bool MatchAddress(SDOperand N, X86ISelAddressMode &AM,
bool isRoot = true, unsigned Depth = 0);
+ bool MatchAddressBase(SDOperand N, X86ISelAddressMode &AM,
+ bool isRoot, unsigned Depth);
bool SelectAddr(SDOperand Op, SDOperand N, SDOperand &Base,
SDOperand &Scale, SDOperand &Index, SDOperand &Disp);
bool SelectLEAAddr(SDOperand Op, SDOperand N, SDOperand &Base,
/// addressing mode
bool X86DAGToDAGISel::MatchAddress(SDOperand N, X86ISelAddressMode &AM,
bool isRoot, unsigned Depth) {
- if (Depth > 5) {
- // Default, generate it as a register.
- AM.BaseType = X86ISelAddressMode::RegBase;
- AM.Base.Reg = N;
- return false;
- }
+ // Limit recursion.
+ if (Depth > 5)
+ return MatchAddressBase(N, AM, isRoot, Depth);
// RIP relative addressing: %rip + 32-bit displacement!
if (AM.isRIPRel) {
break;
}
+ return MatchAddressBase(N, AM, isRoot, Depth);
+}
+
+/// MatchAddressBase - Helper for MatchAddress. Add the specified node to the
+/// specified addressing mode without any further recursion.
+bool X86DAGToDAGISel::MatchAddressBase(SDOperand N, X86ISelAddressMode &AM,
+ bool isRoot, unsigned Depth) {
// Is the base register already occupied?
if (AM.BaseType != X86ISelAddressMode::RegBase || AM.Base.Reg.Val) {
// If so, check to see if the scale index register is set.
--- /dev/null
+; RUN: llvm-as < %s | llc -march=x86-64 | grep lea | wc -l | grep 12
+
+; This testcase was written to demonstrate an instruction-selection problem,
+; however it also happens to expose a limitation in the DAGCombiner's
+; expression reassociation which causes it to miss opportunities for
+; constant folding due to the intermediate adds having multiple uses.
+; The Reassociate pass has similar limitations. If these limitations are
+; fixed, the test commands above will need to be updated to expect fewer
+; lea instructions.
+
+@g0 = weak global [1000 x i32] zeroinitializer, align 32 ; <[1000 x i32]*> [#uses=8]
+@g1 = weak global [1000 x i32] zeroinitializer, align 32 ; <[1000 x i32]*> [#uses=7]
+
+define void @foo() {
+entry:
+ %tmp4 = load i32* getelementptr ([1000 x i32]* @g0, i32 0, i32 0) ; <i32> [#uses=1]
+ %tmp8 = load i32* getelementptr ([1000 x i32]* @g1, i32 0, i32 0) ; <i32> [#uses=1]
+ %tmp9 = add i32 %tmp4, 1 ; <i32> [#uses=1]
+ %tmp10 = add i32 %tmp9, %tmp8 ; <i32> [#uses=2]
+ store i32 %tmp10, i32* getelementptr ([1000 x i32]* @g0, i32 0, i32 1)
+ %tmp8.1 = load i32* getelementptr ([1000 x i32]* @g1, i32 0, i32 1) ; <i32> [#uses=1]
+ %tmp9.1 = add i32 %tmp10, 1 ; <i32> [#uses=1]
+ %tmp10.1 = add i32 %tmp9.1, %tmp8.1 ; <i32> [#uses=2]
+ store i32 %tmp10.1, i32* getelementptr ([1000 x i32]* @g0, i32 0, i32 2)
+ %tmp8.2 = load i32* getelementptr ([1000 x i32]* @g1, i32 0, i32 2) ; <i32> [#uses=1]
+ %tmp9.2 = add i32 %tmp10.1, 1 ; <i32> [#uses=1]
+ %tmp10.2 = add i32 %tmp9.2, %tmp8.2 ; <i32> [#uses=2]
+ store i32 %tmp10.2, i32* getelementptr ([1000 x i32]* @g0, i32 0, i32 3)
+ %tmp8.3 = load i32* getelementptr ([1000 x i32]* @g1, i32 0, i32 3) ; <i32> [#uses=1]
+ %tmp9.3 = add i32 %tmp10.2, 1 ; <i32> [#uses=1]
+ %tmp10.3 = add i32 %tmp9.3, %tmp8.3 ; <i32> [#uses=2]
+ store i32 %tmp10.3, i32* getelementptr ([1000 x i32]* @g0, i32 0, i32 4)
+ %tmp8.4 = load i32* getelementptr ([1000 x i32]* @g1, i32 0, i32 4) ; <i32> [#uses=1]
+ %tmp9.4 = add i32 %tmp10.3, 1 ; <i32> [#uses=1]
+ %tmp10.4 = add i32 %tmp9.4, %tmp8.4 ; <i32> [#uses=2]
+ store i32 %tmp10.4, i32* getelementptr ([1000 x i32]* @g0, i32 0, i32 5)
+ %tmp8.5 = load i32* getelementptr ([1000 x i32]* @g1, i32 0, i32 5) ; <i32> [#uses=1]
+ %tmp9.5 = add i32 %tmp10.4, 1 ; <i32> [#uses=1]
+ %tmp10.5 = add i32 %tmp9.5, %tmp8.5 ; <i32> [#uses=2]
+ store i32 %tmp10.5, i32* getelementptr ([1000 x i32]* @g0, i32 0, i32 6)
+ %tmp8.6 = load i32* getelementptr ([1000 x i32]* @g1, i32 0, i32 6) ; <i32> [#uses=1]
+ %tmp9.6 = add i32 %tmp10.5, 1 ; <i32> [#uses=1]
+ %tmp10.6 = add i32 %tmp9.6, %tmp8.6 ; <i32> [#uses=1]
+ store i32 %tmp10.6, i32* getelementptr ([1000 x i32]* @g0, i32 0, i32 7)
+ ret void
+}
+