about teaching compiler techniques and LLVM specifically, *not* about
teaching modern and sane software engineering principles. In practice,
this means that we'll take a number of shortcuts to simplify the
-exposition. For example, the code leaks memory, uses global variables
+exposition. For example, the code uses global variables
all over the place, doesn't use nice design patterns like
`visitors <http://en.wikipedia.org/wiki/Visitor_pattern>`_, etc... but
it is very simple. If you dig in and use the code as a basis for future
class NumberExprAST : public ExprAST {
double Val;
public:
- NumberExprAST(double val) : Val(val) {}
+ NumberExprAST(double Val) : Val(Val) {}
};
The code above shows the definition of the base ExprAST class and one
class VariableExprAST : public ExprAST {
std::string Name;
public:
- VariableExprAST(const std::string &name) : Name(name) {}
+ VariableExprAST(const std::string &Name) : Name(Name) {}
};
/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
char Op;
- ExprAST *LHS, *RHS;
+ std::unique_ptr<ExprAST> LHS, RHS;
public:
- BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
- : Op(op), LHS(lhs), RHS(rhs) {}
+ BinaryExprAST(char op, std::unique_ptr<ExprAST> LHS,
+ std::unique_ptr<ExprAST> RHS)
+ : Op(op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
};
/// CallExprAST - Expression class for function calls.
std::string Callee;
std::vector<ExprAST*> Args;
public:
- CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
- : Callee(callee), Args(args) {}
+ CallExprAST(const std::string &Callee,
+ std::vector<std::unique_ptr<ExprAST>> Args)
+ : Callee(Callee), Args(std::move(Args)) {}
};
This is all (intentionally) rather straight-forward: variables capture
std::string Name;
std::vector<std::string> Args;
public:
- PrototypeAST(const std::string &name, const std::vector<std::string> &args)
- : Name(name), Args(args) {}
+ PrototypeAST(const std::string &name, std::vector<std::string> Args)
+ : Name(name), Args(std::move(Args)) {}
};
/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
- PrototypeAST *Proto;
- ExprAST *Body;
+ std::unique_ptr<PrototypeAST> Proto;
+ std::unique_ptr<ExprAST> Body;
public:
- FunctionAST(PrototypeAST *proto, ExprAST *body)
- : Proto(proto), Body(body) {}
+ FunctionAST(std::unique_ptr<PrototypeAST> Proto,
+ std::unique_ptr<ExprAST> Body)
+ : Proto(std::move(Proto)), Body(std::move(Body)) {}
};
In Kaleidoscope, functions are typed with just a count of their
.. code-block:: c++
- ExprAST *X = new VariableExprAST("x");
- ExprAST *Y = new VariableExprAST("y");
- ExprAST *Result = new BinaryExprAST('+', X, Y);
+ auto LHS = llvm::make_unique<VariableExprAST>("x");
+ auto RHS = llvm::make_unique<VariableExprAST>("y");
+ auto Result = std::make_unique<BinaryExprAST>('+', std::move(LHS),
+ std::move(RHS));
In order to do this, we'll start by defining some basic helper routines:
.. code-block:: c++
/// numberexpr ::= number
- static ExprAST *ParseNumberExpr() {
- ExprAST *Result = new NumberExprAST(NumVal);
+ static std::unique_ptr<ExprAST> ParseNumberExpr() {
+ auto Result = llvm::make_unique<NumberExprAST>(NumVal);
getNextToken(); // consume the number
- return Result;
+ return std::move(Result);
}
This routine is very simple: it expects to be called when the current
.. code-block:: c++
/// parenexpr ::= '(' expression ')'
- static ExprAST *ParseParenExpr() {
+ static std::unique_ptr<ExprAST> ParseParenExpr() {
getNextToken(); // eat (.
- ExprAST *V = ParseExpression();
- if (!V) return 0;
+ auto V = ParseExpression();
+ if (!V) return nullptr;
if (CurTok != ')')
return Error("expected ')'");
/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
- static ExprAST *ParseIdentifierExpr() {
+ static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.
if (CurTok != '(') // Simple variable ref.
- return new VariableExprAST(IdName);
+ return llvm::make_unique<VariableExprAST>(IdName);
// Call.
getNextToken(); // eat (
- std::vector<ExprAST*> Args;
+ std::vector<std::unique_ptr<ExprAST>> Args;
if (CurTok != ')') {
while (1) {
- ExprAST *Arg = ParseExpression();
- if (!Arg) return 0;
- Args.push_back(Arg);
+ auto Arg = ParseExpression();
+ if (!Arg) return nullptr;
+ Args.push_back(std::move(Arg));
if (CurTok == ')') break;
// Eat the ')'.
getNextToken();
- return new CallExprAST(IdName, Args);
+ return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}
This routine follows the same style as the other routines. (It expects
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
- static ExprAST *ParsePrimary() {
+ static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default: return Error("unknown token when expecting an expression");
case tok_identifier: return ParseIdentifierExpr();
/// expression
/// ::= primary binoprhs
///
- static ExprAST *ParseExpression() {
- ExprAST *LHS = ParsePrimary();
- if (!LHS) return 0;
+ static std::unique_ptr<ExprAST> ParseExpression() {
+ auto LHS = ParsePrimary();
+ if (!LHS) return nullptr;
- return ParseBinOpRHS(0, LHS);
+ return ParseBinOpRHS(0, std::move(LHS));
}
``ParseBinOpRHS`` is the function that parses the sequence of pairs for
/// binoprhs
/// ::= ('+' primary)*
- static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+ static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
+ std::unique_ptr<ExprAST> LHS) {
// If this is a binop, find its precedence.
while (1) {
int TokPrec = GetTokPrecedence();
getNextToken(); // eat binop
// Parse the primary expression after the binary operator.
- ExprAST *RHS = ParsePrimary();
- if (!RHS) return 0;
+ auto RHS = ParsePrimary();
+ if (!RHS) return nullptr;
As such, this code eats (and remembers) the binary operator and then
parses the primary expression that follows. This builds up the whole
}
// Merge LHS/RHS.
- LHS = new BinaryExprAST(BinOp, LHS, RHS);
+ LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS),
+ std::move(RHS));
} // loop around to the top of the while loop.
}
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {
- RHS = ParseBinOpRHS(TokPrec+1, RHS);
+ RHS = ParseBinOpRHS(TokPrec+1, std::move(RHS));
if (RHS == 0) return 0;
}
// Merge LHS/RHS.
- LHS = new BinaryExprAST(BinOp, LHS, RHS);
+ LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS),
+ std::move(RHS));
} // loop around to the top of the while loop.
}
/// prototype
/// ::= id '(' id* ')'
- static PrototypeAST *ParsePrototype() {
+ static std::unique_ptr<PrototypeAST> ParsePrototype() {
if (CurTok != tok_identifier)
return ErrorP("Expected function name in prototype");
// success.
getNextToken(); // eat ')'.
- return new PrototypeAST(FnName, ArgNames);
+ return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames));
}
Given this, a function definition is very simple, just a prototype plus
.. code-block:: c++
/// definition ::= 'def' prototype expression
- static FunctionAST *ParseDefinition() {
+ static std::unique_ptr<FunctionAST> ParseDefinition() {
getNextToken(); // eat def.
- PrototypeAST *Proto = ParsePrototype();
- if (Proto == 0) return 0;
+ auto Proto = ParsePrototype();
+ if (!Proto) return nullptr;
- if (ExprAST *E = ParseExpression())
- return new FunctionAST(Proto, E);
- return 0;
+ if (auto E = ParseExpression())
+ return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
+ return nullptr;
}
In addition, we support 'extern' to declare functions like 'sin' and
.. code-block:: c++
/// external ::= 'extern' prototype
- static PrototypeAST *ParseExtern() {
+ static std::unique_ptr<PrototypeAST> ParseExtern() {
getNextToken(); // eat extern.
return ParsePrototype();
}
.. code-block:: c++
/// toplevelexpr ::= expression
- static FunctionAST *ParseTopLevelExpr() {
- if (ExprAST *E = ParseExpression()) {
+ static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
+ if (auto E = ParseExpression()) {
// Make an anonymous proto.
- PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
- return new FunctionAST(Proto, E);
+ auto Proto = llvm::make_unique<PrototypeAST>("", std::vector<std::string>());
+ return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
}
- return 0;
+ return nullptr;
}
Now that we have all the pieces, let's build a little driver that will
class NumberExprAST : public ExprAST {
double Val;
public:
- NumberExprAST(double val) : Val(val) {}
+ NumberExprAST(double Val) : Val(Val) {}
virtual Value *Codegen();
};
...
static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
- if (FunctionAST *F = ParseTopLevelExpr()) {
- if (Function *LF = F->Codegen()) {
- LF->dump(); // Dump the function for exposition purposes.
+ if (auto FnAST = ParseTopLevelExpr()) {
+ if (auto *FnIR = FnAST->Codegen()) {
+ FnIR->dump(); // Dump the function for exposition purposes.
// JIT the function, returning a function pointer.
- void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
+ void *FPtr = TheExecutionEngine->getPointerToFunction(FnIR);
// Cast it to the right type (takes no arguments, returns a double) so we
// can call it as a native function.
/// IfExprAST - Expression class for if/then/else.
class IfExprAST : public ExprAST {
- ExprAST *Cond, *Then, *Else;
+ std::unique<ExprAST> Cond, Then, Else;
public:
- IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
- : Cond(cond), Then(then), Else(_else) {}
+ IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
+ std::unique_ptr<ExprAST> Else)
+ : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
virtual Value *Codegen();
};
.. code-block:: c++
/// ifexpr ::= 'if' expression 'then' expression 'else' expression
- static ExprAST *ParseIfExpr() {
+ static std::unique_ptr<ExprAST> ParseIfExpr() {
getNextToken(); // eat the if.
// condition.
- ExprAST *Cond = ParseExpression();
- if (!Cond) return 0;
+ auto Cond = ParseExpression();
+ if (!Cond) return nullptr;
if (CurTok != tok_then)
return Error("expected then");
getNextToken(); // eat the then
- ExprAST *Then = ParseExpression();
- if (Then == 0) return 0;
+ auto Then = ParseExpression();
+ if (Then) return nullptr;
if (CurTok != tok_else)
return Error("expected else");
getNextToken();
- ExprAST *Else = ParseExpression();
- if (!Else) return 0;
+ auto Else = ParseExpression();
+ if (!Else) return nullptr;
- return new IfExprAST(Cond, Then, Else);
+ return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
+ std::move(Else));
}
Next we hook it up as a primary expression:
.. code-block:: c++
- static ExprAST *ParsePrimary() {
+ static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default: return Error("unknown token when expecting an expression");
case tok_identifier: return ParseIdentifierExpr();
Value *IfExprAST::Codegen() {
Value *CondV = Cond->Codegen();
- if (CondV == 0) return 0;
+ if (!CondV) return nullptr;
// Convert condition to a bool by comparing equal to 0.0.
CondV = Builder.CreateFCmpONE(CondV,
/// ForExprAST - Expression class for for/in.
class ForExprAST : public ExprAST {
std::string VarName;
- ExprAST *Start, *End, *Step, *Body;
+ std::unique_ptr<ExprAST> Start, End, Step, Body;
public:
- ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
- ExprAST *step, ExprAST *body)
- : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
+ ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
+ std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
+ std::unique_ptr<ExprAST> Body)
+ : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
+ Step(std::move(Step)), Body(std::move(Body)) {}
virtual Value *Codegen();
};
.. code-block:: c++
/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
- static ExprAST *ParseForExpr() {
+ static std::unique_ptr<ExprAST> ParseForExpr() {
getNextToken(); // eat the for.
if (CurTok != tok_identifier)
getNextToken(); // eat '='.
- ExprAST *Start = ParseExpression();
- if (Start == 0) return 0;
+ auto Start = ParseExpression();
+ if (!Start) return nullptr;
if (CurTok != ',')
return Error("expected ',' after for start value");
getNextToken();
- ExprAST *End = ParseExpression();
- if (End == 0) return 0;
+ auto End = ParseExpression();
+ if (!End) return nullptr;
// The step value is optional.
- ExprAST *Step = 0;
+ std::unique_ptr<ExprAST> Step;
if (CurTok == ',') {
getNextToken();
Step = ParseExpression();
- if (Step == 0) return 0;
+ if (!Step) return nullptr;
}
if (CurTok != tok_in)
return Error("expected 'in' after for");
getNextToken(); // eat 'in'.
- ExprAST *Body = ParseExpression();
- if (Body == 0) return 0;
+ auto Body = ParseExpression();
+ if (!Body) return nullptr;
- return new ForExprAST(IdName, Start, End, Step, Body);
+ return llvm::make_unique<ForExprAST>(IdName, std::move(Start),
+ std::move(End), std::move(Step),
+ std::move(Body));
}
LLVM IR for the 'for' Loop
class PrototypeAST {
std::string Name;
std::vector<std::string> Args;
- bool isOperator;
+ bool IsOperator;
unsigned Precedence; // Precedence if a binary op.
public:
- PrototypeAST(const std::string &name, const std::vector<std::string> &args,
- bool isoperator = false, unsigned prec = 0)
- : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
+ PrototypeAST(const std::string &name, std::vector<std::string> Args,
+ bool IsOperator = false, unsigned Prec = 0)
+ : Name(name), Args(std::move(Args)), IsOperator(IsOperator),
+ Precedence(Prec) {}
- bool isUnaryOp() const { return isOperator && Args.size() == 1; }
- bool isBinaryOp() const { return isOperator && Args.size() == 2; }
+ bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
+ bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
char getOperatorName() const {
assert(isUnaryOp() || isBinaryOp());
/// prototype
/// ::= id '(' id* ')'
/// ::= binary LETTER number? (id, id)
- static PrototypeAST *ParsePrototype() {
+ static std::unique_ptr<PrototypeAST> ParsePrototype() {
std::string FnName;
unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
if (Kind && ArgNames.size() != Kind)
return ErrorP("Invalid number of operands for operator");
- return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
+ return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames),
+ Kind != 0, BinaryPrecedence);
}
This is all fairly straightforward parsing code, and we have already
/// UnaryExprAST - Expression class for a unary operator.
class UnaryExprAST : public ExprAST {
char Opcode;
- ExprAST *Operand;
+ std::unique_ptr<ExprAST> Operand;
public:
- UnaryExprAST(char opcode, ExprAST *operand)
- : Opcode(opcode), Operand(operand) {}
+ UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
+ : Opcode(Opcode), Operand(std::move(Operand)) {}
virtual Value *Codegen();
};
/// unary
/// ::= primary
/// ::= '!' unary
- static ExprAST *ParseUnary() {
+ static std::unique_ptr<ExprAST> ParseUnary() {
// If the current token is not an operator, it must be a primary expr.
if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
return ParsePrimary();
// If this is a unary operator, read it.
int Opc = CurTok;
getNextToken();
- if (ExprAST *Operand = ParseUnary())
- return new UnaryExprAST(Opc, Operand);
- return 0;
+ if (auto Operand = ParseUnary())
+ return llvm::unique_ptr<UnaryExprAST>(Opc, std::move(Operand));
+ return nullptr;
}
The grammar we add is pretty straightforward here. If we see a unary
/// binoprhs
/// ::= ('+' unary)*
- static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+ static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
+ std::unique_ptr<ExprAST> LHS) {
...
// Parse the unary expression after the binary operator.
- ExprAST *RHS = ParseUnary();
- if (!RHS) return 0;
+ auto RHS = ParseUnary();
+ if (!RHS) return nullptr;
...
}
/// expression
/// ::= unary binoprhs
///
- static ExprAST *ParseExpression() {
- ExprAST *LHS = ParseUnary();
- if (!LHS) return 0;
+ static std::unique_ptr<ExprAST> ParseExpression() {
+ auto LHS = ParseUnary();
+ if (!LHS) return nullptr;
- return ParseBinOpRHS(0, LHS);
+ return ParseBinOpRHS(0, std::move(LHS));
}
With these two simple changes, we are now able to parse unary operators
/// ::= id '(' id* ')'
/// ::= binary LETTER number? (id, id)
/// ::= unary LETTER (id)
- static PrototypeAST *ParsePrototype() {
+ static std::unique_ptr<PrototypeAST> ParsePrototype() {
std::string FnName;
unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
// Special case '=' because we don't want to emit the LHS as an expression.
if (Op == '=') {
// Assignment requires the LHS to be an identifier.
- VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS);
+ VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS.get());
if (!LHSE)
return ErrorV("destination of '=' must be a variable");
/// VarExprAST - Expression class for var/in
class VarExprAST : public ExprAST {
- std::vector<std::pair<std::string, ExprAST*> > VarNames;
- ExprAST *Body;
+ std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
+ std::unique_ptr<ExprAST> Body;
public:
- VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
- ExprAST *body)
- : VarNames(varnames), Body(body) {}
+ VarExprAST(std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
+ std::unique_ptr<ExprAST> body)
+ : VarNames(std::move(VarNames)), Body(std::move(Body)) {}
virtual Value *Codegen();
};
/// ::= ifexpr
/// ::= forexpr
/// ::= varexpr
- static ExprAST *ParsePrimary() {
+ static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default: return Error("unknown token when expecting an expression");
case tok_identifier: return ParseIdentifierExpr();
/// varexpr ::= 'var' identifier ('=' expression)?
// (',' identifier ('=' expression)?)* 'in' expression
- static ExprAST *ParseVarExpr() {
+ static std::unique_ptr<ExprAST> ParseVarExpr() {
getNextToken(); // eat the var.
- std::vector<std::pair<std::string, ExprAST*> > VarNames;
+ std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
// At least one variable name is required.
if (CurTok != tok_identifier)
getNextToken(); // eat identifier.
// Read the optional initializer.
- ExprAST *Init = 0;
+ std::unique_ptr<ExprAST> Init;
if (CurTok == '=') {
getNextToken(); // eat the '='.
Init = ParseExpression();
- if (Init == 0) return 0;
+ if (!Init) return nullptr;
}
- VarNames.push_back(std::make_pair(Name, Init));
+ VarNames.push_back(std::make_pair(Name, std::move(Init)));
// End of var list, exit loop.
if (CurTok != ',') break;
return Error("expected 'in' keyword after 'var'");
getNextToken(); // eat 'in'.
- ExprAST *Body = ParseExpression();
- if (Body == 0) return 0;
+ auto Body = ParseExpression();
+ if (!Body) return nullptr;
- return new VarExprAST(VarNames, Body);
+ return llvm::make_unique<VarExprAST>(std::move(VarNames),
+ std::move(Body));
}
Now that we can parse and represent the code, we need to support
// Register all variables and emit their initializer.
for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
const std::string &VarName = VarNames[i].first;
- ExprAST *Init = VarNames[i].second;
+ ExprAST *Init = VarNames[i].second.get();
Basically it loops over all the variables, installing them one at a
time. For each variable we put into the symbol table, we remember the
.. code-block:: udiff
- - PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
- + PrototypeAST *Proto = new PrototypeAST("main", std::vector<std::string>());
+ - auto Proto = llvm::make_unique<PrototypeAST>("", std::vector<std::string>());
+ + auto Proto = llvm::make_unique<PrototypeAST>("main", std::vector<std::string>());
just with the simple change of giving it a name.
@@ -1108,17 +1108,8 @@ static void HandleExtern() {
static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
- if (FunctionAST *F = ParseTopLevelExpr()) {
- - if (Function *LF = F->Codegen()) {
+ if (auto FnAST = ParseTopLevelExpr()) {
+ - if (auto *FnIR = FnAST->Codegen()) {
- // We're just doing this to make sure it executes.
- TheExecutionEngine->finalizeObject();
- // JIT the function, returning a function pointer.
- - void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
+ - void *FPtr = TheExecutionEngine->getPointerToFunction(FnIR);
-
- // Cast it to the right type (takes no arguments, returns a double) so we
- // can call it as a native function.
.. code-block:: c++
- LHS = new BinaryExprAST(BinLoc, BinOp, LHS, RHS);
+ LHS = llvm::make_unique<BinaryExprAST>(BinLoc, BinOp, std::move(LHS),
+ std::move(RHS));
giving us locations for each of our expressions and variables.
+#include "llvm/ADT/STLExtras.h"
#include <cctype>
#include <cstdio>
-#include <cstdlib>
#include <map>
#include <string>
#include <vector>
/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
public:
- NumberExprAST(double val) {}
+ NumberExprAST(double Val) {}
};
/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
std::string Name;
public:
- VariableExprAST(const std::string &name) : Name(name) {}
+ VariableExprAST(const std::string &Name) : Name(Name) {}
};
/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
public:
- BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) {}
+ BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
+ std::unique_ptr<ExprAST> RHS) {}
};
/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
std::string Callee;
- std::vector<ExprAST*> Args;
+ std::vector<std::unique_ptr<ExprAST>> Args;
public:
- CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
- : Callee(callee), Args(args) {}
+ CallExprAST(const std::string &Callee,
+ std::vector<std::unique_ptr<ExprAST>> Args)
+ : Callee(Callee), Args(std::move(Args)) {}
};
/// PrototypeAST - This class represents the "prototype" for a function,
std::string Name;
std::vector<std::string> Args;
public:
- PrototypeAST(const std::string &name, const std::vector<std::string> &args)
- : Name(name), Args(args) {}
+ PrototypeAST(const std::string &Name, std::vector<std::string> Args)
+ : Name(Name), Args(std::move(Args)) {}
};
/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
public:
- FunctionAST(PrototypeAST *proto, ExprAST *body) {}
+ FunctionAST(std::unique_ptr<PrototypeAST> Proto,
+ std::unique_ptr<ExprAST> Body) {}
};
} // end anonymous namespace
}
/// Error* - These are little helper functions for error handling.
-ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
-PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
+std::unique_ptr<ExprAST> Error(const char *Str) {
+ fprintf(stderr, "Error: %s\n", Str);
+ return nullptr;
+}
+std::unique_ptr<PrototypeAST> ErrorP(const char *Str) {
+ Error(Str);
+ return nullptr;
+}
-static ExprAST *ParseExpression();
+static std::unique_ptr<ExprAST> ParseExpression();
/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
-static ExprAST *ParseIdentifierExpr() {
+static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.
if (CurTok != '(') // Simple variable ref.
- return new VariableExprAST(IdName);
+ return llvm::make_unique<VariableExprAST>(IdName);
// Call.
getNextToken(); // eat (
- std::vector<ExprAST*> Args;
+ std::vector<std::unique_ptr<ExprAST>> Args;
if (CurTok != ')') {
while (1) {
- ExprAST *Arg = ParseExpression();
- if (!Arg) return 0;
- Args.push_back(Arg);
+ if (auto Arg = ParseExpression())
+ Args.push_back(std::move(Arg));
+ else
+ return nullptr;
if (CurTok == ')') break;
// Eat the ')'.
getNextToken();
- return new CallExprAST(IdName, Args);
+ return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}
/// numberexpr ::= number
-static ExprAST *ParseNumberExpr() {
- ExprAST *Result = new NumberExprAST(NumVal);
+static std::unique_ptr<ExprAST> ParseNumberExpr() {
+ auto Result = llvm::make_unique<NumberExprAST>(NumVal);
getNextToken(); // consume the number
- return Result;
+ return std::move(Result);
}
/// parenexpr ::= '(' expression ')'
-static ExprAST *ParseParenExpr() {
+static std::unique_ptr<ExprAST> ParseParenExpr() {
getNextToken(); // eat (.
- ExprAST *V = ParseExpression();
- if (!V) return 0;
+ auto V = ParseExpression();
+ if (!V)
+ return nullptr;
if (CurTok != ')')
return Error("expected ')'");
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
-static ExprAST *ParsePrimary() {
+static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default: return Error("unknown token when expecting an expression");
case tok_identifier: return ParseIdentifierExpr();
/// binoprhs
/// ::= ('+' primary)*
-static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
+ std::unique_ptr<ExprAST> LHS) {
// If this is a binop, find its precedence.
while (1) {
int TokPrec = GetTokPrecedence();
getNextToken(); // eat binop
// Parse the primary expression after the binary operator.
- ExprAST *RHS = ParsePrimary();
- if (!RHS) return 0;
+ auto RHS = ParsePrimary();
+ if (!RHS) return nullptr;
// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {
- RHS = ParseBinOpRHS(TokPrec+1, RHS);
- if (RHS == 0) return 0;
+ RHS = ParseBinOpRHS(TokPrec+1, std::move(RHS));
+ if (!RHS) return nullptr;
}
// Merge LHS/RHS.
- LHS = new BinaryExprAST(BinOp, LHS, RHS);
+ LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS),
+ std::move(RHS));
}
}
/// expression
/// ::= primary binoprhs
///
-static ExprAST *ParseExpression() {
- ExprAST *LHS = ParsePrimary();
- if (!LHS) return 0;
+static std::unique_ptr<ExprAST> ParseExpression() {
+ auto LHS = ParsePrimary();
+ if (!LHS) return nullptr;
- return ParseBinOpRHS(0, LHS);
+ return ParseBinOpRHS(0, std::move(LHS));
}
/// prototype
/// ::= id '(' id* ')'
-static PrototypeAST *ParsePrototype() {
+static std::unique_ptr<PrototypeAST> ParsePrototype() {
if (CurTok != tok_identifier)
return ErrorP("Expected function name in prototype");
// success.
getNextToken(); // eat ')'.
- return new PrototypeAST(FnName, ArgNames);
+ return llvm::make_unique<PrototypeAST>(std::move(FnName),
+ std::move(ArgNames));
}
/// definition ::= 'def' prototype expression
-static FunctionAST *ParseDefinition() {
+static std::unique_ptr<FunctionAST> ParseDefinition() {
getNextToken(); // eat def.
- PrototypeAST *Proto = ParsePrototype();
- if (Proto == 0) return 0;
+ auto Proto = ParsePrototype();
+ if (!Proto) return nullptr;
- if (ExprAST *E = ParseExpression())
- return new FunctionAST(Proto, E);
- return 0;
+ if (auto E = ParseExpression())
+ return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
+ return nullptr;
}
/// toplevelexpr ::= expression
-static FunctionAST *ParseTopLevelExpr() {
- if (ExprAST *E = ParseExpression()) {
+static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
+ if (auto E = ParseExpression()) {
// Make an anonymous proto.
- PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
- return new FunctionAST(Proto, E);
+ auto Proto = llvm::make_unique<PrototypeAST>("",
+ std::vector<std::string>());
+ return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
}
- return 0;
+ return nullptr;
}
/// external ::= 'extern' prototype
-static PrototypeAST *ParseExtern() {
+static std::unique_ptr<PrototypeAST> ParseExtern() {
getNextToken(); // eat extern.
return ParsePrototype();
}
+#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/Verifier.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
class NumberExprAST : public ExprAST {
double Val;
public:
- NumberExprAST(double val) : Val(val) {}
+ NumberExprAST(double Val) : Val(Val) {}
Value *Codegen() override;
};
class VariableExprAST : public ExprAST {
std::string Name;
public:
- VariableExprAST(const std::string &name) : Name(name) {}
+ VariableExprAST(const std::string &Name) : Name(Name) {}
Value *Codegen() override;
};
/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
char Op;
- ExprAST *LHS, *RHS;
+ std::unique_ptr<ExprAST> LHS, RHS;
public:
- BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
- : Op(op), LHS(lhs), RHS(rhs) {}
+ BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
+ std::unique_ptr<ExprAST> RHS)
+ : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
Value *Codegen() override;
};
/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
std::string Callee;
- std::vector<ExprAST*> Args;
+ std::vector<std::unique_ptr<ExprAST>> Args;
public:
- CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
- : Callee(callee), Args(args) {}
+ CallExprAST(const std::string &Callee,
+ std::vector<std::unique_ptr<ExprAST>> Args)
+ : Callee(Callee), Args(std::move(Args)) {}
Value *Codegen() override;
};
std::string Name;
std::vector<std::string> Args;
public:
- PrototypeAST(const std::string &name, const std::vector<std::string> &args)
- : Name(name), Args(args) {}
+ PrototypeAST(const std::string &Name, std::vector<std::string> Args)
+ : Name(Name), Args(std::move(Args)) {}
Function *Codegen();
};
/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
- PrototypeAST *Proto;
- ExprAST *Body;
+ std::unique_ptr<PrototypeAST> Proto;
+ std::unique_ptr<ExprAST> Body;
public:
- FunctionAST(PrototypeAST *proto, ExprAST *body)
- : Proto(proto), Body(body) {}
+ FunctionAST(std::unique_ptr<PrototypeAST> Proto,
+ std::unique_ptr<ExprAST> Body)
+ : Proto(std::move(Proto)), Body(std::move(Body)) {}
Function *Codegen();
};
}
/// Error* - These are little helper functions for error handling.
-ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
-PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
-FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
+std::unique_ptr<ExprAST> Error(const char *Str) {
+ fprintf(stderr, "Error: %s\n", Str);
+ return nullptr;
+}
+std::unique_ptr<PrototypeAST> ErrorP(const char *Str) {
+ Error(Str);
+ return nullptr;
+}
+std::unique_ptr<FunctionAST> ErrorF(const char *Str) {
+ Error(Str);
+ return nullptr;
+}
-static ExprAST *ParseExpression();
+static std::unique_ptr<ExprAST> ParseExpression();
/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
-static ExprAST *ParseIdentifierExpr() {
+static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.
if (CurTok != '(') // Simple variable ref.
- return new VariableExprAST(IdName);
+ return llvm::make_unique<VariableExprAST>(IdName);
// Call.
getNextToken(); // eat (
- std::vector<ExprAST*> Args;
+ std::vector<std::unique_ptr<ExprAST>> Args;
if (CurTok != ')') {
while (1) {
- ExprAST *Arg = ParseExpression();
- if (!Arg) return 0;
- Args.push_back(Arg);
+ if (auto Arg = ParseExpression())
+ Args.push_back(std::move(Arg));
+ else
+ return nullptr;
if (CurTok == ')') break;
// Eat the ')'.
getNextToken();
- return new CallExprAST(IdName, Args);
+ return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}
/// numberexpr ::= number
-static ExprAST *ParseNumberExpr() {
- ExprAST *Result = new NumberExprAST(NumVal);
+static std::unique_ptr<ExprAST> ParseNumberExpr() {
+ auto Result = llvm::make_unique<NumberExprAST>(NumVal);
getNextToken(); // consume the number
- return Result;
+ return std::move(Result);
}
/// parenexpr ::= '(' expression ')'
-static ExprAST *ParseParenExpr() {
+static std::unique_ptr<ExprAST> ParseParenExpr() {
getNextToken(); // eat (.
- ExprAST *V = ParseExpression();
- if (!V) return 0;
+ auto V = ParseExpression();
+ if (!V)
+ return nullptr;
if (CurTok != ')')
return Error("expected ')'");
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
-static ExprAST *ParsePrimary() {
+static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default: return Error("unknown token when expecting an expression");
case tok_identifier: return ParseIdentifierExpr();
/// binoprhs
/// ::= ('+' primary)*
-static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
+ std::unique_ptr<ExprAST> LHS) {
// If this is a binop, find its precedence.
while (1) {
int TokPrec = GetTokPrecedence();
getNextToken(); // eat binop
// Parse the primary expression after the binary operator.
- ExprAST *RHS = ParsePrimary();
- if (!RHS) return 0;
+ auto RHS = ParsePrimary();
+ if (!RHS) return nullptr;
// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {
- RHS = ParseBinOpRHS(TokPrec+1, RHS);
- if (RHS == 0) return 0;
+ RHS = ParseBinOpRHS(TokPrec+1, std::move(RHS));
+ if (!RHS) return nullptr;
}
// Merge LHS/RHS.
- LHS = new BinaryExprAST(BinOp, LHS, RHS);
+ LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS),
+ std::move(RHS));
}
}
/// expression
/// ::= primary binoprhs
///
-static ExprAST *ParseExpression() {
- ExprAST *LHS = ParsePrimary();
- if (!LHS) return 0;
+static std::unique_ptr<ExprAST> ParseExpression() {
+ auto LHS = ParsePrimary();
+ if (!LHS) return nullptr;
- return ParseBinOpRHS(0, LHS);
+ return ParseBinOpRHS(0, std::move(LHS));
}
/// prototype
/// ::= id '(' id* ')'
-static PrototypeAST *ParsePrototype() {
+static std::unique_ptr<PrototypeAST> ParsePrototype() {
if (CurTok != tok_identifier)
return ErrorP("Expected function name in prototype");
// success.
getNextToken(); // eat ')'.
- return new PrototypeAST(FnName, ArgNames);
+ return llvm::make_unique<PrototypeAST>(std::move(FnName),
+ std::move(ArgNames));
}
/// definition ::= 'def' prototype expression
-static FunctionAST *ParseDefinition() {
+static std::unique_ptr<FunctionAST> ParseDefinition() {
getNextToken(); // eat def.
- PrototypeAST *Proto = ParsePrototype();
- if (Proto == 0) return 0;
+ auto Proto = ParsePrototype();
+ if (!Proto) return nullptr;
- if (ExprAST *E = ParseExpression())
- return new FunctionAST(Proto, E);
- return 0;
+ if (auto E = ParseExpression())
+ return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
+ return nullptr;
}
/// toplevelexpr ::= expression
-static FunctionAST *ParseTopLevelExpr() {
- if (ExprAST *E = ParseExpression()) {
+static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
+ if (auto E = ParseExpression()) {
// Make an anonymous proto.
- PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
- return new FunctionAST(Proto, E);
+ auto Proto = llvm::make_unique<PrototypeAST>("",
+ std::vector<std::string>());
+ return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
}
- return 0;
+ return nullptr;
}
/// external ::= 'extern' prototype
-static PrototypeAST *ParseExtern() {
+static std::unique_ptr<PrototypeAST> ParseExtern() {
getNextToken(); // eat extern.
return ParsePrototype();
}
static IRBuilder<> Builder(getGlobalContext());
static std::map<std::string, Value*> NamedValues;
-Value *ErrorV(const char *Str) { Error(Str); return 0; }
+Value *ErrorV(const char *Str) { Error(Str); return nullptr; }
Value *NumberExprAST::Codegen() {
return ConstantFP::get(getGlobalContext(), APFloat(Val));
Value *BinaryExprAST::Codegen() {
Value *L = LHS->Codegen();
Value *R = RHS->Codegen();
- if (L == 0 || R == 0) return 0;
+ if (!L || !R) return nullptr;
switch (Op) {
case '+': return Builder.CreateFAdd(L, R, "addtmp");
Value *CallExprAST::Codegen() {
// Look up the name in the global module table.
Function *CalleeF = TheModule->getFunction(Callee);
- if (CalleeF == 0)
+ if (!CalleeF)
return ErrorV("Unknown function referenced");
// If argument mismatch error.
std::vector<Value*> ArgsV;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
ArgsV.push_back(Args[i]->Codegen());
- if (ArgsV.back() == 0) return 0;
+ if (!ArgsV.back()) return nullptr;
}
return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
Doubles, false);
- Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
+ Function *F = Function::Create(FT, Function::ExternalLinkage, Name,
+ TheModule);
// If F conflicted, there was already something named 'Name'. If it has a
// body, don't allow redefinition or reextern.
// If F already has a body, reject this.
if (!F->empty()) {
ErrorF("redefinition of function");
- return 0;
+ return nullptr;
}
// If F took a different number of args, reject.
if (F->arg_size() != Args.size()) {
ErrorF("redefinition of function with different # args");
- return 0;
+ return nullptr;
}
}
NamedValues.clear();
Function *TheFunction = Proto->Codegen();
- if (TheFunction == 0)
- return 0;
+ if (!TheFunction)
+ return nullptr;
// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
// Error reading body, remove function.
TheFunction->eraseFromParent();
- return 0;
+ return nullptr;
}
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
static void HandleDefinition() {
- if (FunctionAST *F = ParseDefinition()) {
- if (Function *LF = F->Codegen()) {
+ if (auto FnAST = ParseDefinition()) {
+ if (auto *FnIR = FnAST->Codegen()) {
fprintf(stderr, "Read function definition:");
- LF->dump();
+ FnIR->dump();
}
} else {
// Skip token for error recovery.
}
static void HandleExtern() {
- if (PrototypeAST *P = ParseExtern()) {
- if (Function *F = P->Codegen()) {
+ if (auto ProtoAST = ParseExtern()) {
+ if (auto *FnIR = ProtoAST->Codegen()) {
fprintf(stderr, "Read extern: ");
- F->dump();
+ FnIR->dump();
}
} else {
// Skip token for error recovery.
static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
- if (FunctionAST *F = ParseTopLevelExpr()) {
- if (Function *LF = F->Codegen()) {
+ if (auto FnAST = ParseTopLevelExpr()) {
+ if (auto *FnIR = FnAST->Codegen()) {
fprintf(stderr, "Read top-level expression:");
- LF->dump();
+ FnIR->dump();
}
} else {
// Skip token for error recovery.
getNextToken();
// Make the module, which holds all the code.
- TheModule = new Module("my cool jit", Context);
+ std::unique_ptr<Module> Owner = llvm::make_unique<Module>("my cool jit", Context);
+ TheModule = Owner.get();
// Run the main "interpreter loop" now.
MainLoop();
+#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/ExecutionEngine/ExecutionEngine.h"
/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
double Val;
-
public:
- NumberExprAST(double val) : Val(val) {}
+ NumberExprAST(double Val) : Val(Val) {}
Value *Codegen() override;
};
/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
std::string Name;
-
public:
- VariableExprAST(const std::string &name) : Name(name) {}
+ VariableExprAST(const std::string &Name) : Name(Name) {}
Value *Codegen() override;
};
/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
char Op;
- ExprAST *LHS, *RHS;
-
+ std::unique_ptr<ExprAST> LHS, RHS;
public:
- BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
- : Op(op), LHS(lhs), RHS(rhs) {}
+ BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
+ std::unique_ptr<ExprAST> RHS)
+ : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
Value *Codegen() override;
};
/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
std::string Callee;
- std::vector<ExprAST *> Args;
-
+ std::vector<std::unique_ptr<ExprAST>> Args;
public:
- CallExprAST(const std::string &callee, std::vector<ExprAST *> &args)
- : Callee(callee), Args(args) {}
+ CallExprAST(const std::string &Callee,
+ std::vector<std::unique_ptr<ExprAST>> Args)
+ : Callee(Callee), Args(std::move(Args)) {}
Value *Codegen() override;
};
class PrototypeAST {
std::string Name;
std::vector<std::string> Args;
-
public:
- PrototypeAST(const std::string &name, const std::vector<std::string> &args)
- : Name(name), Args(args) {}
-
+ PrototypeAST(const std::string &name, std::vector<std::string> Args)
+ : Name(name), Args(std::move(Args)) {}
Function *Codegen();
};
/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
- PrototypeAST *Proto;
- ExprAST *Body;
-
+ std::unique_ptr<PrototypeAST> Proto;
+ std::unique_ptr<ExprAST> Body;
public:
- FunctionAST(PrototypeAST *proto, ExprAST *body) : Proto(proto), Body(body) {}
-
+ FunctionAST(std::unique_ptr<PrototypeAST> Proto,
+ std::unique_ptr<ExprAST> Body)
+ : Proto(std::move(Proto)), Body(std::move(Body)) {}
Function *Codegen();
};
} // end anonymous namespace
}
/// Error* - These are little helper functions for error handling.
-ExprAST *Error(const char *Str) {
+std::unique_ptr<ExprAST> Error(const char *Str) {
fprintf(stderr, "Error: %s\n", Str);
- return 0;
+ return nullptr;
}
-PrototypeAST *ErrorP(const char *Str) {
+std::unique_ptr<PrototypeAST> ErrorP(const char *Str) {
Error(Str);
- return 0;
+ return nullptr;
}
-FunctionAST *ErrorF(const char *Str) {
+std::unique_ptr<FunctionAST> ErrorF(const char *Str) {
Error(Str);
- return 0;
+ return nullptr;
}
-static ExprAST *ParseExpression();
+static std::unique_ptr<ExprAST> ParseExpression();
/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
-static ExprAST *ParseIdentifierExpr() {
+static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.
if (CurTok != '(') // Simple variable ref.
- return new VariableExprAST(IdName);
+ return llvm::make_unique<VariableExprAST>(IdName);
// Call.
getNextToken(); // eat (
- std::vector<ExprAST *> Args;
+ std::vector<std::unique_ptr<ExprAST>> Args;
if (CurTok != ')') {
while (1) {
- ExprAST *Arg = ParseExpression();
- if (!Arg)
- return 0;
- Args.push_back(Arg);
+ if (auto Arg = ParseExpression())
+ Args.push_back(std::move(Arg));
+ else
+ return nullptr;
if (CurTok == ')')
break;
// Eat the ')'.
getNextToken();
- return new CallExprAST(IdName, Args);
+ return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}
/// numberexpr ::= number
-static ExprAST *ParseNumberExpr() {
- ExprAST *Result = new NumberExprAST(NumVal);
+static std::unique_ptr<ExprAST> ParseNumberExpr() {
+ auto Result = llvm::make_unique<NumberExprAST>(NumVal);
getNextToken(); // consume the number
- return Result;
+ return std::move(Result);
}
/// parenexpr ::= '(' expression ')'
-static ExprAST *ParseParenExpr() {
+static std::unique_ptr<ExprAST> ParseParenExpr() {
getNextToken(); // eat (.
- ExprAST *V = ParseExpression();
+ auto V = ParseExpression();
if (!V)
- return 0;
+ return nullptr;
if (CurTok != ')')
return Error("expected ')'");
/// ::= identifierexpr
/// ::= numberexpr
/// ::= parenexpr
-static ExprAST *ParsePrimary() {
+static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default:
return Error("unknown token when expecting an expression");
/// binoprhs
/// ::= ('+' primary)*
-static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
+ std::unique_ptr<ExprAST> LHS) {
// If this is a binop, find its precedence.
while (1) {
int TokPrec = GetTokPrecedence();
getNextToken(); // eat binop
// Parse the primary expression after the binary operator.
- ExprAST *RHS = ParsePrimary();
+ auto RHS = ParsePrimary();
if (!RHS)
- return 0;
+ return nullptr;
// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {
- RHS = ParseBinOpRHS(TokPrec + 1, RHS);
- if (RHS == 0)
- return 0;
+ RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
+ if (!RHS)
+ return nullptr;
}
// Merge LHS/RHS.
- LHS = new BinaryExprAST(BinOp, LHS, RHS);
+ LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS),
+ std::move(RHS));
}
}
/// expression
/// ::= primary binoprhs
///
-static ExprAST *ParseExpression() {
- ExprAST *LHS = ParsePrimary();
+static std::unique_ptr<ExprAST> ParseExpression() {
+ auto LHS = ParsePrimary();
if (!LHS)
- return 0;
+ return nullptr;
- return ParseBinOpRHS(0, LHS);
+ return ParseBinOpRHS(0, std::move(LHS));
}
/// prototype
/// ::= id '(' id* ')'
-static PrototypeAST *ParsePrototype() {
+static std::unique_ptr<PrototypeAST> ParsePrototype() {
if (CurTok != tok_identifier)
return ErrorP("Expected function name in prototype");
// success.
getNextToken(); // eat ')'.
- return new PrototypeAST(FnName, ArgNames);
+ return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames));
}
/// definition ::= 'def' prototype expression
-static FunctionAST *ParseDefinition() {
+static std::unique_ptr<FunctionAST> ParseDefinition() {
getNextToken(); // eat def.
- PrototypeAST *Proto = ParsePrototype();
- if (Proto == 0)
- return 0;
+ auto Proto = ParsePrototype();
+ if (!Proto)
+ return nullptr;
- if (ExprAST *E = ParseExpression())
- return new FunctionAST(Proto, E);
- return 0;
+ if (auto E = ParseExpression())
+ return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
+ return nullptr;
}
/// toplevelexpr ::= expression
-static FunctionAST *ParseTopLevelExpr() {
- if (ExprAST *E = ParseExpression()) {
+static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
+ if (auto E = ParseExpression()) {
// Make an anonymous proto.
- PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
- return new FunctionAST(Proto, E);
+ auto Proto = llvm::make_unique<PrototypeAST>("",
+ std::vector<std::string>());
+ return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
}
- return 0;
+ return nullptr;
}
/// external ::= 'extern' prototype
-static PrototypeAST *ParseExtern() {
+static std::unique_ptr<PrototypeAST> ParseExtern() {
getNextToken(); // eat extern.
return ParsePrototype();
}
Function *PF = OpenModule->getFunction(FnName);
if (PF && !PF->empty()) {
ErrorF("redefinition of function across modules");
- return 0;
+ return nullptr;
}
// If we don't have a prototype yet, create one.
Value *ErrorV(const char *Str) {
Error(Str);
- return 0;
+ return nullptr;
}
Value *NumberExprAST::Codegen() {
Value *BinaryExprAST::Codegen() {
Value *L = LHS->Codegen();
Value *R = RHS->Codegen();
- if (L == 0 || R == 0)
- return 0;
+ if (!L || !R)
+ return nullptr;
switch (Op) {
case '+':
Value *CallExprAST::Codegen() {
// Look up the name in the global module table.
Function *CalleeF = JITHelper->getFunction(Callee);
- if (CalleeF == 0)
+ if (!CalleeF)
return ErrorV("Unknown function referenced");
// If argument mismatch error.
std::vector<Value *> ArgsV;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
ArgsV.push_back(Args[i]->Codegen());
- if (ArgsV.back() == 0)
- return 0;
+ if (!ArgsV.back())
+ return nullptr;
}
return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
// If F already has a body, reject this.
if (!F->empty()) {
ErrorF("redefinition of function");
- return 0;
+ return nullptr;
}
// If F took a different number of args, reject.
if (F->arg_size() != Args.size()) {
ErrorF("redefinition of function with different # args");
- return 0;
+ return nullptr;
}
}
NamedValues.clear();
Function *TheFunction = Proto->Codegen();
- if (TheFunction == 0)
- return 0;
+ if (!TheFunction)
+ return nullptr;
// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
// Error reading body, remove function.
TheFunction->eraseFromParent();
- return 0;
+ return nullptr;
}
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
static void HandleDefinition() {
- if (FunctionAST *F = ParseDefinition()) {
- if (Function *LF = F->Codegen()) {
+ if (auto FnAST = ParseDefinition()) {
+ if (auto *FnIR = FnAST->Codegen()) {
fprintf(stderr, "Read function definition:");
- LF->dump();
+ FnIR->dump();
}
} else {
// Skip token for error recovery.
}
static void HandleExtern() {
- if (PrototypeAST *P = ParseExtern()) {
- if (Function *F = P->Codegen()) {
+ if (auto ProtoAST = ParseExtern()) {
+ if (auto *FnIR = ProtoAST->Codegen()) {
fprintf(stderr, "Read extern: ");
- F->dump();
+ FnIR->dump();
}
} else {
// Skip token for error recovery.
static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
- if (FunctionAST *F = ParseTopLevelExpr()) {
- if (Function *LF = F->Codegen()) {
+ if (auto FnAST = ParseTopLevelExpr()) {
+ if (auto *FnIR = FnAST->Codegen()) {
// JIT the function, returning a function pointer.
- void *FPtr = JITHelper->getPointerToFunction(LF);
+ void *FPtr = JITHelper->getPointerToFunction(FnIR);
// Cast it to the right type (takes no arguments, returns a double) so we
// can call it as a native function.
/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
double Val;
-
public:
- NumberExprAST(double val) : Val(val) {}
+ NumberExprAST(double Val) : Val(Val) {}
Value *Codegen() override;
};
/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
std::string Name;
-
public:
- VariableExprAST(const std::string &name) : Name(name) {}
+ VariableExprAST(const std::string &Name) : Name(Name) {}
Value *Codegen() override;
};
/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
char Op;
- ExprAST *LHS, *RHS;
-
+ std::unique_ptr<ExprAST> LHS, RHS;
public:
- BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
- : Op(op), LHS(lhs), RHS(rhs) {}
+ BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
+ std::unique_ptr<ExprAST> RHS)
+ : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
Value *Codegen() override;
};
/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
std::string Callee;
- std::vector<ExprAST *> Args;
-
+ std::vector<std::unique_ptr<ExprAST>> Args;
public:
- CallExprAST(const std::string &callee, std::vector<ExprAST *> &args)
- : Callee(callee), Args(args) {}
+ CallExprAST(const std::string &Callee,
+ std::vector<std::unique_ptr<ExprAST>> Args)
+ : Callee(Callee), Args(std::move(Args)) {}
Value *Codegen() override;
};
/// IfExprAST - Expression class for if/then/else.
class IfExprAST : public ExprAST {
- ExprAST *Cond, *Then, *Else;
-
+ std::unique_ptr<ExprAST> Cond, Then, Else;
public:
- IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
- : Cond(cond), Then(then), Else(_else) {}
+ IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
+ std::unique_ptr<ExprAST> Else)
+ : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
Value *Codegen() override;
};
/// ForExprAST - Expression class for for/in.
class ForExprAST : public ExprAST {
std::string VarName;
- ExprAST *Start, *End, *Step, *Body;
-
+ std::unique_ptr<ExprAST> Start, End, Step, Body;
public:
- ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
- ExprAST *step, ExprAST *body)
- : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
+ ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
+ std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
+ std::unique_ptr<ExprAST> Body)
+ : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
+ Step(std::move(Step)), Body(std::move(Body)) {}
Value *Codegen() override;
};
class PrototypeAST {
std::string Name;
std::vector<std::string> Args;
-
public:
- PrototypeAST(const std::string &name, const std::vector<std::string> &args)
- : Name(name), Args(args) {}
-
+ PrototypeAST(const std::string &name, std::vector<std::string> Args)
+ : Name(name), Args(std::move(Args)) {}
Function *Codegen();
};
/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
- PrototypeAST *Proto;
- ExprAST *Body;
-
+ std::unique_ptr<PrototypeAST> Proto;
+ std::unique_ptr<ExprAST> Body;
public:
- FunctionAST(PrototypeAST *proto, ExprAST *body) : Proto(proto), Body(body) {}
-
+ FunctionAST(std::unique_ptr<PrototypeAST> Proto,
+ std::unique_ptr<ExprAST> Body)
+ : Proto(std::move(Proto)), Body(std::move(Body)) {}
Function *Codegen();
};
} // end anonymous namespace
}
/// Error* - These are little helper functions for error handling.
-ExprAST *Error(const char *Str) {
+std::unique_ptr<ExprAST> Error(const char *Str) {
fprintf(stderr, "Error: %s\n", Str);
- return 0;
+ return nullptr;
}
-PrototypeAST *ErrorP(const char *Str) {
+std::unique_ptr<PrototypeAST> ErrorP(const char *Str) {
Error(Str);
- return 0;
+ return nullptr;
}
-FunctionAST *ErrorF(const char *Str) {
+std::unique_ptr<FunctionAST> ErrorF(const char *Str) {
Error(Str);
- return 0;
+ return nullptr;
}
-static ExprAST *ParseExpression();
+static std::unique_ptr<ExprAST> ParseExpression();
/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
-static ExprAST *ParseIdentifierExpr() {
+static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.
if (CurTok != '(') // Simple variable ref.
- return new VariableExprAST(IdName);
+ return llvm::make_unique<VariableExprAST>(IdName);
// Call.
getNextToken(); // eat (
- std::vector<ExprAST *> Args;
+ std::vector<std::unique_ptr<ExprAST>> Args;
if (CurTok != ')') {
while (1) {
- ExprAST *Arg = ParseExpression();
- if (!Arg)
- return 0;
- Args.push_back(Arg);
+ if (auto Arg = ParseExpression())
+ Args.push_back(std::move(Arg));
+ else
+ return nullptr;
if (CurTok == ')')
break;
// Eat the ')'.
getNextToken();
- return new CallExprAST(IdName, Args);
+ return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}
/// numberexpr ::= number
-static ExprAST *ParseNumberExpr() {
- ExprAST *Result = new NumberExprAST(NumVal);
+static std::unique_ptr<ExprAST> ParseNumberExpr() {
+ auto Result = llvm::make_unique<NumberExprAST>(NumVal);
getNextToken(); // consume the number
- return Result;
+ return std::move(Result);
}
/// parenexpr ::= '(' expression ')'
-static ExprAST *ParseParenExpr() {
+static std::unique_ptr<ExprAST> ParseParenExpr() {
getNextToken(); // eat (.
- ExprAST *V = ParseExpression();
+ auto V = ParseExpression();
if (!V)
- return 0;
+ return nullptr;
if (CurTok != ')')
return Error("expected ')'");
}
/// ifexpr ::= 'if' expression 'then' expression 'else' expression
-static ExprAST *ParseIfExpr() {
+static std::unique_ptr<ExprAST> ParseIfExpr() {
getNextToken(); // eat the if.
// condition.
- ExprAST *Cond = ParseExpression();
+ auto Cond = ParseExpression();
if (!Cond)
- return 0;
+ return nullptr;
if (CurTok != tok_then)
return Error("expected then");
getNextToken(); // eat the then
- ExprAST *Then = ParseExpression();
- if (Then == 0)
- return 0;
+ auto Then = ParseExpression();
+ if (!Then)
+ return nullptr;
if (CurTok != tok_else)
return Error("expected else");
getNextToken();
- ExprAST *Else = ParseExpression();
+ auto Else = ParseExpression();
if (!Else)
- return 0;
+ return nullptr;
- return new IfExprAST(Cond, Then, Else);
+ return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
+ std::move(Else));
}
/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
-static ExprAST *ParseForExpr() {
+static std::unique_ptr<ExprAST> ParseForExpr() {
getNextToken(); // eat the for.
if (CurTok != tok_identifier)
return Error("expected '=' after for");
getNextToken(); // eat '='.
- ExprAST *Start = ParseExpression();
- if (Start == 0)
- return 0;
+ auto Start = ParseExpression();
+ if (!Start)
+ return nullptr;
if (CurTok != ',')
return Error("expected ',' after for start value");
getNextToken();
- ExprAST *End = ParseExpression();
- if (End == 0)
- return 0;
+ auto End = ParseExpression();
+ if (!End)
+ return nullptr;
// The step value is optional.
- ExprAST *Step = 0;
+ std::unique_ptr<ExprAST> Step;
if (CurTok == ',') {
getNextToken();
Step = ParseExpression();
- if (Step == 0)
- return 0;
+ if (!Step)
+ return nullptr;
}
if (CurTok != tok_in)
return Error("expected 'in' after for");
getNextToken(); // eat 'in'.
- ExprAST *Body = ParseExpression();
- if (Body == 0)
- return 0;
+ auto Body = ParseExpression();
+ if (!Body)
+ return nullptr;
- return new ForExprAST(IdName, Start, End, Step, Body);
+ return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
+ std::move(Step), std::move(Body));
}
/// primary
/// ::= parenexpr
/// ::= ifexpr
/// ::= forexpr
-static ExprAST *ParsePrimary() {
+static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default:
return Error("unknown token when expecting an expression");
/// binoprhs
/// ::= ('+' primary)*
-static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
+ std::unique_ptr<ExprAST> LHS) {
// If this is a binop, find its precedence.
while (1) {
int TokPrec = GetTokPrecedence();
getNextToken(); // eat binop
// Parse the primary expression after the binary operator.
- ExprAST *RHS = ParsePrimary();
+ auto RHS = ParsePrimary();
if (!RHS)
- return 0;
+ return nullptr;
// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {
- RHS = ParseBinOpRHS(TokPrec + 1, RHS);
- if (RHS == 0)
- return 0;
+ RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
+ if (!RHS)
+ return nullptr;
}
// Merge LHS/RHS.
- LHS = new BinaryExprAST(BinOp, LHS, RHS);
+ LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS),
+ std::move(RHS));
}
}
/// expression
/// ::= primary binoprhs
///
-static ExprAST *ParseExpression() {
- ExprAST *LHS = ParsePrimary();
+static std::unique_ptr<ExprAST> ParseExpression() {
+ auto LHS = ParsePrimary();
if (!LHS)
- return 0;
+ return nullptr;
- return ParseBinOpRHS(0, LHS);
+ return ParseBinOpRHS(0, std::move(LHS));
}
/// prototype
/// ::= id '(' id* ')'
-static PrototypeAST *ParsePrototype() {
+static std::unique_ptr<PrototypeAST> ParsePrototype() {
if (CurTok != tok_identifier)
return ErrorP("Expected function name in prototype");
// success.
getNextToken(); // eat ')'.
- return new PrototypeAST(FnName, ArgNames);
+ return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames));
}
/// definition ::= 'def' prototype expression
-static FunctionAST *ParseDefinition() {
+static std::unique_ptr<FunctionAST> ParseDefinition() {
getNextToken(); // eat def.
- PrototypeAST *Proto = ParsePrototype();
- if (Proto == 0)
- return 0;
+ auto Proto = ParsePrototype();
+ if (!Proto)
+ return nullptr;
- if (ExprAST *E = ParseExpression())
- return new FunctionAST(Proto, E);
- return 0;
+ if (auto E = ParseExpression())
+ return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
+ return nullptr;
}
/// toplevelexpr ::= expression
-static FunctionAST *ParseTopLevelExpr() {
- if (ExprAST *E = ParseExpression()) {
+static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
+ if (auto E = ParseExpression()) {
// Make an anonymous proto.
- PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
- return new FunctionAST(Proto, E);
+ auto Proto = llvm::make_unique<PrototypeAST>("",
+ std::vector<std::string>());
+ return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
}
- return 0;
+ return nullptr;
}
/// external ::= 'extern' prototype
-static PrototypeAST *ParseExtern() {
+static std::unique_ptr<PrototypeAST> ParseExtern() {
getNextToken(); // eat extern.
return ParsePrototype();
}
Value *ErrorV(const char *Str) {
Error(Str);
- return 0;
+ return nullptr;
}
Value *NumberExprAST::Codegen() {
Value *BinaryExprAST::Codegen() {
Value *L = LHS->Codegen();
Value *R = RHS->Codegen();
- if (L == 0 || R == 0)
- return 0;
+ if (!L || !R)
+ return nullptr;
switch (Op) {
case '+':
Value *CallExprAST::Codegen() {
// Look up the name in the global module table.
Function *CalleeF = TheModule->getFunction(Callee);
- if (CalleeF == 0)
+ if (!CalleeF)
return ErrorV("Unknown function referenced");
// If argument mismatch error.
std::vector<Value *> ArgsV;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
ArgsV.push_back(Args[i]->Codegen());
- if (ArgsV.back() == 0)
- return 0;
+ if (!ArgsV.back())
+ return nullptr;
}
return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
Value *IfExprAST::Codegen() {
Value *CondV = Cond->Codegen();
- if (CondV == 0)
- return 0;
+ if (!CondV)
+ return nullptr;
// Convert condition to a bool by comparing equal to 0.0.
CondV = Builder.CreateFCmpONE(
Builder.SetInsertPoint(ThenBB);
Value *ThenV = Then->Codegen();
- if (ThenV == 0)
- return 0;
+ if (!ThenV)
+ return nullptr;
Builder.CreateBr(MergeBB);
// Codegen of 'Then' can change the current block, update ThenBB for the PHI.
Builder.SetInsertPoint(ElseBB);
Value *ElseV = Else->Codegen();
- if (ElseV == 0)
- return 0;
+ if (!ElseV)
+ return nullptr;
Builder.CreateBr(MergeBB);
// Codegen of 'Else' can change the current block, update ElseBB for the PHI.
// Emit the start code first, without 'variable' in scope.
Value *StartVal = Start->Codegen();
- if (StartVal == 0)
- return 0;
+ if (!StartVal)
+ return nullptr;
// Make the new basic block for the loop header, inserting after current
// block.
// Emit the body of the loop. This, like any other expr, can change the
// current BB. Note that we ignore the value computed by the body, but don't
// allow an error.
- if (Body->Codegen() == 0)
- return 0;
+ if (!Body->Codegen())
+ return nullptr;
// Emit the step value.
Value *StepVal;
if (Step) {
StepVal = Step->Codegen();
- if (StepVal == 0)
- return 0;
+ if (!StepVal)
+ return nullptr;
} else {
// If not specified, use 1.0.
StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
// Compute the end condition.
Value *EndCond = End->Codegen();
- if (EndCond == 0)
+ if (!EndCond)
return EndCond;
// Convert condition to a bool by comparing equal to 0.0.
// If F already has a body, reject this.
if (!F->empty()) {
ErrorF("redefinition of function");
- return 0;
+ return nullptr;
}
// If F took a different number of args, reject.
if (F->arg_size() != Args.size()) {
ErrorF("redefinition of function with different # args");
- return 0;
+ return nullptr;
}
}
NamedValues.clear();
Function *TheFunction = Proto->Codegen();
- if (TheFunction == 0)
- return 0;
+ if (!TheFunction)
+ return nullptr;
// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
// Error reading body, remove function.
TheFunction->eraseFromParent();
- return 0;
+ return nullptr;
}
//===----------------------------------------------------------------------===//
static ExecutionEngine *TheExecutionEngine;
static void HandleDefinition() {
- if (FunctionAST *F = ParseDefinition()) {
- if (Function *LF = F->Codegen()) {
+ if (auto FnAST = ParseDefinition()) {
+ if (auto *FnIR = FnAST->Codegen()) {
fprintf(stderr, "Read function definition:");
- LF->dump();
+ FnIR->dump();
}
} else {
// Skip token for error recovery.
}
static void HandleExtern() {
- if (PrototypeAST *P = ParseExtern()) {
- if (Function *F = P->Codegen()) {
+ if (auto ProtoAST = ParseExtern()) {
+ if (auto *FnIR = ProtoAST->Codegen()) {
fprintf(stderr, "Read extern: ");
- F->dump();
+ FnIR->dump();
}
} else {
// Skip token for error recovery.
static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
- if (FunctionAST *F = ParseTopLevelExpr()) {
- if (Function *LF = F->Codegen()) {
+ if (auto FnAST = ParseTopLevelExpr()) {
+ if (auto *FnIR = FnAST->Codegen()) {
TheExecutionEngine->finalizeObject();
// JIT the function, returning a function pointer.
- void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
+ void *FPtr = TheExecutionEngine->getPointerToFunction(FnIR);
// Cast it to the right type (takes no arguments, returns a double) so we
// can call it as a native function.
/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
double Val;
-
public:
- NumberExprAST(double val) : Val(val) {}
+ NumberExprAST(double Val) : Val(Val) {}
Value *Codegen() override;
};
/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
std::string Name;
-
public:
- VariableExprAST(const std::string &name) : Name(name) {}
+ VariableExprAST(const std::string &Name) : Name(Name) {}
Value *Codegen() override;
};
/// UnaryExprAST - Expression class for a unary operator.
class UnaryExprAST : public ExprAST {
char Opcode;
- ExprAST *Operand;
+ std::unique_ptr<ExprAST> Operand;
public:
- UnaryExprAST(char opcode, ExprAST *operand)
- : Opcode(opcode), Operand(operand) {}
+ UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
+ : Opcode(Opcode), Operand(std::move(Operand)) {}
Value *Codegen() override;
};
/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
char Op;
- ExprAST *LHS, *RHS;
-
+ std::unique_ptr<ExprAST> LHS, RHS;
public:
- BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
- : Op(op), LHS(lhs), RHS(rhs) {}
+ BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
+ std::unique_ptr<ExprAST> RHS)
+ : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
Value *Codegen() override;
};
/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
std::string Callee;
- std::vector<ExprAST *> Args;
-
+ std::vector<std::unique_ptr<ExprAST>> Args;
public:
- CallExprAST(const std::string &callee, std::vector<ExprAST *> &args)
- : Callee(callee), Args(args) {}
+ CallExprAST(const std::string &Callee,
+ std::vector<std::unique_ptr<ExprAST>> Args)
+ : Callee(Callee), Args(std::move(Args)) {}
Value *Codegen() override;
};
/// IfExprAST - Expression class for if/then/else.
class IfExprAST : public ExprAST {
- ExprAST *Cond, *Then, *Else;
-
+ std::unique_ptr<ExprAST> Cond, Then, Else;
public:
- IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
- : Cond(cond), Then(then), Else(_else) {}
+ IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
+ std::unique_ptr<ExprAST> Else)
+ : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
Value *Codegen() override;
};
/// ForExprAST - Expression class for for/in.
class ForExprAST : public ExprAST {
std::string VarName;
- ExprAST *Start, *End, *Step, *Body;
-
+ std::unique_ptr<ExprAST> Start, End, Step, Body;
public:
- ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
- ExprAST *step, ExprAST *body)
- : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
+ ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
+ std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
+ std::unique_ptr<ExprAST> Body)
+ : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
+ Step(std::move(Step)), Body(std::move(Body)) {}
Value *Codegen() override;
};
class PrototypeAST {
std::string Name;
std::vector<std::string> Args;
- bool isOperator;
+ bool IsOperator;
unsigned Precedence; // Precedence if a binary op.
public:
- PrototypeAST(const std::string &name, const std::vector<std::string> &args,
- bool isoperator = false, unsigned prec = 0)
- : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
+ PrototypeAST(const std::string &Name, std::vector<std::string> Args,
+ bool IsOperator = false, unsigned Prec = 0)
+ : Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
+ Precedence(Prec) {}
- bool isUnaryOp() const { return isOperator && Args.size() == 1; }
- bool isBinaryOp() const { return isOperator && Args.size() == 2; }
+ bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
+ bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
char getOperatorName() const {
assert(isUnaryOp() || isBinaryOp());
/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
- PrototypeAST *Proto;
- ExprAST *Body;
-
+ std::unique_ptr<PrototypeAST> Proto;
+ std::unique_ptr<ExprAST> Body;
public:
- FunctionAST(PrototypeAST *proto, ExprAST *body) : Proto(proto), Body(body) {}
-
+ FunctionAST(std::unique_ptr<PrototypeAST> Proto, std::unique_ptr<ExprAST> Body)
+ : Proto(std::move(Proto)), Body(std::move(Body)) {}
Function *Codegen();
};
} // end anonymous namespace
}
/// Error* - These are little helper functions for error handling.
-ExprAST *Error(const char *Str) {
+std::unique_ptr<ExprAST> Error(const char *Str) {
fprintf(stderr, "Error: %s\n", Str);
- return 0;
+ return nullptr;
}
-PrototypeAST *ErrorP(const char *Str) {
+std::unique_ptr<PrototypeAST> ErrorP(const char *Str) {
Error(Str);
- return 0;
+ return nullptr;
}
-FunctionAST *ErrorF(const char *Str) {
+std::unique_ptr<FunctionAST> ErrorF(const char *Str) {
Error(Str);
- return 0;
+ return nullptr;
}
-static ExprAST *ParseExpression();
+static std::unique_ptr<ExprAST> ParseExpression();
/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
-static ExprAST *ParseIdentifierExpr() {
+static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.
if (CurTok != '(') // Simple variable ref.
- return new VariableExprAST(IdName);
+ return llvm::make_unique<VariableExprAST>(IdName);
// Call.
getNextToken(); // eat (
- std::vector<ExprAST *> Args;
+ std::vector<std::unique_ptr<ExprAST>> Args;
if (CurTok != ')') {
while (1) {
- ExprAST *Arg = ParseExpression();
- if (!Arg)
- return 0;
- Args.push_back(Arg);
+ if (auto Arg = ParseExpression())
+ Args.push_back(std::move(Arg));
+ else
+ return nullptr;
if (CurTok == ')')
break;
// Eat the ')'.
getNextToken();
- return new CallExprAST(IdName, Args);
+ return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}
/// numberexpr ::= number
-static ExprAST *ParseNumberExpr() {
- ExprAST *Result = new NumberExprAST(NumVal);
+static std::unique_ptr<ExprAST> ParseNumberExpr() {
+ auto Result = llvm::make_unique<NumberExprAST>(NumVal);
getNextToken(); // consume the number
- return Result;
+ return std::move(Result);
}
/// parenexpr ::= '(' expression ')'
-static ExprAST *ParseParenExpr() {
+static std::unique_ptr<ExprAST> ParseParenExpr() {
getNextToken(); // eat (.
- ExprAST *V = ParseExpression();
+ auto V = ParseExpression();
if (!V)
- return 0;
+ return nullptr;
if (CurTok != ')')
return Error("expected ')'");
}
/// ifexpr ::= 'if' expression 'then' expression 'else' expression
-static ExprAST *ParseIfExpr() {
+static std::unique_ptr<ExprAST> ParseIfExpr() {
getNextToken(); // eat the if.
// condition.
- ExprAST *Cond = ParseExpression();
+ auto Cond = ParseExpression();
if (!Cond)
- return 0;
+ return nullptr;
if (CurTok != tok_then)
return Error("expected then");
getNextToken(); // eat the then
- ExprAST *Then = ParseExpression();
- if (Then == 0)
- return 0;
+ auto Then = ParseExpression();
+ if (!Then)
+ return nullptr;
if (CurTok != tok_else)
return Error("expected else");
getNextToken();
- ExprAST *Else = ParseExpression();
+ auto Else = ParseExpression();
if (!Else)
- return 0;
+ return nullptr;
- return new IfExprAST(Cond, Then, Else);
+ return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
+ std::move(Else));
}
/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
-static ExprAST *ParseForExpr() {
+static std::unique_ptr<ExprAST> ParseForExpr() {
getNextToken(); // eat the for.
if (CurTok != tok_identifier)
return Error("expected '=' after for");
getNextToken(); // eat '='.
- ExprAST *Start = ParseExpression();
- if (Start == 0)
- return 0;
+ auto Start = ParseExpression();
+ if (!Start)
+ return nullptr;
if (CurTok != ',')
return Error("expected ',' after for start value");
getNextToken();
- ExprAST *End = ParseExpression();
- if (End == 0)
- return 0;
+ auto End = ParseExpression();
+ if (!End)
+ return nullptr;
// The step value is optional.
- ExprAST *Step = 0;
+ std::unique_ptr<ExprAST> Step;
if (CurTok == ',') {
getNextToken();
Step = ParseExpression();
- if (Step == 0)
- return 0;
+ if (!Step)
+ return nullptr;
}
if (CurTok != tok_in)
return Error("expected 'in' after for");
getNextToken(); // eat 'in'.
- ExprAST *Body = ParseExpression();
- if (Body == 0)
- return 0;
+ auto Body = ParseExpression();
+ if (!Body)
+ return nullptr;
- return new ForExprAST(IdName, Start, End, Step, Body);
+ return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
+ std::move(Step), std::move(Body));
}
/// primary
/// ::= parenexpr
/// ::= ifexpr
/// ::= forexpr
-static ExprAST *ParsePrimary() {
+static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default:
return Error("unknown token when expecting an expression");
/// unary
/// ::= primary
/// ::= '!' unary
-static ExprAST *ParseUnary() {
+static std::unique_ptr<ExprAST> ParseUnary() {
// If the current token is not an operator, it must be a primary expr.
if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
return ParsePrimary();
// If this is a unary operator, read it.
int Opc = CurTok;
getNextToken();
- if (ExprAST *Operand = ParseUnary())
- return new UnaryExprAST(Opc, Operand);
- return 0;
+ if (auto Operand = ParseUnary())
+ return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
+ return nullptr;
}
/// binoprhs
/// ::= ('+' unary)*
-static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+ static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec, std::unique_ptr<ExprAST> LHS) {
// If this is a binop, find its precedence.
while (1) {
int TokPrec = GetTokPrecedence();
getNextToken(); // eat binop
// Parse the unary expression after the binary operator.
- ExprAST *RHS = ParseUnary();
+ auto RHS = ParseUnary();
if (!RHS)
- return 0;
+ return nullptr;
// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {
- RHS = ParseBinOpRHS(TokPrec + 1, RHS);
- if (RHS == 0)
- return 0;
+ RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
+ if (!RHS)
+ return nullptr;
}
// Merge LHS/RHS.
- LHS = new BinaryExprAST(BinOp, LHS, RHS);
+ LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
}
}
/// expression
/// ::= unary binoprhs
///
-static ExprAST *ParseExpression() {
- ExprAST *LHS = ParseUnary();
+static std::unique_ptr<ExprAST> ParseExpression() {
+ auto LHS = ParseUnary();
if (!LHS)
- return 0;
+ return nullptr;
- return ParseBinOpRHS(0, LHS);
+ return ParseBinOpRHS(0, std::move(LHS));
}
/// prototype
/// ::= id '(' id* ')'
/// ::= binary LETTER number? (id, id)
/// ::= unary LETTER (id)
-static PrototypeAST *ParsePrototype() {
+static std::unique_ptr<PrototypeAST> ParsePrototype() {
std::string FnName;
unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
if (Kind && ArgNames.size() != Kind)
return ErrorP("Invalid number of operands for operator");
- return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
+ return llvm::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
+ BinaryPrecedence);
}
/// definition ::= 'def' prototype expression
-static FunctionAST *ParseDefinition() {
+static std::unique_ptr<FunctionAST> ParseDefinition() {
getNextToken(); // eat def.
- PrototypeAST *Proto = ParsePrototype();
- if (Proto == 0)
- return 0;
+ auto Proto = ParsePrototype();
+ if (!Proto)
+ return nullptr;
- if (ExprAST *E = ParseExpression())
- return new FunctionAST(Proto, E);
- return 0;
+ if (auto E = ParseExpression())
+ return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
+ return nullptr;
}
/// toplevelexpr ::= expression
-static FunctionAST *ParseTopLevelExpr() {
- if (ExprAST *E = ParseExpression()) {
+static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
+ if (auto E = ParseExpression()) {
// Make an anonymous proto.
- PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
- return new FunctionAST(Proto, E);
+ auto Proto = llvm::make_unique<PrototypeAST>("", std::vector<std::string>());
+ return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
}
- return 0;
+ return nullptr;
}
/// external ::= 'extern' prototype
-static PrototypeAST *ParseExtern() {
+static std::unique_ptr<PrototypeAST> ParseExtern() {
getNextToken(); // eat extern.
return ParsePrototype();
}
Value *ErrorV(const char *Str) {
Error(Str);
- return 0;
+ return nullptr;
}
Value *NumberExprAST::Codegen() {
Value *UnaryExprAST::Codegen() {
Value *OperandV = Operand->Codegen();
- if (OperandV == 0)
- return 0;
+ if (!OperandV)
+ return nullptr;
Function *F = TheModule->getFunction(std::string("unary") + Opcode);
- if (F == 0)
+ if (!F)
return ErrorV("Unknown unary operator");
return Builder.CreateCall(F, OperandV, "unop");
Value *BinaryExprAST::Codegen() {
Value *L = LHS->Codegen();
Value *R = RHS->Codegen();
- if (L == 0 || R == 0)
- return 0;
+ if (!L || !R)
+ return nullptr;
switch (Op) {
case '+':
Value *CallExprAST::Codegen() {
// Look up the name in the global module table.
Function *CalleeF = TheModule->getFunction(Callee);
- if (CalleeF == 0)
+ if (!CalleeF)
return ErrorV("Unknown function referenced");
// If argument mismatch error.
std::vector<Value *> ArgsV;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
ArgsV.push_back(Args[i]->Codegen());
- if (ArgsV.back() == 0)
- return 0;
+ if (!ArgsV.back())
+ return nullptr;
}
return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
Value *IfExprAST::Codegen() {
Value *CondV = Cond->Codegen();
- if (CondV == 0)
- return 0;
+ if (!CondV)
+ return nullptr;
// Convert condition to a bool by comparing equal to 0.0.
CondV = Builder.CreateFCmpONE(
Builder.SetInsertPoint(ThenBB);
Value *ThenV = Then->Codegen();
- if (ThenV == 0)
- return 0;
+ if (!ThenV)
+ return nullptr;
Builder.CreateBr(MergeBB);
// Codegen of 'Then' can change the current block, update ThenBB for the PHI.
Builder.SetInsertPoint(ElseBB);
Value *ElseV = Else->Codegen();
- if (ElseV == 0)
- return 0;
+ if (!ElseV)
+ return nullptr;
Builder.CreateBr(MergeBB);
// Codegen of 'Else' can change the current block, update ElseBB for the PHI.
// Emit the start code first, without 'variable' in scope.
Value *StartVal = Start->Codegen();
- if (StartVal == 0)
- return 0;
+ if (!StartVal)
+ return nullptr;
// Make the new basic block for the loop header, inserting after current
// block.
// Emit the body of the loop. This, like any other expr, can change the
// current BB. Note that we ignore the value computed by the body, but don't
// allow an error.
- if (Body->Codegen() == 0)
- return 0;
+ if (!Body->Codegen())
+ return nullptr;
// Emit the step value.
Value *StepVal;
if (Step) {
StepVal = Step->Codegen();
- if (StepVal == 0)
- return 0;
+ if (!StepVal)
+ return nullptr;
} else {
// If not specified, use 1.0.
StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
// Compute the end condition.
Value *EndCond = End->Codegen();
- if (EndCond == 0)
+ if (!EndCond)
return EndCond;
// Convert condition to a bool by comparing equal to 0.0.
// If F already has a body, reject this.
if (!F->empty()) {
ErrorF("redefinition of function");
- return 0;
+ return nullptr;
}
// If F took a different number of args, reject.
if (F->arg_size() != Args.size()) {
ErrorF("redefinition of function with different # args");
- return 0;
+ return nullptr;
}
}
NamedValues.clear();
Function *TheFunction = Proto->Codegen();
- if (TheFunction == 0)
- return 0;
+ if (!TheFunction)
+ return nullptr;
// If this is an operator, install it.
if (Proto->isBinaryOp())
if (Proto->isBinaryOp())
BinopPrecedence.erase(Proto->getOperatorName());
- return 0;
+ return nullptr;
}
//===----------------------------------------------------------------------===//
static ExecutionEngine *TheExecutionEngine;
static void HandleDefinition() {
- if (FunctionAST *F = ParseDefinition()) {
- if (Function *LF = F->Codegen()) {
+ if (auto FnAST = ParseDefinition()) {
+ if (auto *FnIR = FnAST->Codegen()) {
fprintf(stderr, "Read function definition:");
- LF->dump();
+ FnIR->dump();
}
} else {
// Skip token for error recovery.
}
static void HandleExtern() {
- if (PrototypeAST *P = ParseExtern()) {
- if (Function *F = P->Codegen()) {
+ if (auto ProtoAST = ParseExtern()) {
+ if (auto *FnIR = ProtoAST->Codegen()) {
fprintf(stderr, "Read extern: ");
- F->dump();
+ FnIR->dump();
}
} else {
// Skip token for error recovery.
static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
- if (FunctionAST *F = ParseTopLevelExpr()) {
- if (Function *LF = F->Codegen()) {
+ if (auto FnAST = ParseTopLevelExpr()) {
+ if (auto *FnIR = FnAST->Codegen()) {
TheExecutionEngine->finalizeObject();
// JIT the function, returning a function pointer.
- void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
+ void *FPtr = TheExecutionEngine->getPointerToFunction(FnIR);
// Cast it to the right type (takes no arguments, returns a double) so we
// can call it as a native function.
/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
double Val;
-
public:
- NumberExprAST(double val) : Val(val) {}
+ NumberExprAST(double Val) : Val(Val) {}
Value *Codegen() override;
};
/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
std::string Name;
-
public:
- VariableExprAST(const std::string &name) : Name(name) {}
+ VariableExprAST(const std::string &Name) : Name(Name) {}
const std::string &getName() const { return Name; }
Value *Codegen() override;
};
/// UnaryExprAST - Expression class for a unary operator.
class UnaryExprAST : public ExprAST {
char Opcode;
- ExprAST *Operand;
-
+ std::unique_ptr<ExprAST> Operand;
public:
- UnaryExprAST(char opcode, ExprAST *operand)
- : Opcode(opcode), Operand(operand) {}
+ UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
+ : Opcode(Opcode), Operand(std::move(Operand)) {}
Value *Codegen() override;
};
/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
char Op;
- ExprAST *LHS, *RHS;
-
+ std::unique_ptr<ExprAST> LHS, RHS;
public:
- BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
- : Op(op), LHS(lhs), RHS(rhs) {}
+ BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
+ std::unique_ptr<ExprAST> RHS)
+ : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
Value *Codegen() override;
};
/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
std::string Callee;
- std::vector<ExprAST *> Args;
-
+ std::vector<std::unique_ptr<ExprAST>> Args;
public:
- CallExprAST(const std::string &callee, std::vector<ExprAST *> &args)
- : Callee(callee), Args(args) {}
+ CallExprAST(const std::string &Callee,
+ std::vector<std::unique_ptr<ExprAST>> Args)
+ : Callee(Callee), Args(std::move(Args)) {}
Value *Codegen() override;
};
/// IfExprAST - Expression class for if/then/else.
class IfExprAST : public ExprAST {
- ExprAST *Cond, *Then, *Else;
-
+ std::unique_ptr<ExprAST> Cond, Then, Else;
public:
- IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
- : Cond(cond), Then(then), Else(_else) {}
+ IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
+ std::unique_ptr<ExprAST> Else)
+ : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
Value *Codegen() override;
};
/// ForExprAST - Expression class for for/in.
class ForExprAST : public ExprAST {
std::string VarName;
- ExprAST *Start, *End, *Step, *Body;
-
+ std::unique_ptr<ExprAST> Start, End, Step, Body;
public:
- ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
- ExprAST *step, ExprAST *body)
- : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
+ ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
+ std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
+ std::unique_ptr<ExprAST> Body)
+ : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
+ Step(std::move(Step)), Body(std::move(Body)) {}
Value *Codegen() override;
};
/// VarExprAST - Expression class for var/in
class VarExprAST : public ExprAST {
- std::vector<std::pair<std::string, ExprAST *> > VarNames;
- ExprAST *Body;
-
+ std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
+ std::unique_ptr<ExprAST> Body;
public:
- VarExprAST(const std::vector<std::pair<std::string, ExprAST *> > &varnames,
- ExprAST *body)
- : VarNames(varnames), Body(body) {}
-
+ VarExprAST(std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
+ std::unique_ptr<ExprAST> Body)
+ : VarNames(std::move(VarNames)), Body(std::move(Body)) {}
Value *Codegen() override;
};
class PrototypeAST {
std::string Name;
std::vector<std::string> Args;
- bool isOperator;
+ bool IsOperator;
unsigned Precedence; // Precedence if a binary op.
public:
- PrototypeAST(const std::string &name, const std::vector<std::string> &args,
- bool isoperator = false, unsigned prec = 0)
- : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
+ PrototypeAST(const std::string &Name, std::vector<std::string> Args,
+ bool IsOperator = false, unsigned Prec = 0)
+ : Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
+ Precedence(Prec) {}
- bool isUnaryOp() const { return isOperator && Args.size() == 1; }
- bool isBinaryOp() const { return isOperator && Args.size() == 2; }
+ bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
+ bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
char getOperatorName() const {
assert(isUnaryOp() || isBinaryOp());
/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
- PrototypeAST *Proto;
- ExprAST *Body;
-
+ std::unique_ptr<PrototypeAST> Proto;
+ std::unique_ptr<ExprAST> Body;
public:
- FunctionAST(PrototypeAST *proto, ExprAST *body) : Proto(proto), Body(body) {}
-
+ FunctionAST(std::unique_ptr<PrototypeAST> Proto, std::unique_ptr<ExprAST> Body)
+ : Proto(std::move(Proto)), Body(std::move(Body)) {}
Function *Codegen();
};
} // end anonymous namespace
}
/// Error* - These are little helper functions for error handling.
-ExprAST *Error(const char *Str) {
+std::unique_ptr<ExprAST> Error(const char *Str) {
fprintf(stderr, "Error: %s\n", Str);
- return 0;
+ return nullptr;
}
-PrototypeAST *ErrorP(const char *Str) {
+std::unique_ptr<PrototypeAST> ErrorP(const char *Str) {
Error(Str);
- return 0;
+ return nullptr;
}
-FunctionAST *ErrorF(const char *Str) {
+std::unique_ptr<FunctionAST> ErrorF(const char *Str) {
Error(Str);
- return 0;
+ return nullptr;
}
-static ExprAST *ParseExpression();
+static std::unique_ptr<ExprAST> ParseExpression();
/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
-static ExprAST *ParseIdentifierExpr() {
+static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.
if (CurTok != '(') // Simple variable ref.
- return new VariableExprAST(IdName);
+ return llvm::make_unique<VariableExprAST>(IdName);
// Call.
getNextToken(); // eat (
- std::vector<ExprAST *> Args;
+ std::vector<std::unique_ptr<ExprAST>> Args;
if (CurTok != ')') {
while (1) {
- ExprAST *Arg = ParseExpression();
- if (!Arg)
- return 0;
- Args.push_back(Arg);
+ if (auto Arg = ParseExpression())
+ Args.push_back(std::move(Arg));
+ else
+ return nullptr;
if (CurTok == ')')
break;
// Eat the ')'.
getNextToken();
- return new CallExprAST(IdName, Args);
+ return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}
/// numberexpr ::= number
-static ExprAST *ParseNumberExpr() {
- ExprAST *Result = new NumberExprAST(NumVal);
+static std::unique_ptr<ExprAST> ParseNumberExpr() {
+ auto Result = llvm::make_unique<NumberExprAST>(NumVal);
getNextToken(); // consume the number
- return Result;
+ return std::move(Result);
}
/// parenexpr ::= '(' expression ')'
-static ExprAST *ParseParenExpr() {
+static std::unique_ptr<ExprAST> ParseParenExpr() {
getNextToken(); // eat (.
- ExprAST *V = ParseExpression();
+ auto V = ParseExpression();
if (!V)
- return 0;
+ return nullptr;
if (CurTok != ')')
return Error("expected ')'");
}
/// ifexpr ::= 'if' expression 'then' expression 'else' expression
-static ExprAST *ParseIfExpr() {
+static std::unique_ptr<ExprAST> ParseIfExpr() {
getNextToken(); // eat the if.
// condition.
- ExprAST *Cond = ParseExpression();
+ auto Cond = ParseExpression();
if (!Cond)
- return 0;
+ return nullptr;
if (CurTok != tok_then)
return Error("expected then");
getNextToken(); // eat the then
- ExprAST *Then = ParseExpression();
- if (Then == 0)
- return 0;
+ auto Then = ParseExpression();
+ if (!Then)
+ return nullptr;
if (CurTok != tok_else)
return Error("expected else");
getNextToken();
- ExprAST *Else = ParseExpression();
+ auto Else = ParseExpression();
if (!Else)
- return 0;
+ return nullptr;
- return new IfExprAST(Cond, Then, Else);
+ return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
+ std::move(Else));
}
/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
-static ExprAST *ParseForExpr() {
+static std::unique_ptr<ExprAST> ParseForExpr() {
getNextToken(); // eat the for.
if (CurTok != tok_identifier)
return Error("expected '=' after for");
getNextToken(); // eat '='.
- ExprAST *Start = ParseExpression();
- if (Start == 0)
- return 0;
+ auto Start = ParseExpression();
+ if (!Start)
+ return nullptr;
if (CurTok != ',')
return Error("expected ',' after for start value");
getNextToken();
- ExprAST *End = ParseExpression();
- if (End == 0)
- return 0;
+ auto End = ParseExpression();
+ if (!End)
+ return nullptr;
// The step value is optional.
- ExprAST *Step = 0;
+ std::unique_ptr<ExprAST> Step;
if (CurTok == ',') {
getNextToken();
Step = ParseExpression();
- if (Step == 0)
- return 0;
+ if (!Step)
+ return nullptr;
}
if (CurTok != tok_in)
return Error("expected 'in' after for");
getNextToken(); // eat 'in'.
- ExprAST *Body = ParseExpression();
- if (Body == 0)
- return 0;
+ auto Body = ParseExpression();
+ if (!Body)
+ return nullptr;
- return new ForExprAST(IdName, Start, End, Step, Body);
+ return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
+ std::move(Step), std::move(Body));
}
/// varexpr ::= 'var' identifier ('=' expression)?
// (',' identifier ('=' expression)?)* 'in' expression
-static ExprAST *ParseVarExpr() {
+static std::unique_ptr<ExprAST> ParseVarExpr() {
getNextToken(); // eat the var.
- std::vector<std::pair<std::string, ExprAST *> > VarNames;
+ std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
// At least one variable name is required.
if (CurTok != tok_identifier)
getNextToken(); // eat identifier.
// Read the optional initializer.
- ExprAST *Init = 0;
+ std::unique_ptr<ExprAST> Init = nullptr;
if (CurTok == '=') {
getNextToken(); // eat the '='.
Init = ParseExpression();
- if (Init == 0)
- return 0;
+ if (!Init)
+ return nullptr;
}
- VarNames.push_back(std::make_pair(Name, Init));
+ VarNames.push_back(std::make_pair(Name, std::move(Init)));
// End of var list, exit loop.
if (CurTok != ',')
return Error("expected 'in' keyword after 'var'");
getNextToken(); // eat 'in'.
- ExprAST *Body = ParseExpression();
- if (Body == 0)
- return 0;
+ auto Body = ParseExpression();
+ if (!Body)
+ return nullptr;
- return new VarExprAST(VarNames, Body);
+ return llvm::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
}
/// primary
/// ::= ifexpr
/// ::= forexpr
/// ::= varexpr
-static ExprAST *ParsePrimary() {
+static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default:
return Error("unknown token when expecting an expression");
/// unary
/// ::= primary
/// ::= '!' unary
-static ExprAST *ParseUnary() {
+static std::unique_ptr<ExprAST> ParseUnary() {
// If the current token is not an operator, it must be a primary expr.
if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
return ParsePrimary();
// If this is a unary operator, read it.
int Opc = CurTok;
getNextToken();
- if (ExprAST *Operand = ParseUnary())
- return new UnaryExprAST(Opc, Operand);
- return 0;
+ if (auto Operand = ParseUnary())
+ return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
+ return nullptr;
}
/// binoprhs
/// ::= ('+' unary)*
-static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+ static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec, std::unique_ptr<ExprAST> LHS) {
// If this is a binop, find its precedence.
while (1) {
int TokPrec = GetTokPrecedence();
getNextToken(); // eat binop
// Parse the unary expression after the binary operator.
- ExprAST *RHS = ParseUnary();
+ auto RHS = ParseUnary();
if (!RHS)
- return 0;
+ return nullptr;
// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {
- RHS = ParseBinOpRHS(TokPrec + 1, RHS);
- if (RHS == 0)
- return 0;
+ RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
+ if (!RHS)
+ return nullptr;
}
// Merge LHS/RHS.
- LHS = new BinaryExprAST(BinOp, LHS, RHS);
+ LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
}
}
/// expression
/// ::= unary binoprhs
///
-static ExprAST *ParseExpression() {
- ExprAST *LHS = ParseUnary();
+static std::unique_ptr<ExprAST> ParseExpression() {
+ auto LHS = ParseUnary();
if (!LHS)
- return 0;
+ return nullptr;
- return ParseBinOpRHS(0, LHS);
+ return ParseBinOpRHS(0, std::move(LHS));
}
/// prototype
/// ::= id '(' id* ')'
/// ::= binary LETTER number? (id, id)
/// ::= unary LETTER (id)
-static PrototypeAST *ParsePrototype() {
+static std::unique_ptr<PrototypeAST> ParsePrototype() {
std::string FnName;
unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
if (Kind && ArgNames.size() != Kind)
return ErrorP("Invalid number of operands for operator");
- return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
+ return llvm::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
+ BinaryPrecedence);
}
/// definition ::= 'def' prototype expression
-static FunctionAST *ParseDefinition() {
+static std::unique_ptr<FunctionAST> ParseDefinition() {
getNextToken(); // eat def.
- PrototypeAST *Proto = ParsePrototype();
- if (Proto == 0)
- return 0;
+ auto Proto = ParsePrototype();
+ if (!Proto)
+ return nullptr;
- if (ExprAST *E = ParseExpression())
- return new FunctionAST(Proto, E);
- return 0;
+ if (auto E = ParseExpression())
+ return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
+ return nullptr;
}
/// toplevelexpr ::= expression
-static FunctionAST *ParseTopLevelExpr() {
- if (ExprAST *E = ParseExpression()) {
+static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
+ if (auto E = ParseExpression()) {
// Make an anonymous proto.
- PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
- return new FunctionAST(Proto, E);
+ auto Proto = llvm::make_unique<PrototypeAST>("", std::vector<std::string>());
+ return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
}
- return 0;
+ return nullptr;
}
/// external ::= 'extern' prototype
-static PrototypeAST *ParseExtern() {
+static std::unique_ptr<PrototypeAST> ParseExtern() {
getNextToken(); // eat extern.
return ParsePrototype();
}
Value *ErrorV(const char *Str) {
Error(Str);
- return 0;
+ return nullptr;
}
/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
Value *VariableExprAST::Codegen() {
// Look this variable up in the function.
Value *V = NamedValues[Name];
- if (V == 0)
+ if (!V)
return ErrorV("Unknown variable name");
// Load the value.
Value *UnaryExprAST::Codegen() {
Value *OperandV = Operand->Codegen();
- if (OperandV == 0)
- return 0;
+ if (!OperandV)
+ return nullptr;
Function *F = TheModule->getFunction(std::string("unary") + Opcode);
- if (F == 0)
+ if (!F)
return ErrorV("Unknown unary operator");
return Builder.CreateCall(F, OperandV, "unop");
// This assume we're building without RTTI because LLVM builds that way by
// default. If you build LLVM with RTTI this can be changed to a
// dynamic_cast for automatic error checking.
- VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS);
+ VariableExprAST *LHSE = static_cast<VariableExprAST*>(LHS.get());
if (!LHSE)
return ErrorV("destination of '=' must be a variable");
// Codegen the RHS.
Value *Val = RHS->Codegen();
- if (Val == 0)
- return 0;
+ if (!Val)
+ return nullptr;
// Look up the name.
Value *Variable = NamedValues[LHSE->getName()];
- if (Variable == 0)
+ if (!Variable)
return ErrorV("Unknown variable name");
Builder.CreateStore(Val, Variable);
Value *L = LHS->Codegen();
Value *R = RHS->Codegen();
- if (L == 0 || R == 0)
- return 0;
+ if (!L || !R)
+ return nullptr;
switch (Op) {
case '+':
Value *CallExprAST::Codegen() {
// Look up the name in the global module table.
Function *CalleeF = TheModule->getFunction(Callee);
- if (CalleeF == 0)
+ if (!CalleeF)
return ErrorV("Unknown function referenced");
// If argument mismatch error.
std::vector<Value *> ArgsV;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
ArgsV.push_back(Args[i]->Codegen());
- if (ArgsV.back() == 0)
- return 0;
+ if (!ArgsV.back())
+ return nullptr;
}
return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
Value *IfExprAST::Codegen() {
Value *CondV = Cond->Codegen();
- if (CondV == 0)
- return 0;
+ if (!CondV)
+ return nullptr;
// Convert condition to a bool by comparing equal to 0.0.
CondV = Builder.CreateFCmpONE(
Builder.SetInsertPoint(ThenBB);
Value *ThenV = Then->Codegen();
- if (ThenV == 0)
- return 0;
+ if (!ThenV)
+ return nullptr;
Builder.CreateBr(MergeBB);
// Codegen of 'Then' can change the current block, update ThenBB for the PHI.
Builder.SetInsertPoint(ElseBB);
Value *ElseV = Else->Codegen();
- if (ElseV == 0)
- return 0;
+ if (!ElseV)
+ return nullptr;
Builder.CreateBr(MergeBB);
// Codegen of 'Else' can change the current block, update ElseBB for the PHI.
// Emit the start code first, without 'variable' in scope.
Value *StartVal = Start->Codegen();
- if (StartVal == 0)
- return 0;
+ if (!StartVal)
+ return nullptr;
// Store the value into the alloca.
Builder.CreateStore(StartVal, Alloca);
// Emit the body of the loop. This, like any other expr, can change the
// current BB. Note that we ignore the value computed by the body, but don't
// allow an error.
- if (Body->Codegen() == 0)
- return 0;
+ if (!Body->Codegen())
+ return nullptr;
// Emit the step value.
Value *StepVal;
if (Step) {
StepVal = Step->Codegen();
- if (StepVal == 0)
- return 0;
+ if (!StepVal)
+ return nullptr;
} else {
// If not specified, use 1.0.
StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
// Compute the end condition.
Value *EndCond = End->Codegen();
- if (EndCond == 0)
+ if (!EndCond)
return EndCond;
// Reload, increment, and restore the alloca. This handles the case where
// Register all variables and emit their initializer.
for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
const std::string &VarName = VarNames[i].first;
- ExprAST *Init = VarNames[i].second;
+ ExprAST *Init = VarNames[i].second.get();
// Emit the initializer before adding the variable to scope, this prevents
// the initializer from referencing the variable itself, and permits stuff
Value *InitVal;
if (Init) {
InitVal = Init->Codegen();
- if (InitVal == 0)
- return 0;
+ if (!InitVal)
+ return nullptr;
} else { // If not specified, use 0.0.
InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
}
// Codegen the body, now that all vars are in scope.
Value *BodyVal = Body->Codegen();
- if (BodyVal == 0)
- return 0;
+ if (!BodyVal)
+ return nullptr;
// Pop all our variables from scope.
for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
// If F already has a body, reject this.
if (!F->empty()) {
ErrorF("redefinition of function");
- return 0;
+ return nullptr;
}
// If F took a different number of args, reject.
if (F->arg_size() != Args.size()) {
ErrorF("redefinition of function with different # args");
- return 0;
+ return nullptr;
}
}
NamedValues.clear();
Function *TheFunction = Proto->Codegen();
- if (TheFunction == 0)
- return 0;
+ if (!TheFunction)
+ return nullptr;
// If this is an operator, install it.
if (Proto->isBinaryOp())
if (Proto->isBinaryOp())
BinopPrecedence.erase(Proto->getOperatorName());
- return 0;
+ return nullptr;
}
//===----------------------------------------------------------------------===//
static ExecutionEngine *TheExecutionEngine;
static void HandleDefinition() {
- if (FunctionAST *F = ParseDefinition()) {
- if (Function *LF = F->Codegen()) {
+ if (auto FnAST = ParseDefinition()) {
+ if (auto *FnIR = FnAST->Codegen()) {
fprintf(stderr, "Read function definition:");
- LF->dump();
+ FnIR->dump();
}
} else {
// Skip token for error recovery.
}
static void HandleExtern() {
- if (PrototypeAST *P = ParseExtern()) {
- if (Function *F = P->Codegen()) {
+ if (auto ProtoAST = ParseExtern()) {
+ if (auto *FnIR = ProtoAST->Codegen()) {
fprintf(stderr, "Read extern: ");
- F->dump();
+ FnIR->dump();
}
} else {
// Skip token for error recovery.
static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
- if (FunctionAST *F = ParseTopLevelExpr()) {
- if (Function *LF = F->Codegen()) {
+ if (auto FnAST = ParseTopLevelExpr()) {
+ if (auto *FnIR = FnAST->Codegen()) {
TheExecutionEngine->finalizeObject();
// JIT the function, returning a function pointer.
- void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
+ void *FPtr = TheExecutionEngine->getPointerToFunction(FnIR);
// Cast it to the right type (takes no arguments, returns a double) so we
// can call it as a native function.
/// ExprAST - Base class for all expression nodes.
class ExprAST {
SourceLocation Loc;
-
public:
int getLine() const { return Loc.Line; }
int getCol() const { return Loc.Col; }
/// NumberExprAST - Expression class for numeric literals like "1.0".
class NumberExprAST : public ExprAST {
double Val;
-
public:
- NumberExprAST(double val) : Val(val) {}
+ NumberExprAST(double Val) : Val(Val) {}
std::ostream &dump(std::ostream &out, int ind) override {
return ExprAST::dump(out << Val, ind);
}
/// VariableExprAST - Expression class for referencing a variable, like "a".
class VariableExprAST : public ExprAST {
std::string Name;
-
public:
- VariableExprAST(SourceLocation Loc, const std::string &name)
- : ExprAST(Loc), Name(name) {}
+ VariableExprAST(SourceLocation Loc, const std::string &Name)
+ : ExprAST(Loc), Name(Name) {}
const std::string &getName() const { return Name; }
std::ostream &dump(std::ostream &out, int ind) override {
return ExprAST::dump(out << Name, ind);
/// UnaryExprAST - Expression class for a unary operator.
class UnaryExprAST : public ExprAST {
char Opcode;
- ExprAST *Operand;
-
+ std::unique_ptr<ExprAST> Operand;
public:
- UnaryExprAST(char opcode, ExprAST *operand)
- : Opcode(opcode), Operand(operand) {}
+ UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
+ : Opcode(Opcode), Operand(std::move(Operand)) {}
std::ostream &dump(std::ostream &out, int ind) override {
ExprAST::dump(out << "unary" << Opcode, ind);
Operand->dump(out, ind + 1);
/// BinaryExprAST - Expression class for a binary operator.
class BinaryExprAST : public ExprAST {
char Op;
- ExprAST *LHS, *RHS;
-
+ std::unique_ptr<ExprAST> LHS, RHS;
public:
- BinaryExprAST(SourceLocation Loc, char op, ExprAST *lhs, ExprAST *rhs)
- : ExprAST(Loc), Op(op), LHS(lhs), RHS(rhs) {}
+ BinaryExprAST(SourceLocation Loc, char Op, std::unique_ptr<ExprAST> LHS,
+ std::unique_ptr<ExprAST> RHS)
+ : ExprAST(Loc), Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
std::ostream &dump(std::ostream &out, int ind) override {
ExprAST::dump(out << "binary" << Op, ind);
LHS->dump(indent(out, ind) << "LHS:", ind + 1);
/// CallExprAST - Expression class for function calls.
class CallExprAST : public ExprAST {
std::string Callee;
- std::vector<ExprAST *> Args;
-
+ std::vector<std::unique_ptr<ExprAST>> Args;
public:
- CallExprAST(SourceLocation Loc, const std::string &callee,
- std::vector<ExprAST *> &args)
- : ExprAST(Loc), Callee(callee), Args(args) {}
+ CallExprAST(SourceLocation Loc, const std::string &Callee,
+ std::vector<std::unique_ptr<ExprAST>> Args)
+ : ExprAST(Loc), Callee(Callee), Args(std::move(Args)) {}
std::ostream &dump(std::ostream &out, int ind) override {
ExprAST::dump(out << "call " << Callee, ind);
- for (ExprAST *Arg : Args)
+ for (const auto &Arg : Args)
Arg->dump(indent(out, ind + 1), ind + 1);
return out;
}
/// IfExprAST - Expression class for if/then/else.
class IfExprAST : public ExprAST {
- ExprAST *Cond, *Then, *Else;
-
+ std::unique_ptr<ExprAST> Cond, Then, Else;
public:
- IfExprAST(SourceLocation Loc, ExprAST *cond, ExprAST *then, ExprAST *_else)
- : ExprAST(Loc), Cond(cond), Then(then), Else(_else) {}
+ IfExprAST(SourceLocation Loc, std::unique_ptr<ExprAST> Cond,
+ std::unique_ptr<ExprAST> Then, std::unique_ptr<ExprAST> Else)
+ : ExprAST(Loc), Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
std::ostream &dump(std::ostream &out, int ind) override {
ExprAST::dump(out << "if", ind);
Cond->dump(indent(out, ind) << "Cond:", ind + 1);
/// ForExprAST - Expression class for for/in.
class ForExprAST : public ExprAST {
std::string VarName;
- ExprAST *Start, *End, *Step, *Body;
-
+ std::unique_ptr<ExprAST> Start, End, Step, Body;
public:
- ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
- ExprAST *step, ExprAST *body)
- : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
+ ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
+ std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
+ std::unique_ptr<ExprAST> Body)
+ : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
+ Step(std::move(Step)), Body(std::move(Body)) {}
std::ostream &dump(std::ostream &out, int ind) override {
ExprAST::dump(out << "for", ind);
Start->dump(indent(out, ind) << "Cond:", ind + 1);
/// VarExprAST - Expression class for var/in
class VarExprAST : public ExprAST {
- std::vector<std::pair<std::string, ExprAST *> > VarNames;
- ExprAST *Body;
-
+ std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
+ std::unique_ptr<ExprAST> Body;
public:
- VarExprAST(const std::vector<std::pair<std::string, ExprAST *> > &varnames,
- ExprAST *body)
- : VarNames(varnames), Body(body) {}
-
+ VarExprAST(std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
+ std::unique_ptr<ExprAST> Body)
+ : VarNames(std::move(VarNames)), Body(std::move(Body)) {}
std::ostream &dump(std::ostream &out, int ind) override {
ExprAST::dump(out << "var", ind);
for (const auto &NamedVar : VarNames)
class PrototypeAST {
std::string Name;
std::vector<std::string> Args;
- bool isOperator;
+ bool IsOperator;
unsigned Precedence; // Precedence if a binary op.
int Line;
-
public:
- PrototypeAST(SourceLocation Loc, const std::string &name,
- const std::vector<std::string> &args, bool isoperator = false,
- unsigned prec = 0)
- : Name(name), Args(args), isOperator(isoperator), Precedence(prec),
- Line(Loc.Line) {}
+ PrototypeAST(SourceLocation Loc, const std::string &Name,
+ std::vector<std::string> Args, bool IsOperator = false,
+ unsigned Prec = 0)
+ : Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
+ Precedence(Prec), Line(Loc.Line) {}
- bool isUnaryOp() const { return isOperator && Args.size() == 1; }
- bool isBinaryOp() const { return isOperator && Args.size() == 2; }
+ bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
+ bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
char getOperatorName() const {
assert(isUnaryOp() || isBinaryOp());
/// FunctionAST - This class represents a function definition itself.
class FunctionAST {
- PrototypeAST *Proto;
- ExprAST *Body;
-
+ std::unique_ptr<PrototypeAST> Proto;
+ std::unique_ptr<ExprAST> Body;
public:
- FunctionAST(PrototypeAST *proto, ExprAST *body) : Proto(proto), Body(body) {}
+ FunctionAST(std::unique_ptr<PrototypeAST> Proto,
+ std::unique_ptr<ExprAST> Body)
+ : Proto(std::move(Proto)), Body(std::move(Body)) {}
std::ostream &dump(std::ostream &out, int ind) {
indent(out, ind) << "FunctionAST\n";
}
/// Error* - These are little helper functions for error handling.
-ExprAST *Error(const char *Str) {
+std::unique_ptr<ExprAST> Error(const char *Str) {
fprintf(stderr, "Error: %s\n", Str);
- return 0;
+ return nullptr;
}
-PrototypeAST *ErrorP(const char *Str) {
+std::unique_ptr<PrototypeAST> ErrorP(const char *Str) {
Error(Str);
- return 0;
+ return nullptr;
}
-FunctionAST *ErrorF(const char *Str) {
+std::unique_ptr<FunctionAST> ErrorF(const char *Str) {
Error(Str);
- return 0;
+ return nullptr;
}
-static ExprAST *ParseExpression();
+static std::unique_ptr<ExprAST> ParseExpression();
/// identifierexpr
/// ::= identifier
/// ::= identifier '(' expression* ')'
-static ExprAST *ParseIdentifierExpr() {
+ static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;
SourceLocation LitLoc = CurLoc;
getNextToken(); // eat identifier.
if (CurTok != '(') // Simple variable ref.
- return new VariableExprAST(LitLoc, IdName);
+ return llvm::make_unique<VariableExprAST>(LitLoc, IdName);
// Call.
getNextToken(); // eat (
- std::vector<ExprAST *> Args;
+ std::vector<std::unique_ptr<ExprAST>> Args;
if (CurTok != ')') {
while (1) {
- ExprAST *Arg = ParseExpression();
+ auto Arg = ParseExpression();
if (!Arg)
- return 0;
- Args.push_back(Arg);
+ return nullptr;
+ Args.push_back(std::move(Arg));
if (CurTok == ')')
break;
// Eat the ')'.
getNextToken();
- return new CallExprAST(LitLoc, IdName, Args);
+ return llvm::make_unique<CallExprAST>(LitLoc, IdName, std::move(Args));
}
/// numberexpr ::= number
-static ExprAST *ParseNumberExpr() {
- ExprAST *Result = new NumberExprAST(NumVal);
+static std::unique_ptr<ExprAST> ParseNumberExpr() {
+ auto Result = llvm::make_unique<NumberExprAST>(NumVal);
getNextToken(); // consume the number
- return Result;
+ return std::move(Result);
}
/// parenexpr ::= '(' expression ')'
-static ExprAST *ParseParenExpr() {
+static std::unique_ptr<ExprAST> ParseParenExpr() {
getNextToken(); // eat (.
- ExprAST *V = ParseExpression();
+ auto V = ParseExpression();
if (!V)
- return 0;
+ return nullptr;
if (CurTok != ')')
return Error("expected ')'");
}
/// ifexpr ::= 'if' expression 'then' expression 'else' expression
-static ExprAST *ParseIfExpr() {
+static std::unique_ptr<ExprAST> ParseIfExpr() {
SourceLocation IfLoc = CurLoc;
getNextToken(); // eat the if.
// condition.
- ExprAST *Cond = ParseExpression();
+ auto Cond = ParseExpression();
if (!Cond)
- return 0;
+ return nullptr;
if (CurTok != tok_then)
return Error("expected then");
getNextToken(); // eat the then
- ExprAST *Then = ParseExpression();
- if (Then == 0)
- return 0;
+ auto Then = ParseExpression();
+ if (!Then)
+ return nullptr;
if (CurTok != tok_else)
return Error("expected else");
getNextToken();
- ExprAST *Else = ParseExpression();
+ auto Else = ParseExpression();
if (!Else)
- return 0;
+ return nullptr;
- return new IfExprAST(IfLoc, Cond, Then, Else);
+ return llvm::make_unique<IfExprAST>(IfLoc, std::move(Cond), std::move(Then),
+ std::move(Else));
}
/// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
-static ExprAST *ParseForExpr() {
+static std::unique_ptr<ExprAST> ParseForExpr() {
getNextToken(); // eat the for.
if (CurTok != tok_identifier)
return Error("expected '=' after for");
getNextToken(); // eat '='.
- ExprAST *Start = ParseExpression();
- if (Start == 0)
- return 0;
+ auto Start = ParseExpression();
+ if (!Start)
+ return nullptr;
if (CurTok != ',')
return Error("expected ',' after for start value");
getNextToken();
- ExprAST *End = ParseExpression();
- if (End == 0)
- return 0;
+ auto End = ParseExpression();
+ if (!End)
+ return nullptr;
// The step value is optional.
- ExprAST *Step = 0;
+ std::unique_ptr<ExprAST> Step;
if (CurTok == ',') {
getNextToken();
Step = ParseExpression();
- if (Step == 0)
- return 0;
+ if (!Step)
+ return nullptr;
}
if (CurTok != tok_in)
return Error("expected 'in' after for");
getNextToken(); // eat 'in'.
- ExprAST *Body = ParseExpression();
- if (Body == 0)
- return 0;
+ auto Body = ParseExpression();
+ if (!Body)
+ return nullptr;
- return new ForExprAST(IdName, Start, End, Step, Body);
+ return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
+ std::move(Step), std::move(Body));
}
/// varexpr ::= 'var' identifier ('=' expression)?
// (',' identifier ('=' expression)?)* 'in' expression
-static ExprAST *ParseVarExpr() {
+static std::unique_ptr<ExprAST> ParseVarExpr() {
getNextToken(); // eat the var.
- std::vector<std::pair<std::string, ExprAST *> > VarNames;
+ std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
// At least one variable name is required.
if (CurTok != tok_identifier)
getNextToken(); // eat identifier.
// Read the optional initializer.
- ExprAST *Init = 0;
+ std::unique_ptr<ExprAST> Init = nullptr;
if (CurTok == '=') {
getNextToken(); // eat the '='.
Init = ParseExpression();
- if (Init == 0)
- return 0;
+ if (!Init)
+ return nullptr;
}
- VarNames.push_back(std::make_pair(Name, Init));
+ VarNames.push_back(std::make_pair(Name, std::move(Init)));
// End of var list, exit loop.
if (CurTok != ',')
return Error("expected 'in' keyword after 'var'");
getNextToken(); // eat 'in'.
- ExprAST *Body = ParseExpression();
- if (Body == 0)
- return 0;
+ auto Body = ParseExpression();
+ if (!Body)
+ return nullptr;
- return new VarExprAST(VarNames, Body);
+ return llvm::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
}
/// primary
/// ::= ifexpr
/// ::= forexpr
/// ::= varexpr
-static ExprAST *ParsePrimary() {
+static std::unique_ptr<ExprAST> ParsePrimary() {
switch (CurTok) {
default:
return Error("unknown token when expecting an expression");
/// unary
/// ::= primary
/// ::= '!' unary
-static ExprAST *ParseUnary() {
+static std::unique_ptr<ExprAST> ParseUnary() {
// If the current token is not an operator, it must be a primary expr.
if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
return ParsePrimary();
// If this is a unary operator, read it.
int Opc = CurTok;
getNextToken();
- if (ExprAST *Operand = ParseUnary())
- return new UnaryExprAST(Opc, Operand);
- return 0;
+ if (auto Operand = ParseUnary())
+ return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
+ return nullptr;
}
/// binoprhs
/// ::= ('+' unary)*
-static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
+static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec, std::unique_ptr<ExprAST> LHS) {
// If this is a binop, find its precedence.
while (1) {
int TokPrec = GetTokPrecedence();
getNextToken(); // eat binop
// Parse the unary expression after the binary operator.
- ExprAST *RHS = ParseUnary();
+ auto RHS = ParseUnary();
if (!RHS)
- return 0;
+ return nullptr;
// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (TokPrec < NextPrec) {
- RHS = ParseBinOpRHS(TokPrec + 1, RHS);
- if (RHS == 0)
- return 0;
+ RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
+ if (!RHS)
+ return nullptr;
}
// Merge LHS/RHS.
- LHS = new BinaryExprAST(BinLoc, BinOp, LHS, RHS);
+ LHS = llvm::make_unique<BinaryExprAST>(BinLoc, BinOp, std::move(LHS),
+ std::move(RHS));
}
}
/// expression
/// ::= unary binoprhs
///
-static ExprAST *ParseExpression() {
- ExprAST *LHS = ParseUnary();
+static std::unique_ptr<ExprAST> ParseExpression() {
+ auto LHS = ParseUnary();
if (!LHS)
- return 0;
+ return nullptr;
- return ParseBinOpRHS(0, LHS);
+ return ParseBinOpRHS(0, std::move(LHS));
}
/// prototype
/// ::= id '(' id* ')'
/// ::= binary LETTER number? (id, id)
/// ::= unary LETTER (id)
-static PrototypeAST *ParsePrototype() {
+static std::unique_ptr<PrototypeAST> ParsePrototype() {
std::string FnName;
SourceLocation FnLoc = CurLoc;
if (Kind && ArgNames.size() != Kind)
return ErrorP("Invalid number of operands for operator");
- return new PrototypeAST(FnLoc, FnName, ArgNames, Kind != 0, BinaryPrecedence);
+ return llvm::make_unique<PrototypeAST>(FnLoc, FnName, ArgNames, Kind != 0,
+ BinaryPrecedence);
}
/// definition ::= 'def' prototype expression
-static FunctionAST *ParseDefinition() {
+static std::unique_ptr<FunctionAST> ParseDefinition() {
getNextToken(); // eat def.
- PrototypeAST *Proto = ParsePrototype();
- if (Proto == 0)
- return 0;
+ auto Proto = ParsePrototype();
+ if (!Proto)
+ return nullptr;
- if (ExprAST *E = ParseExpression())
- return new FunctionAST(Proto, E);
- return 0;
+ if (auto E = ParseExpression())
+ return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
+ return nullptr;
}
/// toplevelexpr ::= expression
-static FunctionAST *ParseTopLevelExpr() {
+static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
SourceLocation FnLoc = CurLoc;
- if (ExprAST *E = ParseExpression()) {
+ if (auto E = ParseExpression()) {
// Make an anonymous proto.
- PrototypeAST *Proto =
- new PrototypeAST(FnLoc, "main", std::vector<std::string>());
- return new FunctionAST(Proto, E);
+ auto Proto =
+ llvm::make_unique<PrototypeAST>(FnLoc, "main", std::vector<std::string>());
+ return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
}
- return 0;
+ return nullptr;
}
/// external ::= 'extern' prototype
-static PrototypeAST *ParseExtern() {
+static std::unique_ptr<PrototypeAST> ParseExtern() {
getNextToken(); // eat extern.
return ParsePrototype();
}
Value *ErrorV(const char *Str) {
Error(Str);
- return 0;
+ return nullptr;
}
/// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
Value *VariableExprAST::Codegen() {
// Look this variable up in the function.
Value *V = NamedValues[Name];
- if (V == 0)
+ if (!V)
return ErrorV("Unknown variable name");
KSDbgInfo.emitLocation(this);
Value *UnaryExprAST::Codegen() {
Value *OperandV = Operand->Codegen();
- if (OperandV == 0)
- return 0;
+ if (!OperandV)
+ return nullptr;
Function *F = TheModule->getFunction(std::string("unary") + Opcode);
- if (F == 0)
+ if (!F)
return ErrorV("Unknown unary operator");
KSDbgInfo.emitLocation(this);
// This assume we're building without RTTI because LLVM builds that way by
// default. If you build LLVM with RTTI this can be changed to a
// dynamic_cast for automatic error checking.
- VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS);
+ VariableExprAST *LHSE = static_cast<VariableExprAST*>(LHS.get());
if (!LHSE)
return ErrorV("destination of '=' must be a variable");
// Codegen the RHS.
Value *Val = RHS->Codegen();
- if (Val == 0)
- return 0;
+ if (!Val)
+ return nullptr;
// Look up the name.
Value *Variable = NamedValues[LHSE->getName()];
- if (Variable == 0)
+ if (!Variable)
return ErrorV("Unknown variable name");
Builder.CreateStore(Val, Variable);
Value *L = LHS->Codegen();
Value *R = RHS->Codegen();
- if (L == 0 || R == 0)
- return 0;
+ if (!L || !R)
+ return nullptr;
switch (Op) {
case '+':
// Look up the name in the global module table.
Function *CalleeF = TheModule->getFunction(Callee);
- if (CalleeF == 0)
+ if (!CalleeF)
return ErrorV("Unknown function referenced");
// If argument mismatch error.
std::vector<Value *> ArgsV;
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
ArgsV.push_back(Args[i]->Codegen());
- if (ArgsV.back() == 0)
- return 0;
+ if (!ArgsV.back())
+ return nullptr;
}
return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
KSDbgInfo.emitLocation(this);
Value *CondV = Cond->Codegen();
- if (CondV == 0)
- return 0;
+ if (!CondV)
+ return nullptr;
// Convert condition to a bool by comparing equal to 0.0.
CondV = Builder.CreateFCmpONE(
Builder.SetInsertPoint(ThenBB);
Value *ThenV = Then->Codegen();
- if (ThenV == 0)
- return 0;
+ if (!ThenV)
+ return nullptr;
Builder.CreateBr(MergeBB);
// Codegen of 'Then' can change the current block, update ThenBB for the PHI.
Builder.SetInsertPoint(ElseBB);
Value *ElseV = Else->Codegen();
- if (ElseV == 0)
- return 0;
+ if (!ElseV)
+ return nullptr;
Builder.CreateBr(MergeBB);
// Codegen of 'Else' can change the current block, update ElseBB for the PHI.
// Emit the start code first, without 'variable' in scope.
Value *StartVal = Start->Codegen();
- if (StartVal == 0)
- return 0;
+ if (!StartVal)
+ return nullptr;
// Store the value into the alloca.
Builder.CreateStore(StartVal, Alloca);
// Emit the body of the loop. This, like any other expr, can change the
// current BB. Note that we ignore the value computed by the body, but don't
// allow an error.
- if (Body->Codegen() == 0)
- return 0;
+ if (!Body->Codegen())
+ return nullptr;
// Emit the step value.
Value *StepVal;
if (Step) {
StepVal = Step->Codegen();
- if (StepVal == 0)
- return 0;
+ if (!StepVal)
+ return nullptr;
} else {
// If not specified, use 1.0.
StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
// Compute the end condition.
Value *EndCond = End->Codegen();
- if (EndCond == 0)
+ if (!EndCond)
return EndCond;
// Reload, increment, and restore the alloca. This handles the case where
// Register all variables and emit their initializer.
for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
const std::string &VarName = VarNames[i].first;
- ExprAST *Init = VarNames[i].second;
+ ExprAST *Init = VarNames[i].second.get();
// Emit the initializer before adding the variable to scope, this prevents
// the initializer from referencing the variable itself, and permits stuff
Value *InitVal;
if (Init) {
InitVal = Init->Codegen();
- if (InitVal == 0)
- return 0;
+ if (!InitVal)
+ return nullptr;
} else { // If not specified, use 0.0.
InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
}
// Codegen the body, now that all vars are in scope.
Value *BodyVal = Body->Codegen();
- if (BodyVal == 0)
- return 0;
+ if (!BodyVal)
+ return nullptr;
// Pop all our variables from scope.
for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
// If F already has a body, reject this.
if (!F->empty()) {
ErrorF("redefinition of function");
- return 0;
+ return nullptr;
}
// If F took a different number of args, reject.
if (F->arg_size() != Args.size()) {
ErrorF("redefinition of function with different # args");
- return 0;
+ return nullptr;
}
}
NamedValues.clear();
Function *TheFunction = Proto->Codegen();
- if (TheFunction == 0)
- return 0;
+ if (!TheFunction)
+ return nullptr;
// Push the current scope.
- KSDbgInfo.LexicalBlocks.push_back(KSDbgInfo.FnScopeMap[Proto]);
+ KSDbgInfo.LexicalBlocks.push_back(KSDbgInfo.FnScopeMap[Proto.get()]);
// Unset the location for the prologue emission (leading instructions with no
// location in a function are considered part of the prologue and the debugger
// Add all arguments to the symbol table and create their allocas.
Proto->CreateArgumentAllocas(TheFunction);
- KSDbgInfo.emitLocation(Body);
+ KSDbgInfo.emitLocation(Body.get());
if (Value *RetVal = Body->Codegen()) {
// Finish off the function.
// unconditionally.
KSDbgInfo.LexicalBlocks.pop_back();
- return 0;
+ return nullptr;
}
//===----------------------------------------------------------------------===//
static ExecutionEngine *TheExecutionEngine;
static void HandleDefinition() {
- if (FunctionAST *F = ParseDefinition()) {
- if (!F->Codegen()) {
+ if (auto FnAST = ParseDefinition()) {
+ if (!FnAST->Codegen()) {
fprintf(stderr, "Error reading function definition:");
}
} else {
}
static void HandleExtern() {
- if (PrototypeAST *P = ParseExtern()) {
- if (!P->Codegen()) {
+ if (auto ProtoAST = ParseExtern()) {
+ if (!ProtoAST->Codegen()) {
fprintf(stderr, "Error reading extern");
}
} else {
static void HandleTopLevelExpression() {
// Evaluate a top-level expression into an anonymous function.
- if (FunctionAST *F = ParseTopLevelExpr()) {
- if (!F->Codegen()) {
+ if (auto FnAST = ParseTopLevelExpr()) {
+ if (!FnAST->Codegen()) {
fprintf(stderr, "Error generating code for top level expr");
}
} else {