for (unsigned j = i+1; j < e; ++j) {
MachineOperand &MO2 = MI->getOperand(j);
if (MO2.isRegister() && MO2.isUse() && MO2.getReg() == Reg &&
- TII->getOperandConstraint(MI->getOpcode(), j,
- TargetInstrInfo::TIED_TO) == (int)i)
+ TII->getOperandConstraint(MI->getOpcode(),j,TOI::TIED_TO) == (int)i)
return true;
}
}
if (MainNode->isTargetOpcode()) {
unsigned Opc = MainNode->getTargetOpcode();
for (unsigned i = 0, ee = TII->getNumOperands(Opc); i != ee; ++i) {
- if (TII->getOperandConstraint(Opc, i,
- TargetInstrInfo::TIED_TO) != -1) {
+ if (TII->getOperandConstraint(Opc, i, TOI::TIED_TO) != -1) {
SU->isTwoAddress = true;
break;
}
unsigned NumRes = CountResults(SU->Node);
unsigned NumOps = CountOperands(SU->Node);
for (unsigned j = 0; j != NumOps; ++j) {
- if (TII->getOperandConstraint(Opc, j+NumRes,
- TargetInstrInfo::TIED_TO) == -1)
+ if (TII->getOperandConstraint(Opc, j+NumRes, TOI::TIED_TO) == -1)
continue;
SDNode *OpN = SU->Node->getOperand(j).Val;
unsigned NumRes = ScheduleDAG::CountResults(SU1->Node);
unsigned NumOps = ScheduleDAG::CountOperands(SU1->Node);
for (unsigned i = 0; i != NumOps; ++i) {
- if (TII->getOperandConstraint(Opc, i+NumRes,
- TargetInstrInfo::TIED_TO) == -1)
+ if (TII->getOperandConstraint(Opc, i+NumRes, TOI::TIED_TO) == -1)
continue;
if (SU1->Node->getOperand(i).isOperand(SU2->Node))
return true;
unsigned NumRes = ScheduleDAG::CountResults(SU->Node);
unsigned NumOps = ScheduleDAG::CountOperands(SU->Node);
for (unsigned i = 0; i != NumOps; ++i) {
- if (TII->getOperandConstraint(Opc, i+NumRes,
- TargetInstrInfo::TIED_TO) != -1) {
+ if (TII->getOperandConstraint(Opc, i+NumRes, TOI::TIED_TO) != -1) {
SDNode *DU = SU->Node->getOperand(i).Val;
if (Op == (*SUnitMap)[DU])
return true;
unsigned NumRes = ScheduleDAG::CountResults(Node);
unsigned NumOps = ScheduleDAG::CountOperands(Node);
for (unsigned j = 0; j != NumOps; ++j) {
- if (TII->getOperandConstraint(Opc, j+NumRes,
- TargetInstrInfo::TIED_TO) != -1) {
+ if (TII->getOperandConstraint(Opc, j+NumRes, TOI::TIED_TO) != -1) {
SDNode *DU = SU->Node->getOperand(j).Val;
SUnit *DUSU = (*SUnitMap)[DU];
if (!DUSU) continue;
bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
DOUT << "Machine Function\n";
const TargetMachine &TM = MF.getTarget();
- const MRegisterInfo &MRI = *TM.getRegisterInfo();
const TargetInstrInfo &TII = *TM.getInstrInfo();
+ const MRegisterInfo &MRI = *TM.getRegisterInfo();
LiveVariables &LV = getAnalysis<LiveVariables>();
bool MadeChange = false;
mbbi != mbbe; ++mbbi) {
for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
mi != me; ++mi) {
- unsigned opcode = mi->getOpcode();
+ const TargetInstrDescriptor *TID = mi->getInstrDescriptor();
bool FirstTied = true;
- for (unsigned si = 1, e = TII.getNumOperands(opcode); si < e; ++si) {
- int ti = TII.getOperandConstraint(opcode, si, TargetInstrInfo::TIED_TO);
+ for (unsigned si = 1, e = TID->numOperands; si < e; ++si) {
+ int ti = TID->getOperandConstraint(si, TOI::TIED_TO);
if (ti == -1)
continue;
// allow us to coalesce A and B together, eliminating the copy we are
// about to insert.
if (!LV.KillsRegister(mi, regB)) {
- const TargetInstrDescriptor &TID = TII.get(opcode);
-
// If this instruction is commutative, check to see if C dies. If
// so, swap the B and C operands. This makes the live ranges of A
// and C joinable.
// FIXME: This code also works for A := B op C instructions.
- if ((TID.Flags & M_COMMUTABLE) && mi->getNumOperands() == 3) {
+ if ((TID->Flags & M_COMMUTABLE) && mi->getNumOperands() == 3) {
assert(mi->getOperand(3-si).isRegister() &&
"Not a proper commutative instruction!");
unsigned regC = mi->getOperand(3-si).getReg();
// If this instruction is potentially convertible to a true
// three-address instruction,
- if (TID.Flags & M_CONVERTIBLE_TO_3_ADDR)
+ if (TID->Flags & M_CONVERTIBLE_TO_3_ADDR)
// FIXME: This assumes there are no more operands which are tied
// to another register.
#ifndef NDEBUG
- for (unsigned i = si+1, e = TII.getNumOperands(opcode); i < e; ++i)
- assert(TII.getOperandConstraint(opcode, i,
- TargetInstrInfo::TIED_TO) == -1);
+ for (unsigned i = si+1, e = TID->numOperands; i < e; ++i)
+ assert(TID->getOperandConstraint(i, TOI::TIED_TO) == -1);
#endif
- if (MachineInstr *New = TII.convertToThreeAddress(mi)) {
+ if (MachineInstr *New = TII.convertToThreeAddress(mbbi, mi, LV)) {
DOUT << "2addr: CONVERTING 2-ADDR: " << *mi;
DOUT << "2addr: TO 3-ADDR: " << *New;
- LV.instructionChanged(mi, New); // Update live variables
- mbbi->insert(mi, New); // Insert the new inst
mbbi->erase(mi); // Nuke the old inst.
mi = New;
++NumConvertedTo3Addr;
}
ModRef MRInfo;
- if (TII.getOperandConstraint(OldMI->getOpcode(), OpNo,
- TargetInstrInfo::TIED_TO)) {
+ if (TII.getOperandConstraint(OldMI->getOpcode(), OpNo, TOI::TIED_TO)) {
// Folded a two-address operand.
MRInfo = isModRef;
} else if (OldMI->getOperand(OpNo).isDef()) {
// aren't allowed to modify the reused register. If none of these cases
// apply, reuse it.
bool CanReuse = true;
- int ti = TII->getOperandConstraint(MI.getOpcode(), i,
- TargetInstrInfo::TIED_TO);
+ int ti = TII->getOperandConstraint(MI.getOpcode(), i, TOI::TIED_TO);
if (ti != -1 &&
MI.getOperand(ti).isReg() &&
MI.getOperand(ti).getReg() == VirtReg) {
for (unsigned i = 0, e = getNumOperands(Opc); i != e; ++i) {
if (i == OpNum)
continue;
- int ti = getOperandConstraint(Opc, i, TIED_TO);
+ int ti = getOperandConstraint(Opc, i, TOI::TIED_TO);
if (ti == (int)OpNum)
return i;
}
unsigned NumOps = II->getNumOperands(Opcode);
if (NumOps) {
bool isTwoAddr = NumOps > 1 &&
- II->getOperandConstraint(Opcode, 1, TargetInstrInfo::TIED_TO) != -1;
+ II->getOperandConstraint(Opcode, 1, TOI::TIED_TO) != -1;
// If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix.
bool isTrunc8 = isX86_64TruncToByte(Opcode);
unsigned NumOps = II->getNumOperands(Opcode);
unsigned CurOp = 0;
if (NumOps > 1 &&
- II->getOperandConstraint(Opcode, 1, TargetInstrInfo::TIED_TO) != -1)
+ II->getOperandConstraint(Opcode, 1, TOI::TIED_TO) != -1)
CurOp++;
unsigned char BaseOpcode = II->getBaseOpcodeFor(Opcode);
/// This method returns a null pointer if the transformation cannot be
/// performed, otherwise it returns the new instruction.
///
- virtual MachineInstr *convertToThreeAddress(MachineInstr *TA) const;
+ virtual MachineInstr *convertToThreeAddress(MachineFunction::iterator &MFI,
+ MachineBasicBlock::iterator &MBBI,
+ LiveVariables &LV) const;
/// commuteInstruction - We have a few instructions that must be hacked on to
/// commute them.
bool isTwoAddrFold = false;
unsigned NumOps = TII.getNumOperands(MI->getOpcode());
bool isTwoAddr = NumOps > 1 &&
- TII.getOperandConstraint(MI->getOpcode(), 1,TargetInstrInfo::TIED_TO) != -1;
+ TII.getOperandConstraint(MI->getOpcode(), 1, TOI::TIED_TO) != -1;
MachineInstr *NewMI = NULL;
// Folding a memory location into the two-address part of a two-address