--- /dev/null
+//===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implement a loop-aware load elimination pass.
+//
+// It uses LoopAccessAnalysis to identify loop-carried dependences with a
+// distance of one between stores and loads. These form the candidates for the
+// transformation. The source value of each store then propagated to the user
+// of the corresponding load. This makes the load dead.
+//
+// The pass can also version the loop and add memchecks in order to prove that
+// may-aliasing stores can't change the value in memory before it's read by the
+// load.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/LoopAccessAnalysis.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Transforms/Utils/LoopVersioning.h"
+#include <forward_list>
+
+#define LLE_OPTION "loop-load-elim"
+#define DEBUG_TYPE LLE_OPTION
+
+using namespace llvm;
+
+static cl::opt<unsigned> CheckPerElim(
+ "runtime-check-per-loop-load-elim", cl::Hidden,
+ cl::desc("Max number of memchecks allowed per eliminated load on average"),
+ cl::init(1));
+
+STATISTIC(NumLoopLoadEliminted, "Number of loads eliminated by LLE");
+
+namespace {
+
+/// \brief Represent a store-to-forwarding candidate.
+struct StoreToLoadForwardingCandidate {
+ LoadInst *Load;
+ StoreInst *Store;
+
+ StoreToLoadForwardingCandidate(LoadInst *Load, StoreInst *Store)
+ : Load(Load), Store(Store) {}
+
+ /// \brief Return true if the dependence from the store to the load has a
+ /// distance of one. E.g. A[i+1] = A[i]
+ bool isDependenceDistanceOfOne(ScalarEvolution *SE) const {
+ Value *LoadPtr = Load->getPointerOperand();
+ Value *StorePtr = Store->getPointerOperand();
+ Type *LoadPtrType = LoadPtr->getType();
+ Type *StorePtrType = StorePtr->getType();
+ Type *LoadType = LoadPtrType->getPointerElementType();
+
+ assert(LoadPtrType->getPointerAddressSpace() ==
+ StorePtrType->getPointerAddressSpace() &&
+ LoadType == StorePtrType->getPointerElementType() &&
+ "Should be a known dependence");
+
+ auto &DL = Load->getParent()->getModule()->getDataLayout();
+ unsigned TypeByteSize = DL.getTypeAllocSize(const_cast<Type *>(LoadType));
+
+ auto *LoadPtrSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(LoadPtr));
+ auto *StorePtrSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
+
+ // We don't need to check non-wrapping here because forward/backward
+ // dependence wouldn't be valid if these weren't monotonic accesses.
+ auto *Dist =
+ cast<SCEVConstant>(SE->getMinusSCEV(StorePtrSCEV, LoadPtrSCEV));
+ const APInt &Val = Dist->getValue()->getValue();
+ return Val.abs() == TypeByteSize;
+ }
+
+ Value *getLoadPtr() const { return Load->getPointerOperand(); }
+
+#ifndef NDEBUG
+ friend raw_ostream &operator<<(raw_ostream &OS,
+ const StoreToLoadForwardingCandidate &Cand) {
+ OS << *Cand.Store << " -->\n";
+ OS.indent(2) << *Cand.Load << "\n";
+ return OS;
+ }
+#endif
+};
+
+/// \brief Check if the store dominates all latches, so as long as there is no
+/// intervening store this value will be loaded in the next iteration.
+bool doesStoreDominatesAllLatches(BasicBlock *StoreBlock, Loop *L,
+ DominatorTree *DT) {
+ SmallVector<BasicBlock *, 8> Latches;
+ L->getLoopLatches(Latches);
+ return std::all_of(Latches.begin(), Latches.end(),
+ [&](const BasicBlock *Latch) {
+ return DT->dominates(StoreBlock, Latch);
+ });
+}
+
+/// \brief The per-loop class that does most of the work.
+class LoadEliminationForLoop {
+public:
+ LoadEliminationForLoop(Loop *L, LoopInfo *LI, const LoopAccessInfo &LAI,
+ DominatorTree *DT, ScalarEvolution *SE)
+ : L(L), LI(LI), LAI(LAI), DT(DT), SE(SE) {}
+
+ /// \brief Look through the loop-carried and loop-independent dependences in
+ /// this loop and find store->load dependences.
+ ///
+ /// Note that no candidate is returned if LAA has failed to analyze the loop
+ /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
+ std::forward_list<StoreToLoadForwardingCandidate>
+ findStoreToLoadDependences(const LoopAccessInfo &LAI) {
+ std::forward_list<StoreToLoadForwardingCandidate> Candidates;
+
+ const auto *Deps = LAI.getDepChecker().getDependences();
+ if (!Deps)
+ return Candidates;
+
+ // Find store->load dependences (consequently true dep). Both lexically
+ // forward and backward dependences qualify. Disqualify loads that have
+ // other unknown dependences.
+
+ SmallSet<Instruction *, 4> LoadsWithUnknownDepedence;
+
+ for (const auto &Dep : *Deps) {
+ Instruction *Source = Dep.getSource(LAI);
+ Instruction *Destination = Dep.getDestination(LAI);
+
+ if (Dep.Type == MemoryDepChecker::Dependence::Unknown) {
+ if (isa<LoadInst>(Source))
+ LoadsWithUnknownDepedence.insert(Source);
+ if (isa<LoadInst>(Destination))
+ LoadsWithUnknownDepedence.insert(Destination);
+ continue;
+ }
+
+ if (Dep.isBackward())
+ // Note that the designations source and destination follow the program
+ // order, i.e. source is always first. (The direction is given by the
+ // DepType.)
+ std::swap(Source, Destination);
+ else
+ assert(Dep.isForward() && "Needs to be a forward dependence");
+
+ auto *Store = dyn_cast<StoreInst>(Source);
+ if (!Store)
+ continue;
+ auto *Load = dyn_cast<LoadInst>(Destination);
+ if (!Load)
+ continue;
+ Candidates.emplace_front(Load, Store);
+ }
+
+ if (!LoadsWithUnknownDepedence.empty())
+ Candidates.remove_if([&](const StoreToLoadForwardingCandidate &C) {
+ return LoadsWithUnknownDepedence.count(C.Load);
+ });
+
+ return Candidates;
+ }
+
+ /// \brief Return the index of the instruction according to program order.
+ unsigned getInstrIndex(Instruction *Inst) {
+ auto I = InstOrder.find(Inst);
+ assert(I != InstOrder.end() && "No index for instruction");
+ return I->second;
+ }
+
+ /// \brief If a load has multiple candidates associated (i.e. different
+ /// stores), it means that it could be forwarding from multiple stores
+ /// depending on control flow. Remove these candidates.
+ ///
+ /// Here, we rely on LAA to include the relevant loop-independent dependences.
+ /// LAA is known to omit these in the very simple case when the read and the
+ /// write within an alias set always takes place using the *same* pointer.
+ ///
+ /// However, we know that this is not the case here, i.e. we can rely on LAA
+ /// to provide us with loop-independent dependences for the cases we're
+ /// interested. Consider the case for example where a loop-independent
+ /// dependece S1->S2 invalidates the forwarding S3->S2.
+ ///
+ /// A[i] = ... (S1)
+ /// ... = A[i] (S2)
+ /// A[i+1] = ... (S3)
+ ///
+ /// LAA will perform dependence analysis here because there are two
+ /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
+ void removeDependencesFromMultipleStores(
+ std::forward_list<StoreToLoadForwardingCandidate> &Candidates) {
+ // If Store is nullptr it means that we have multiple stores forwarding to
+ // this store.
+ typedef DenseMap<LoadInst *, const StoreToLoadForwardingCandidate *>
+ LoadToSingleCandT;
+ LoadToSingleCandT LoadToSingleCand;
+
+ for (const auto &Cand : Candidates) {
+ bool NewElt;
+ LoadToSingleCandT::iterator Iter;
+
+ std::tie(Iter, NewElt) =
+ LoadToSingleCand.insert(std::make_pair(Cand.Load, &Cand));
+ if (!NewElt) {
+ const StoreToLoadForwardingCandidate *&OtherCand = Iter->second;
+ // Already multiple stores forward to this load.
+ if (OtherCand == nullptr)
+ continue;
+
+ // Handle the very basic of case when the two stores are in the same
+ // block so deciding which one forwards is easy. The later one forwards
+ // as long as they both have a dependence distance of one to the load.
+ if (Cand.Store->getParent() == OtherCand->Store->getParent() &&
+ Cand.isDependenceDistanceOfOne(SE) &&
+ OtherCand->isDependenceDistanceOfOne(SE)) {
+ // They are in the same block, the later one will forward to the load.
+ if (getInstrIndex(OtherCand->Store) < getInstrIndex(Cand.Store))
+ OtherCand = &Cand;
+ } else
+ OtherCand = nullptr;
+ }
+ }
+
+ Candidates.remove_if([&](const StoreToLoadForwardingCandidate &Cand) {
+ if (LoadToSingleCand[Cand.Load] != &Cand) {
+ DEBUG(dbgs() << "Removing from candidates: \n" << Cand
+ << " The load may have multiple stores forwarding to "
+ << "it\n");
+ return true;
+ }
+ return false;
+ });
+ }
+
+ /// \brief Given two pointers operations by their RuntimePointerChecking
+ /// indices, return true if they require an alias check.
+ ///
+ /// We need a check if one is a pointer for a candidate load and the other is
+ /// a pointer for a possibly intervening store.
+ bool needsChecking(unsigned PtrIdx1, unsigned PtrIdx2,
+ const SmallSet<Value *, 4> &PtrsWrittenOnFwdingPath,
+ const std::set<Value *> &CandLoadPtrs) {
+ Value *Ptr1 =
+ LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx1).PointerValue;
+ Value *Ptr2 =
+ LAI.getRuntimePointerChecking()->getPointerInfo(PtrIdx2).PointerValue;
+ return ((PtrsWrittenOnFwdingPath.count(Ptr1) && CandLoadPtrs.count(Ptr2)) ||
+ (PtrsWrittenOnFwdingPath.count(Ptr2) && CandLoadPtrs.count(Ptr1)));
+ }
+
+ /// \brief Return pointers that are possibly written to on the path from a
+ /// forwarding store to a load.
+ ///
+ /// These pointers need to be alias-checked against the forwarding candidates.
+ SmallSet<Value *, 4> findPointersWrittenOnForwardingPath(
+ const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
+ // From FirstStore to LastLoad neither of the elimination candidate loads
+ // should overlap with any of the stores.
+ //
+ // E.g.:
+ //
+ // st1 C[i]
+ // ld1 B[i] <-------,
+ // ld0 A[i] <----, | * LastLoad
+ // ... | |
+ // st2 E[i] | |
+ // st3 B[i+1] -- | -' * FirstStore
+ // st0 A[i+1] ---'
+ // st4 D[i]
+ //
+ // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
+ // ld0.
+
+ LoadInst *LastLoad =
+ std::max_element(Candidates.begin(), Candidates.end(),
+ [&](const StoreToLoadForwardingCandidate &A,
+ const StoreToLoadForwardingCandidate &B) {
+ return getInstrIndex(A.Load) < getInstrIndex(B.Load);
+ })
+ ->Load;
+ StoreInst *FirstStore =
+ std::min_element(Candidates.begin(), Candidates.end(),
+ [&](const StoreToLoadForwardingCandidate &A,
+ const StoreToLoadForwardingCandidate &B) {
+ return getInstrIndex(A.Store) <
+ getInstrIndex(B.Store);
+ })
+ ->Store;
+
+ // We're looking for stores after the first forwarding store until the end
+ // of the loop, then from the beginning of the loop until the last
+ // forwarded-to load. Collect the pointer for the stores.
+ SmallSet<Value *, 4> PtrsWrittenOnFwdingPath;
+
+ auto InsertStorePtr = [&](Instruction *I) {
+ if (auto *S = dyn_cast<StoreInst>(I))
+ PtrsWrittenOnFwdingPath.insert(S->getPointerOperand());
+ };
+ const auto &MemInstrs = LAI.getDepChecker().getMemoryInstructions();
+ std::for_each(MemInstrs.begin() + getInstrIndex(FirstStore) + 1,
+ MemInstrs.end(), InsertStorePtr);
+ std::for_each(MemInstrs.begin(), &MemInstrs[getInstrIndex(LastLoad)],
+ InsertStorePtr);
+
+ return PtrsWrittenOnFwdingPath;
+ }
+
+ /// \brief Determine the pointer alias checks to prove that there are no
+ /// intervening stores.
+ SmallVector<RuntimePointerChecking::PointerCheck, 4> collectMemchecks(
+ const SmallVectorImpl<StoreToLoadForwardingCandidate> &Candidates) {
+
+ SmallSet<Value *, 4> PtrsWrittenOnFwdingPath =
+ findPointersWrittenOnForwardingPath(Candidates);
+
+ // Collect the pointers of the candidate loads.
+ // FIXME: SmallSet does not work with std::inserter.
+ std::set<Value *> CandLoadPtrs;
+ std::transform(Candidates.begin(), Candidates.end(),
+ std::inserter(CandLoadPtrs, CandLoadPtrs.begin()),
+ std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr));
+
+ const auto &AllChecks = LAI.getRuntimePointerChecking()->getChecks();
+ SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks;
+
+ std::copy_if(AllChecks.begin(), AllChecks.end(), std::back_inserter(Checks),
+ [&](const RuntimePointerChecking::PointerCheck &Check) {
+ for (auto PtrIdx1 : Check.first->Members)
+ for (auto PtrIdx2 : Check.second->Members)
+ if (needsChecking(PtrIdx1, PtrIdx2,
+ PtrsWrittenOnFwdingPath, CandLoadPtrs))
+ return true;
+ return false;
+ });
+
+ DEBUG(dbgs() << "\nPointer Checks (count: " << Checks.size() << "):\n");
+ DEBUG(LAI.getRuntimePointerChecking()->printChecks(dbgs(), Checks));
+
+ return Checks;
+ }
+
+ /// \brief Perform the transformation for a candidate.
+ void
+ propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate &Cand,
+ SCEVExpander &SEE) {
+ //
+ // loop:
+ // %x = load %gep_i
+ // = ... %x
+ // store %y, %gep_i_plus_1
+ //
+ // =>
+ //
+ // ph:
+ // %x.initial = load %gep_0
+ // loop:
+ // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
+ // %x = load %gep_i <---- now dead
+ // = ... %x.storeforward
+ // store %y, %gep_i_plus_1
+
+ Value *Ptr = Cand.Load->getPointerOperand();
+ auto *PtrSCEV = cast<SCEVAddRecExpr>(SE->getSCEV(Ptr));
+ auto *PH = L->getLoopPreheader();
+ Value *InitialPtr = SEE.expandCodeFor(PtrSCEV->getStart(), Ptr->getType(),
+ PH->getTerminator());
+ Value *Initial =
+ new LoadInst(InitialPtr, "load_initial", PH->getTerminator());
+ PHINode *PHI = PHINode::Create(Initial->getType(), 2, "store_forwarded",
+ L->getHeader()->begin());
+ PHI->addIncoming(Initial, PH);
+ PHI->addIncoming(Cand.Store->getOperand(0), L->getLoopLatch());
+
+ Cand.Load->replaceAllUsesWith(PHI);
+ }
+
+ /// \brief Top-level driver for each loop: find store->load forwarding
+ /// candidates, add run-time checks and perform transformation.
+ bool processLoop() {
+ DEBUG(dbgs() << "\nIn \"" << L->getHeader()->getParent()->getName()
+ << "\" checking " << *L << "\n");
+ // Look for store-to-load forwarding cases across the
+ // backedge. E.g.:
+ //
+ // loop:
+ // %x = load %gep_i
+ // = ... %x
+ // store %y, %gep_i_plus_1
+ //
+ // =>
+ //
+ // ph:
+ // %x.initial = load %gep_0
+ // loop:
+ // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
+ // %x = load %gep_i <---- now dead
+ // = ... %x.storeforward
+ // store %y, %gep_i_plus_1
+
+ // First start with store->load dependences.
+ auto StoreToLoadDependences = findStoreToLoadDependences(LAI);
+ if (StoreToLoadDependences.empty())
+ return false;
+
+ // Generate an index for each load and store according to the original
+ // program order. This will be used later.
+ InstOrder = LAI.getDepChecker().generateInstructionOrderMap();
+
+ // To keep things simple for now, remove those where the load is potentially
+ // fed by multiple stores.
+ removeDependencesFromMultipleStores(StoreToLoadDependences);
+ if (StoreToLoadDependences.empty())
+ return false;
+
+ // Filter the candidates further.
+ SmallVector<StoreToLoadForwardingCandidate, 4> Candidates;
+ unsigned NumForwarding = 0;
+ for (const StoreToLoadForwardingCandidate Cand : StoreToLoadDependences) {
+ DEBUG(dbgs() << "Candidate " << Cand);
+ // Make sure that the stored values is available everywhere in the loop in
+ // the next iteration.
+ if (!doesStoreDominatesAllLatches(Cand.Store->getParent(), L, DT))
+ continue;
+
+ // Check whether the SCEV difference is the same as the induction step,
+ // thus we load the value in the next iteration.
+ if (!Cand.isDependenceDistanceOfOne(SE))
+ continue;
+
+ ++NumForwarding;
+ DEBUG(dbgs()
+ << NumForwarding
+ << ". Valid store-to-load forwarding across the loop backedge\n");
+ Candidates.push_back(Cand);
+ }
+ if (Candidates.empty())
+ return false;
+
+ // Check intervening may-alias stores. These need runtime checks for alias
+ // disambiguation.
+ SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks =
+ collectMemchecks(Candidates);
+
+ // Too many checks are likely to outweigh the benefits of forwarding.
+ if (Checks.size() > Candidates.size() * CheckPerElim) {
+ DEBUG(dbgs() << "Too many run-time checks needed.\n");
+ return false;
+ }
+
+ // Point of no-return, start the transformation. First, version the loop if
+ // necessary.
+ if (!Checks.empty()) {
+ LoopVersioning LV(std::move(Checks), LAI, L, LI, DT);
+ LV.versionLoop();
+ }
+
+ // Next, propagate the value stored by the store to the users of the load.
+ // Also for the first iteration, generate the initial value of the load.
+ SCEVExpander SEE(*SE, L->getHeader()->getModule()->getDataLayout(),
+ "storeforward");
+ for (const auto &Cand : Candidates)
+ propagateStoredValueToLoadUsers(Cand, SEE);
+ NumLoopLoadEliminted += NumForwarding;
+
+ return true;
+ }
+
+private:
+ Loop *L;
+
+ /// \brief Maps the load/store instructions to their index according to
+ /// program order.
+ DenseMap<Instruction *, unsigned> InstOrder;
+
+ // Analyses used.
+ LoopInfo *LI;
+ const LoopAccessInfo &LAI;
+ DominatorTree *DT;
+ ScalarEvolution *SE;
+};
+
+/// \brief The pass. Most of the work is delegated to the per-loop
+/// LoadEliminationForLoop class.
+class LoopLoadElimination : public FunctionPass {
+public:
+ LoopLoadElimination() : FunctionPass(ID) {
+ initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F) override {
+ auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ auto *LAA = &getAnalysis<LoopAccessAnalysis>();
+ auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
+
+ // Build up a worklist of inner-loops to vectorize. This is necessary as the
+ // act of distributing a loop creates new loops and can invalidate iterators
+ // across the loops.
+ SmallVector<Loop *, 8> Worklist;
+
+ for (Loop *TopLevelLoop : *LI)
+ for (Loop *L : depth_first(TopLevelLoop))
+ // We only handle inner-most loops.
+ if (L->empty())
+ Worklist.push_back(L);
+
+ // Now walk the identified inner loops.
+ bool Changed = false;
+ for (Loop *L : Worklist) {
+ const LoopAccessInfo &LAI = LAA->getInfo(L, ValueToValueMap());
+ // The actual work is performed by LoadEliminationForLoop.
+ LoadEliminationForLoop LEL(L, LI, LAI, DT, SE);
+ Changed |= LEL.processLoop();
+ }
+
+ // Process each loop nest in the function.
+ return Changed;
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<LoopInfoWrapperPass>();
+ AU.addPreserved<LoopInfoWrapperPass>();
+ AU.addRequired<LoopAccessAnalysis>();
+ AU.addRequired<ScalarEvolutionWrapperPass>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ }
+
+ static char ID;
+};
+}
+
+char LoopLoadElimination::ID;
+static const char LLE_name[] = "Loop Load Elimination";
+
+INITIALIZE_PASS_BEGIN(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
+INITIALIZE_PASS_END(LoopLoadElimination, LLE_OPTION, LLE_name, false, false)
+
+namespace llvm {
+FunctionPass *createLoopLoadEliminationPass() {
+ return new LoopLoadElimination();
+}
+}