/// contains ~1u,x to indicate that the value # is not used.
/// def - Instruction # of the definition.
/// reg - Source reg iff val# is defined by a copy; zero otherwise.
+ /// hasPHIKill - One or more of the kills are PHI nodes.
/// kills - Instruction # of the kills. If a kill is an odd #, it means
/// the kill is a phi join point.
struct VNInfo {
unsigned id;
unsigned def;
unsigned reg;
+ bool hasPHIKill;
SmallVector<unsigned, 4> kills;
- VNInfo() : id(~1U), def(~1U), reg(0) {}
+ VNInfo() : id(~1U), def(~1U), reg(0), hasPHIKill(false) {}
VNInfo(unsigned i, unsigned d, unsigned r)
- : id(i), def(d), reg(r) {}
+ : id(i), def(d), reg(r), hasPHIKill(false) {}
};
/// LiveRange structure - This represents a simple register range in the
void copyValNumInfo(VNInfo *DstValNo, const VNInfo *SrcValNo) {
DstValNo->def = SrcValNo->def;
DstValNo->reg = SrcValNo->reg;
+ DstValNo->hasPHIKill = SrcValNo->hasPHIKill;
DstValNo->kills = SrcValNo->kills;
}
// endpoint as well.
if (End > it->end)
extendIntervalEndTo(it, End);
- else
+ else if (End < it->end)
// Overlapping intervals, there might have been a kill here.
removeKill(it->valno, End);
return it;
if (j != ee-1)
OS << " ";
}
+ if (vni->hasPHIKill)
+ OS << " phi";
OS << ")";
}
}
DOUT << " Removing [" << Start << "," << End << "] from: ";
interval.print(DOUT, mri_); DOUT << "\n";
interval.removeRange(Start, End);
- interval.addKill(VNI, Start+1); // odd # means phi node
+ interval.addKill(VNI, Start);
+ VNI->hasPHIKill = true;
DOUT << " RESULT: "; interval.print(DOUT, mri_);
// Replace the interval with one of a NEW value number. Note that this
unsigned killIndex = getInstructionIndex(&mbb->back()) + InstrSlots::NUM;
LiveRange LR(defIndex, killIndex, ValNo);
interval.addRange(LR);
- interval.addKill(ValNo, killIndex+1); // odd # means phi node
+ interval.addKill(ValNo, killIndex);
+ ValNo->hasPHIKill = true;
DOUT << " +" << LR;
}
}
vrm.setVirtIsReMaterialized(li.reg, ReMatDefMI);
bool CanDelete = true;
- for (unsigned j = 0, ee = VNI->kills.size(); j != ee; ++j) {
- unsigned KillIdx = VNI->kills[j];
- MachineInstr *KillMI = (KillIdx & 1)
- ? NULL : getInstructionFromIndex(KillIdx);
- // Kill is a phi node, not all of its uses can be rematerialized.
+ if (VNI->hasPHIKill) {
+ // A kill is a phi node, not all of its uses can be rematerialized.
// It must not be deleted.
- if (!KillMI) {
- CanDelete = false;
- // Need a stack slot if there is any live range where uses cannot be
- // rematerialized.
- NeedStackSlot = true;
- break;
- }
+ CanDelete = false;
+ // Need a stack slot if there is any live range where uses cannot be
+ // rematerialized.
+ NeedStackSlot = true;
}
-
if (CanDelete)
ReMatDelete.set(VN);
} else {
if (CopiedValNos.insert(DstValNo)) {
VNInfo *ValNo = RealDstInt.getNextValue(DstValNo->def, DstValNo->reg,
li_->getVNInfoAllocator());
+ ValNo->hasPHIKill = DstValNo->hasPHIKill;
RealDstInt.addKills(ValNo, DstValNo->kills);
RealDstInt.MergeValueInAsValue(*ResDstInt, DstValNo, ValNo);
}
// Okay, the final step is to loop over the RHS live intervals, adding them to
// the LHS.
+ LHSValNo->hasPHIKill |= VNI->hasPHIKill;
LHS.addKills(LHSValNo, VNI->kills);
LHS.MergeRangesInAsValue(RHS, LHSValNo);
LHS.weight += RHS.weight;
VNInfo *VNI = I->first;
unsigned LHSValID = LHSValNoAssignments[VNI->id];
LiveInterval::removeKill(NewVNInfo[LHSValID], VNI->def);
+ NewVNInfo[LHSValID]->hasPHIKill |= VNI->hasPHIKill;
RHS.addKills(NewVNInfo[LHSValID], VNI->kills);
}
VNInfo *VNI = I->first;
unsigned RHSValID = RHSValNoAssignments[VNI->id];
LiveInterval::removeKill(NewVNInfo[RHSValID], VNI->def);
+ NewVNInfo[RHSValID]->hasPHIKill |= VNI->hasPHIKill;
LHS.addKills(NewVNInfo[RHSValID], VNI->kills);
}