namespace cfg {
+//===----------------------------------------------------------------------===//
+//
+// DominatorBase - Base class that other, more interesting dominator analyses
+// inherit from.
+//
+class DominatorBase {
+protected:
+ const BasicBlock *Root;
+ inline DominatorBase(const BasicBlock *root = 0) : Root(root) {}
+public:
+ inline const BasicBlock *getRoot() const { return Root; }
+ bool isPostDominator() const; // Returns true if analysis based of postdoms
+};
+
//===----------------------------------------------------------------------===//
//
// DominatorSet - Maintain a set<const BasicBlock*> for every basic block in a
// method, that represents the blocks that dominate the block.
//
-class DominatorSet {
+class DominatorSet : public DominatorBase {
public:
typedef set<const BasicBlock*> DomSetType; // Dom set for a bb
typedef map<const BasicBlock *, DomSetType> DomSetMapType; // Map of dom sets
private:
DomSetMapType Doms;
- const BasicBlock *Root;
+
+ void calcForwardDominatorSet(const Method *M);
public:
// DominatorSet ctor - Build either the dominator set or the post-dominator
- // set for a method...
+ // set for a method... Building the postdominator set may require the analysis
+ // routine to modify the method so that there is only a single return in the
+ // method.
//
- DominatorSet(const Method *M, bool PostDomSet = false);
+ DominatorSet(const Method *M);
+ DominatorSet( Method *M, bool PostDomSet);
// Accessor interface:
typedef DomSetMapType::const_iterator const_iterator;
inline const_iterator begin() const { return Doms.begin(); }
inline const_iterator end() const { return Doms.end(); }
inline const_iterator find(const BasicBlock* B) const { return Doms.find(B); }
- inline const BasicBlock *getRoot() const { return Root; }
// getDominators - Return the set of basic blocks that dominate the specified
// block.
// ImmediateDominators - Calculate the immediate dominator for each node in a
// method.
//
-class ImmediateDominators {
+class ImmediateDominators : public DominatorBase {
map<const BasicBlock*, const BasicBlock*> IDoms;
- const BasicBlock *Root;
void calcIDoms(const DominatorSet &DS);
public:
// ImmediateDominators ctor - Calculate the idom mapping, for a method, or
// from a dominator set calculated for something else...
//
- inline ImmediateDominators(const DominatorSet &DS) : Root(DS.getRoot()) {
+ inline ImmediateDominators(const DominatorSet &DS)
+ : DominatorBase(DS.getRoot()) {
calcIDoms(DS); // Can be used to make rev-idoms
}
inline const_iterator begin() const { return IDoms.begin(); }
inline const_iterator end() const { return IDoms.end(); }
inline const_iterator find(const BasicBlock* B) const { return IDoms.find(B);}
- inline const BasicBlock *getRoot() const { return Root; }
// operator[] - Return the idom for the specified basic block. The start
// node returns null, because it does not have an immediate dominator.
//
// DominatorTree - Calculate the immediate dominator tree for a method.
//
-class DominatorTree {
+class DominatorTree : public DominatorBase {
class Node;
- const BasicBlock *Root;
map<const BasicBlock*, Node*> Nodes;
void calculate(const DominatorSet &DS);
typedef map<const BasicBlock*, Node*> NodeMapType;
public:
// DominatorTree ctors - Compute a dominator tree, given various amounts of
// previous knowledge...
- //inline DominatorTree(const Method *M) { calculate(DominatorSet(M)); }
- inline DominatorTree(const DominatorSet &DS) : Root(DS.getRoot()) {
+ inline DominatorTree(const DominatorSet &DS) : DominatorBase(DS.getRoot()) {
calculate(DS);
}
DominatorTree(const ImmediateDominators &IDoms);
~DominatorTree();
- inline const BasicBlock *getRoot() const { return Root; }
inline const Node *operator[](const BasicBlock *BB) const {
NodeMapType::const_iterator i = Nodes.find(BB);
return (i != Nodes.end()) ? i->second : 0;
//
// DominanceFrontier - Calculate the dominance frontiers for a method.
//
-class DominanceFrontier {
+class DominanceFrontier : public DominatorBase {
typedef set<const BasicBlock*> DomSetType; // Dom set for a bb
typedef map<const BasicBlock *, DomSetType> DomSetMapType; // Map of dom sets
private:
DomSetMapType Frontiers;
- const BasicBlock *Root;
const DomSetType &calcDomFrontier(const DominatorTree &DT,
const DominatorTree::Node *Node);
+ const DomSetType &calcPostDomFrontier(const DominatorTree &DT,
+ const DominatorTree::Node *Node);
public:
- DominanceFrontier(const DominatorSet &DS) : Root(DS.getRoot()) {
+ DominanceFrontier(const DominatorSet &DS) : DominatorBase(DS.getRoot()) {
const DominatorTree DT(DS);
- calcDomFrontier(DT, DT[Root]);
+ if (isPostDominator())
+ calcPostDomFrontier(DT, DT[Root]);
+ else
+ calcDomFrontier(DT, DT[Root]);
}
- DominanceFrontier(const ImmediateDominators &ID) : Root(ID.getRoot()) {
+ DominanceFrontier(const ImmediateDominators &ID)
+ : DominatorBase(ID.getRoot()) {
const DominatorTree DT(ID);
- calcDomFrontier(DT, DT[Root]);
+ if (isPostDominator())
+ calcPostDomFrontier(DT, DT[Root]);
+ else
+ calcDomFrontier(DT, DT[Root]);
}
- DominanceFrontier(const DominatorTree &DT) : Root(DT.getRoot()) {
- calcDomFrontier(DT, DT[Root]);
+ DominanceFrontier(const DominatorTree &DT) : DominatorBase(DT.getRoot()) {
+ if (isPostDominator())
+ calcPostDomFrontier(DT, DT[Root]);
+ else
+ calcDomFrontier(DT, DT[Root]);
}
// Accessor interface:
inline const_iterator begin() const { return Frontiers.begin(); }
inline const_iterator end() const { return Frontiers.end(); }
inline const_iterator find(const BasicBlock* B) const { return Frontiers.find(B);}
- inline const BasicBlock *getRoot() const { return Root; }
-
};
} // End namespace cfg