/// Return true we can analyze the memory accesses in the loop and there are
/// no memory dependence cycles.
- bool canVectorizeMemory() { return CanVecMem; }
+ bool canVectorizeMemory() const { return CanVecMem; }
- RuntimePointerCheck *getRuntimePointerCheck() { return &PtrRtCheck; }
+ const RuntimePointerCheck *getRuntimePointerCheck() const {
+ return &PtrRtCheck;
+ }
/// Return true if the block BB needs to be predicated in order for the loop
/// to be vectorized.
DominatorTree *DT);
/// Returns true if the value V is uniform within the loop.
- bool isUniform(Value *V);
+ bool isUniform(Value *V) const;
unsigned getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes; }
unsigned getNumStores() const { return NumStores; }
/// Returns a pair of instructions where the first element is the first
/// instruction generated in possibly a sequence of instructions and the
/// second value is the final comparator value or NULL if no check is needed.
- std::pair<Instruction *, Instruction *> addRuntimeCheck(Instruction *Loc);
+ std::pair<Instruction *, Instruction *>
+ addRuntimeCheck(Instruction *Loc) const;
/// \brief The diagnostics report generated for the analysis. E.g. why we
/// couldn't analyze the loop.
- Optional<LoopAccessReport> &getReport() { return Report; }
+ const Optional<LoopAccessReport> &getReport() const { return Report; }
/// \brief Print the information about the memory accesses in the loop.
void print(raw_ostream &OS, unsigned Depth = 0) const;
/// of symbolic strides, \p Strides provides the mapping (see
/// replaceSymbolicStrideSCEV). If there is no cached result available run
/// the analysis.
- LoopAccessInfo &getInfo(Loop *L, ValueToValueMap &Strides);
+ const LoopAccessInfo &getInfo(Loop *L, ValueToValueMap &Strides);
void releaseMemory() override {
// Invalidate the cache when the pass is freed.
Report = Message;
}
-bool LoopAccessInfo::isUniform(Value *V) {
+bool LoopAccessInfo::isUniform(Value *V) const {
return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
}
}
std::pair<Instruction *, Instruction *>
-LoopAccessInfo::addRuntimeCheck(Instruction *Loc) {
+LoopAccessInfo::addRuntimeCheck(Instruction *Loc) const {
Instruction *tnullptr = nullptr;
if (!PtrRtCheck.Need)
return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
OS << "\n";
}
-LoopAccessInfo &LoopAccessAnalysis::getInfo(Loop *L, ValueToValueMap &Strides) {
+const LoopAccessInfo &LoopAccessAnalysis::getInfo(Loop *L,
+ ValueToValueMap &Strides) {
auto &LAI = LoopAccessInfoMap[L];
#ifndef NDEBUG
bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
/// Returns the information that we collected about runtime memory check.
- LoopAccessInfo::RuntimePointerCheck *getRuntimePointerCheck() {
+ const LoopAccessInfo::RuntimePointerCheck *getRuntimePointerCheck() const {
return LAI->getRuntimePointerCheck();
}
- LoopAccessInfo *getLAI() {
+ const LoopAccessInfo *getLAI() const {
return LAI;
}
LoopAccessAnalysis *LAA;
// And the loop-accesses info corresponding to this loop. This pointer is
// null until canVectorizeMemory sets it up.
- LoopAccessInfo *LAI;
+ const LoopAccessInfo *LAI;
// --- vectorization state --- //