#include "X86InstrInfo.h"
#include "X86.h"
+#include "X86InstrBuilder.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "X86GenInstrInfo.inc"
using namespace llvm;
return false;
}
+/// convertToThreeAddress - This method must be implemented by targets that
+/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
+/// may be able to convert a two-address instruction into a true
+/// three-address instruction on demand. This allows the X86 target (for
+/// example) to convert ADD and SHL instructions into LEA instructions if they
+/// would require register copies due to two-addressness.
+///
+/// This method returns a null pointer if the transformation cannot be
+/// performed, otherwise it returns the new instruction.
+///
+MachineInstr *X86InstrInfo::convertToThreeAddress(MachineInstr *MI) const {
+ // All instructions input are two-addr instructions. Get the known operands.
+ unsigned Dest = MI->getOperand(0).getReg();
+ unsigned Src = MI->getOperand(1).getReg();
+
+ // FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
+ // we have subtarget support, enable the 16-bit LEA generation here.
+ bool DisableLEA16 = true;
+
+ switch (MI->getOpcode()) {
+ case X86::INC32r:
+ assert(MI->getNumOperands() == 2 && "Unknown inc instruction!");
+ return addRegOffset(BuildMI(X86::LEA32r, 5, Dest), Src, 1);
+ case X86::INC16r:
+ if (DisableLEA16) return 0;
+ assert(MI->getNumOperands() == 2 && "Unknown inc instruction!");
+ return addRegOffset(BuildMI(X86::LEA16r, 5, Dest), Src, 1);
+ case X86::DEC32r:
+ assert(MI->getNumOperands() == 2 && "Unknown dec instruction!");
+ return addRegOffset(BuildMI(X86::LEA32r, 5, Dest), Src, -1);
+ case X86::DEC16r:
+ if (DisableLEA16) return 0;
+ assert(MI->getNumOperands() == 2 && "Unknown dec instruction!");
+ return addRegOffset(BuildMI(X86::LEA16r, 5, Dest), Src, -1);
+ case X86::ADD32rr:
+ assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
+ return addRegReg(BuildMI(X86::LEA32r, 5, Dest), Src,
+ MI->getOperand(2).getReg());
+ case X86::ADD16rr:
+ if (DisableLEA16) return 0;
+ assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
+ return addRegReg(BuildMI(X86::LEA16r, 5, Dest), Src,
+ MI->getOperand(2).getReg());
+ case X86::ADD32ri:
+ assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
+ if (MI->getOperand(2).isImmediate())
+ return addRegOffset(BuildMI(X86::LEA32r, 5, Dest), Src,
+ MI->getOperand(2).getImmedValue());
+ return 0;
+ case X86::ADD16ri:
+ if (DisableLEA16) return 0;
+ assert(MI->getNumOperands() == 3 && "Unknown add instruction!");
+ if (MI->getOperand(2).isImmediate())
+ return addRegOffset(BuildMI(X86::LEA16r, 5, Dest), Src,
+ MI->getOperand(2).getImmedValue());
+ break;
+
+ case X86::SHL16ri:
+ if (DisableLEA16) return 0;
+ case X86::SHL32ri:
+ assert(MI->getNumOperands() == 3 && MI->getOperand(2).isImmediate() &&
+ "Unknown shl instruction!");
+ unsigned ShAmt = MI->getOperand(2).getImmedValue();
+ if (ShAmt == 1 || ShAmt == 2 || ShAmt == 3) {
+ X86AddressMode AM;
+ AM.Scale = 1 << ShAmt;
+ AM.IndexReg = Src;
+ unsigned Opc = MI->getOpcode() == X86::SHL32ri ? X86::LEA32r :X86::LEA16r;
+ return addFullAddress(BuildMI(Opc, 5, Dest), AM);
+ }
+ break;
+ }
+
+ return 0;
+}
+
+
void X86InstrInfo::insertGoto(MachineBasicBlock& MBB,
MachineBasicBlock& TMBB) const {
BuildMI(MBB, MBB.end(), X86::JMP, 1).addMBB(&TMBB);
case X86::JA: ROpcode = X86::JBE; break;
case X86::JS: ROpcode = X86::JNS; break;
case X86::JNS: ROpcode = X86::JS; break;
+ case X86::JP: ROpcode = X86::JNP; break;
+ case X86::JNP: ROpcode = X86::JP; break;
case X86::JL: ROpcode = X86::JGE; break;
case X86::JGE: ROpcode = X86::JL; break;
case X86::JLE: ROpcode = X86::JG; break;
MachineBasicBlock* TMBB = MI->getOperand(0).getMachineBasicBlock();
return BuildMI(*MBB, MBB->erase(MI), ROpcode, 1).addMBB(TMBB);
}
+