scaled math multiplication factor for nanosecond to hpet tick
- * conversion.
- */
- hpet_freq = 1000000000000000ULL;
- do_div(hpet_freq, hpet_period);
- hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
- NSEC_PER_SEC, 32);
- /* Calculate the min / max delta */
- hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
- &hpet_clockevent);
- hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
- &hpet_clockevent);
-
- /*
- * Read the HPET ID register to retrieve the IRQ routing
- * information and the number of channels
- */
- id = hpet_readl(HPET_ID);
-
-#ifdef CONFIG_HPET_EMULATE_RTC
- /*
- * The legacy routing mode needs at least two channels, tick timer
- * and the rtc emulation channel.
- */
- if (!(id & HPET_ID_NUMBER))
- goto out_nohpet;
-#endif
-
- /* Start the counter */
- hpet_start_counter();
-
- /* Verify whether hpet counter works */
- t1 = read_hpet();
- rdtscll(start);
-
- /*
- * We don't know the TSC frequency yet, but waiting for
- * 200000 TSC cycles is safe:
- * 4 GHz == 50us
- * 1 GHz == 200us
- */
- do {
- rep_nop();
- rdtscll(now);
- } while ((now - start) < 200000UL);
-
- if (t1 == read_hpet()) {
- printk(KERN_WARNING
- "HPET counter not counting. HPET disabled\n");
- goto out_nohpet;
- }
-
- /* Initialize and register HPET clocksource
- *
- * hpet period is in femto seconds per cycle
- * so we need to convert this to ns/cyc units
- * aproximated by mult/2^shift
- *
- * fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
- * fsec/cyc * 1ns/1000000fsec * 2^shift = mult
- * fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
- * (fsec/cyc << shift)/1000000 = mult
- * (hpet_period << shift)/FSEC_PER_NSEC = mult
- */
- tmp = (u64)hpet_period << HPET_SHIFT;
- do_div(tmp, FSEC_PER_NSEC);
- clocksource_hpet.mult = (u32)tmp;
-
- clocksource_register(&clocksource_hpet);
-
- if (id & HPET_ID_LEGSUP) {
- hpet_enable_int();
- hpet_reserve_platform_timers(id);
- /*
- * Start hpet with the boot cpu mask and make it
- * global after the IO_APIC has been initialized.
- */
- hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
- clockevents_register_device(&hpet_clockevent);
- global_clock_event = &hpet_clockevent;
- return 1;
- }
- return 0;
-
-out_nohpet:
- iounmap(hpet_virt_address);
- hpet_virt_address = NULL;
- boot_hpet_disable = 1;
- return 0;
-}
-
-
-#ifdef CONFIG_HPET_EMULATE_RTC
-
-/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
- * is enabled, we support RTC interrupt functionality in software.
- * RTC has 3 kinds of interrupts:
- * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
- * is updated
- * 2) Alarm Interrupt - generate an interrupt at a specific time of day
- * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
- * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
- * (1) and (2) above are implemented using polling at a frequency of
- * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
- * overhead. (DEFAULT_RTC_INT_FREQ)
- * For (3), we use interrupts at 64Hz or user specified periodic
- * frequency, whichever is higher.
- */
-#include <linux/mc146818rtc.h>
-#include <linux/rtc.h>
-
-#define DEFAULT_RTC_INT_FREQ 64
-#define DEFAULT_RTC_SHIFT 6
-#define RTC_NUM_INTS 1
-
-static unsigned long hpet_rtc_flags;
-static unsigned long hpet_prev_update_sec;
-static struct rtc_time hpet_alarm_time;
-static unsigned long hpet_pie_count;
-static unsigned long hpet_t1_cmp;
-static unsigned long hpet_default_delta;
-static unsigned long hpet_pie_delta;
-static unsigned long hpet_pie_limit;
-
-/*
- * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
- * is not supported by all HPET implementations for timer 1.
- *
- * hpet_rtc_timer_init() is called when the rtc is initialized.
- */
-int hpet_rtc_timer_init(void)
-{
- unsigned long cfg, cnt, delta, flags;
-
- if (!is_hpet_enabled())
- return 0;
-
- if (!hpet_default_delta) {
- uint64_t clc;
-
- clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
- clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
- hpet_default_delta = (unsigned long) clc;
- }
-
- if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
- delta = hpet_default_delta;
- else
- delta = hpet_pie_delta;
-
- local_irq_save(flags);
-
- cnt = delta + hpet_readl(HPET_COUNTER);
- hpet_writel(cnt, HPET_T1_CMP);
- hpet_t1_cmp = cnt;
-
- cfg = hpet_readl(HPET_T1_CFG);
- cfg &= ~HPET_TN_PERIODIC;
- cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
- hpet_writel(cfg, HPET_T1_CFG);
-
- local_irq_restore(flags);
-
- return 1;
-}
-
-/*
- * The functions below are called from rtc driver.
- * Return 0 if HPET is not being used.
- * Otherwise do the necessary changes and return 1.
- */
-int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
-{
- if (!is_hpet_enabled())
- return 0;
-
- hpet_rtc_flags &= ~bit_mask;
- return 1;
-}
-
-int hpet_set_rtc_irq_bit(unsigned long bit_mask)
-{
- unsigned long oldbits = hpet_rtc_flags;
-
- if (!is_hpet_enabled())
- return 0;
-
- hpet_rtc_flags |= bit_mask;
-
- if (!oldbits)
- hpet_rtc_timer_init();
-
- return 1;
-}
-
-int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
- unsigned char sec)
-{
- if (!is_hpet_enabled())
- return 0;
-
- hpet_alarm_time.tm_hour = hrs;
- hpet_alarm_time.tm_min = min;
- hpet_alarm_time.tm_sec = sec;
-
- return 1;
-}
-
-int hpet_set_periodic_freq(unsigned long freq)
-{
- uint64_t clc;
-
- if (!is_hpet_enabled())
- return 0;
-
- if (freq <= DEFAULT_RTC_INT_FREQ)
- hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
- else {
- clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
- do_div(clc, freq);
- clc >>= hpet_clockevent.shift;
- hpet_pie_delta = (unsigned long) clc;
- }
- return 1;
-}
-
-int hpet_rtc_dropped_irq(void)
-{
- return is_hpet_enabled();
-}
-
-static void hpet_rtc_timer_reinit(void)
-{
- unsigned long cfg, delta;
- int lost_ints = -1;
-
- if (unlikely(!hpet_rtc_flags)) {
- cfg = hpet_readl(HPET_T1_CFG);
- cfg &= ~HPET_TN_ENABLE;
- hpet_writel(cfg, HPET_T1_CFG);
- return;
- }
-
- if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
- delta = hpet_default_delta;
- else
- delta = hpet_pie_delta;
-
- /*
- * Increment the comparator value until we are ahead of the
- * current count.
- */
- do {
- hpet_t1_cmp += delta;
- hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
- lost_ints++;
- } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
-
- if (lost_ints) {
- if (hpet_rtc_flags & RTC_PIE)
- hpet_pie_count += lost_ints;
- if (printk_ratelimit())
- printk(KERN_WARNING "rtc: lost %d interrupts\n",
- lost_ints);
- }
-}
-
-irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
-{
- struct rtc_time curr_time;
- unsigned long rtc_int_flag = 0;
-
- hpet_rtc_timer_reinit();
-
- if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
- rtc_get_rtc_time(&curr_time);
-
- if (hpet_rtc_flags & RTC_UIE &&
- curr_time.tm_sec != hpet_prev_update_sec) {
- rtc_int_flag = RTC_UF;
- hpet_prev_update_sec = curr_time.tm_sec;
- }
-
- if (hpet_rtc_flags & RTC_PIE &&
- ++hpet_pie_count >= hpet_pie_limit) {
- rtc_int_flag |= RTC_PF;
- hpet_pie_count = 0;
- }
-
- if (hpet_rtc_flags & RTC_PIE &&
- (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
- (curr_time.tm_min == hpet_alarm_time.tm_min) &&
- (curr_time.tm_hour == hpet_alarm_time.tm_hour))
- rtc_int_flag |= RTC_AF;
-
- if (rtc_int_flag) {
- rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
- rtc_interrupt(rtc_int_flag, dev_id);
- }
- return IRQ_HANDLED;
-}
-#endif
--- /dev/null
+#include <linux/clocksource.h>
+#include <linux/clockchips.h>
+#include <linux/errno.h>
+#include <linux/hpet.h>
+#include <linux/init.h>
+#include <linux/sysdev.h>
+#include <linux/pm.h>
+#include <linux/delay.h>
+
+#include <asm/hpet.h>
+#include <asm/io.h>
+
+extern struct clock_event_device *global_clock_event;
+
+#define HPET_MASK CLOCKSOURCE_MASK(32)
+#define HPET_SHIFT 22
+
+/* FSEC = 10^-15 NSEC = 10^-9 */
+#define FSEC_PER_NSEC 1000000
+
+/*
+ * HPET address is set in acpi/boot.c, when an ACPI entry exists
+ */
+unsigned long hpet_address;
+static void __iomem * hpet_virt_address;
+
+static inline unsigned long hpet_readl(unsigned long a)
+{
+ return readl(hpet_virt_address + a);
+}
+
+static inline void hpet_writel(unsigned long d, unsigned long a)
+{
+ writel(d, hpet_virt_address + a);
+}
+
+/*
+ * HPET command line enable / disable
+ */
+static int boot_hpet_disable;
+
+static int __init hpet_setup(char* str)
+{
+ if (str) {
+ if (!strncmp("disable", str, 7))
+ boot_hpet_disable = 1;
+ }
+ return 1;
+}
+__setup("hpet=", hpet_setup);
+
+static inline int is_hpet_capable(void)
+{
+ return (!boot_hpet_disable && hpet_address);
+}
+
+/*
+ * HPET timer interrupt enable / disable
+ */
+static int hpet_legacy_int_enabled;
+
+/**
+ * is_hpet_enabled - check whether the hpet timer interrupt is enabled
+ */
+int is_hpet_enabled(void)
+{
+ return is_hpet_capable() && hpet_legacy_int_enabled;
+}
+
+/*
+ * When the hpet driver (/dev/hpet) is enabled, we need to reserve
+ * timer 0 and timer 1 in case of RTC emulation.
+ */
+#ifdef CONFIG_HPET
+static void hpet_reserve_platform_timers(unsigned long id)
+{
+ struct hpet __iomem *hpet = hpet_virt_address;
+ struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
+ unsigned int nrtimers, i;
+ struct hpet_data hd;
+
+ nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
+
+ memset(&hd, 0, sizeof (hd));
+ hd.hd_phys_address = hpet_address;
+ hd.hd_address = hpet_virt_address;
+ hd.hd_nirqs = nrtimers;
+ hd.hd_flags = HPET_DATA_PLATFORM;
+ hpet_reserve_timer(&hd, 0);
+
+#ifdef CONFIG_HPET_EMULATE_RTC
+ hpet_reserve_timer(&hd, 1);
+#endif
+
+ hd.hd_irq[0] = HPET_LEGACY_8254;
+ hd.hd_irq[1] = HPET_LEGACY_RTC;
+
+ for (i = 2; i < nrtimers; timer++, i++)
+ hd.hd_irq[i] = (timer->hpet_config & Tn_INT_ROUTE_CNF_MASK) >>
+ Tn_INT_ROUTE_CNF_SHIFT;
+
+ hpet_alloc(&hd);
+
+}
+#else
+static void hpet_reserve_platform_timers(unsigned long id) { }
+#endif
+
+/*
+ * Common hpet info
+ */
+static unsigned long hpet_period;
+
+static void hpet_set_mode(enum clock_event_mode mode,
+ struct clock_event_device *evt);
+static int hpet_next_event(unsigned long delta,
+ struct clock_event_device *evt);
+
+/*
+ * The hpet clock event device
+ */
+static struct clock_event_device hpet_clockevent = {
+ .name = "hpet",
+ .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
+ .set_mode = hpet_set_mode,
+ .set_next_event = hpet_next_event,
+ .shift = 32,
+ .irq = 0,
+};
+
+static void hpet_start_counter(void)
+{
+ unsigned long cfg = hpet_readl(HPET_CFG);
+
+ cfg &= ~HPET_CFG_ENABLE;
+ hpet_writel(cfg, HPET_CFG);
+ hpet_writel(0, HPET_COUNTER);
+ hpet_writel(0, HPET_COUNTER + 4);
+ cfg |= HPET_CFG_ENABLE;
+ hpet_writel(cfg, HPET_CFG);
+}
+
+static void hpet_enable_int(void)
+{
+ unsigned long cfg = hpet_readl(HPET_CFG);
+
+ cfg |= HPET_CFG_LEGACY;
+ hpet_writel(cfg, HPET_CFG);
+ hpet_legacy_int_enabled = 1;
+}
+
+static void hpet_set_mode(enum clock_event_mode mode,
+ struct clock_event_device *evt)
+{
+ unsigned long cfg, cmp, now;
+ uint64_t delta;
+
+ switch(mode) {
+ case CLOCK_EVT_MODE_PERIODIC:
+ delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * hpet_clockevent.mult;
+ delta >>= hpet_clockevent.shift;
+ now = hpet_readl(HPET_COUNTER);
+ cmp = now + (unsigned long) delta;
+ cfg = hpet_readl(HPET_T0_CFG);
+ cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
+ HPET_TN_SETVAL | HPET_TN_32BIT;
+ hpet_writel(cfg, HPET_T0_CFG);
+ /*
+ * The first write after writing TN_SETVAL to the
+ * config register sets the counter value, the second
+ * write sets the period.
+ */
+ hpet_writel(cmp, HPET_T0_CMP);
+ udelay(1);
+ hpet_writel((unsigned long) delta, HPET_T0_CMP);
+ break;
+
+ case CLOCK_EVT_MODE_ONESHOT:
+ cfg = hpet_readl(HPET_T0_CFG);
+ cfg &= ~HPET_TN_PERIODIC;
+ cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
+ hpet_writel(cfg, HPET_T0_CFG);
+ break;
+
+ case CLOCK_EVT_MODE_UNUSED:
+ case CLOCK_EVT_MODE_SHUTDOWN:
+ cfg = hpet_readl(HPET_T0_CFG);
+ cfg &= ~HPET_TN_ENABLE;
+ hpet_writel(cfg, HPET_T0_CFG);
+ break;
+
+ case CLOCK_EVT_MODE_RESUME:
+ hpet_enable_int();
+ break;
+ }
+}
+
+static int hpet_next_event(unsigned long delta,
+ struct clock_event_device *evt)
+{
+ unsigned long cnt;
+
+ cnt = hpet_readl(HPET_COUNTER);
+ cnt += delta;
+ hpet_writel(cnt, HPET_T0_CMP);
+
+ return ((long)(hpet_readl(HPET_COUNTER) - cnt ) > 0) ? -ETIME : 0;
+}
+
+/*
+ * Clock source related code
+ */
+static cycle_t read_hpet(void)
+{
+ return (cycle_t)hpet_readl(HPET_COUNTER);
+}
+
+static struct clocksource clocksource_hpet = {
+ .name = "hpet",
+ .rating = 250,
+ .read = read_hpet,
+ .mask = HPET_MASK,
+ .shift = HPET_SHIFT,
+ .flags = CLOCK_SOURCE_IS_CONTINUOUS,
+ .resume = hpet_start_counter,
+};
+
+/*
+ * Try to setup the HPET timer
+ */
+int __init hpet_enable(void)
+{
+ unsigned long id;
+ uint64_t hpet_freq;
+ u64 tmp, start, now;
+ cycle_t t1;
+
+ if (!is_hpet_capable())
+ return 0;
+
+ hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
+
+ /*
+ * Read the period and check for a sane value:
+ */
+ hpet_period = hpet_readl(HPET_PERIOD);
+ if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
+ goto out_nohpet;
+
+ /*
+ * The period is a femto seconds value. We need to calculate the
+ * scaled math multiplication factor for nanosecond to hpet tick
+ * conversion.
+ */
+ hpet_freq = 1000000000000000ULL;
+ do_div(hpet_freq, hpet_period);
+ hpet_clockevent.mult = div_sc((unsigned long) hpet_freq,
+ NSEC_PER_SEC, 32);
+ /* Calculate the min / max delta */
+ hpet_clockevent.max_delta_ns = clockevent_delta2ns(0x7FFFFFFF,
+ &hpet_clockevent);
+ hpet_clockevent.min_delta_ns = clockevent_delta2ns(0x30,
+ &hpet_clockevent);
+
+ /*
+ * Read the HPET ID register to retrieve the IRQ routing
+ * information and the number of channels
+ */
+ id = hpet_readl(HPET_ID);
+
+#ifdef CONFIG_HPET_EMULATE_RTC
+ /*
+ * The legacy routing mode needs at least two channels, tick timer
+ * and the rtc emulation channel.
+ */
+ if (!(id & HPET_ID_NUMBER))
+ goto out_nohpet;
+#endif
+
+ /* Start the counter */
+ hpet_start_counter();
+
+ /* Verify whether hpet counter works */
+ t1 = read_hpet();
+ rdtscll(start);
+
+ /*
+ * We don't know the TSC frequency yet, but waiting for
+ * 200000 TSC cycles is safe:
+ * 4 GHz == 50us
+ * 1 GHz == 200us
+ */
+ do {
+ rep_nop();
+ rdtscll(now);
+ } while ((now - start) < 200000UL);
+
+ if (t1 == read_hpet()) {
+ printk(KERN_WARNING
+ "HPET counter not counting. HPET disabled\n");
+ goto out_nohpet;
+ }
+
+ /* Initialize and register HPET clocksource
+ *
+ * hpet period is in femto seconds per cycle
+ * so we need to convert this to ns/cyc units
+ * aproximated by mult/2^shift
+ *
+ * fsec/cyc * 1nsec/1000000fsec = nsec/cyc = mult/2^shift
+ * fsec/cyc * 1ns/1000000fsec * 2^shift = mult
+ * fsec/cyc * 2^shift * 1nsec/1000000fsec = mult
+ * (fsec/cyc << shift)/1000000 = mult
+ * (hpet_period << shift)/FSEC_PER_NSEC = mult
+ */
+ tmp = (u64)hpet_period << HPET_SHIFT;
+ do_div(tmp, FSEC_PER_NSEC);
+ clocksource_hpet.mult = (u32)tmp;
+
+ clocksource_register(&clocksource_hpet);
+
+ if (id & HPET_ID_LEGSUP) {
+ hpet_enable_int();
+ hpet_reserve_platform_timers(id);
+ /*
+ * Start hpet with the boot cpu mask and make it
+ * global after the IO_APIC has been initialized.
+ */
+ hpet_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
+ clockevents_register_device(&hpet_clockevent);
+ global_clock_event = &hpet_clockevent;
+ return 1;
+ }
+ return 0;
+
+out_nohpet:
+ iounmap(hpet_virt_address);
+ hpet_virt_address = NULL;
+ boot_hpet_disable = 1;
+ return 0;
+}
+
+
+#ifdef CONFIG_HPET_EMULATE_RTC
+
+/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
+ * is enabled, we support RTC interrupt functionality in software.
+ * RTC has 3 kinds of interrupts:
+ * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
+ * is updated
+ * 2) Alarm Interrupt - generate an interrupt at a specific time of day
+ * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
+ * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
+ * (1) and (2) above are implemented using polling at a frequency of
+ * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
+ * overhead. (DEFAULT_RTC_INT_FREQ)
+ * For (3), we use interrupts at 64Hz or user specified periodic
+ * frequency, whichever is higher.
+ */
+#include <linux/mc146818rtc.h>
+#include <linux/rtc.h>
+
+#define DEFAULT_RTC_INT_FREQ 64
+#define DEFAULT_RTC_SHIFT 6
+#define RTC_NUM_INTS 1
+
+static unsigned long hpet_rtc_flags;
+static unsigned long hpet_prev_update_sec;
+static struct rtc_time hpet_alarm_time;
+static unsigned long hpet_pie_count;
+static unsigned long hpet_t1_cmp;
+static unsigned long hpet_default_delta;
+static unsigned long hpet_pie_delta;
+static unsigned long hpet_pie_limit;
+
+/*
+ * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
+ * is not supported by all HPET implementations for timer 1.
+ *
+ * hpet_rtc_timer_init() is called when the rtc is initialized.
+ */
+int hpet_rtc_timer_init(void)
+{
+ unsigned long cfg, cnt, delta, flags;
+
+ if (!is_hpet_enabled())
+ return 0;
+
+ if (!hpet_default_delta) {
+ uint64_t clc;
+
+ clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
+ clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
+ hpet_default_delta = (unsigned long) clc;
+ }
+
+ if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
+ delta = hpet_default_delta;
+ else
+ delta = hpet_pie_delta;
+
+ local_irq_save(flags);
+
+ cnt = delta + hpet_readl(HPET_COUNTER);
+ hpet_writel(cnt, HPET_T1_CMP);
+ hpet_t1_cmp = cnt;
+
+ cfg = hpet_readl(HPET_T1_CFG);
+ cfg &= ~HPET_TN_PERIODIC;
+ cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
+ hpet_writel(cfg, HPET_T1_CFG);
+
+ local_irq_restore(flags);
+
+ return 1;
+}
+
+/*
+ * The functions below are called from rtc driver.
+ * Return 0 if HPET is not being used.
+ * Otherwise do the necessary changes and return 1.
+ */
+int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
+{
+ if (!is_hpet_enabled())
+ return 0;
+
+ hpet_rtc_flags &= ~bit_mask;
+ return 1;
+}
+
+int hpet_set_rtc_irq_bit(unsigned long bit_mask)
+{
+ unsigned long oldbits = hpet_rtc_flags;
+
+ if (!is_hpet_enabled())
+ return 0;
+
+ hpet_rtc_flags |= bit_mask;
+
+ if (!oldbits)
+ hpet_rtc_timer_init();
+
+ return 1;
+}
+
+int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
+ unsigned char sec)
+{
+ if (!is_hpet_enabled())
+ return 0;
+
+ hpet_alarm_time.tm_hour = hrs;
+ hpet_alarm_time.tm_min = min;
+ hpet_alarm_time.tm_sec = sec;
+
+ return 1;
+}
+
+int hpet_set_periodic_freq(unsigned long freq)
+{
+ uint64_t clc;
+
+ if (!is_hpet_enabled())
+ return 0;
+
+ if (freq <= DEFAULT_RTC_INT_FREQ)
+ hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
+ else {
+ clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
+ do_div(clc, freq);
+ clc >>= hpet_clockevent.shift;
+ hpet_pie_delta = (unsigned long) clc;
+ }
+ return 1;
+}
+
+int hpet_rtc_dropped_irq(void)
+{
+ return is_hpet_enabled();
+}
+
+static void hpet_rtc_timer_reinit(void)
+{
+ unsigned long cfg, delta;
+ int lost_ints = -1;
+
+ if (unlikely(!hpet_rtc_flags)) {
+ cfg = hpet_readl(HPET_T1_CFG);
+ cfg &= ~HPET_TN_ENABLE;
+ hpet_writel(cfg, HPET_T1_CFG);
+ return;
+ }
+
+ if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
+ delta = hpet_default_delta;
+ else
+ delta = hpet_pie_delta;
+
+ /*
+ * Increment the comparator value until we are ahead of the
+ * current count.
+ */
+ do {
+ hpet_t1_cmp += delta;
+ hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
+ lost_ints++;
+ } while ((long)(hpet_readl(HPET_COUNTER) - hpet_t1_cmp) > 0);
+
+ if (lost_ints) {
+ if (hpet_rtc_flags & RTC_PIE)
+ hpet_pie_count += lost_ints;
+ if (printk_ratelimit())
+ printk(KERN_WARNING "rtc: lost %d interrupts\n",
+ lost_ints);
+ }
+}
+
+irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
+{
+ struct rtc_time curr_time;
+ unsigned long rtc_int_flag = 0;
+
+ hpet_rtc_timer_reinit();
+
+ if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
+ rtc_get_rtc_time(&curr_time);
+
+ if (hpet_rtc_flags & RTC_UIE &&
+ curr_time.tm_sec != hpet_prev_update_sec) {
+ rtc_int_flag = RTC_UF;
+ hpet_prev_update_sec = curr_time.tm_sec;
+ }
+
+ if (hpet_rtc_flags & RTC_PIE &&
+ ++hpet_pie_count >= hpet_pie_limit) {
+ rtc_int_flag |= RTC_PF;
+ hpet_pie_count = 0;
+ }
+
+ if (hpet_rtc_flags & RTC_PIE &&
+ (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
+ (curr_time.tm_min == hpet_alarm_time.tm_min) &&
+ (curr_time.tm_hour == hpet_alarm_time.tm_hour))
+ rtc_int_flag |= RTC_AF;
+
+ if (rtc_int_flag) {
+ rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
+ rtc_interrupt(rtc_int_flag, dev_id);
+ }
+ return IRQ_HANDLED;
+}
+#endif