Results.push_back(Read.getOperand(0));
}
+/// \p BC is a bitcast that is about to be turned into a VMOVDRR.
+/// When \p DstVT, the destination type of \p BC, is on the vector
+/// register bank and the source of bitcast, \p Op, operates on the same bank,
+/// it might be possible to combine them, such that everything stays on the
+/// vector register bank.
+/// \p return The node that would replace \p BT, if the combine
+/// is possible.
+static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
+ SelectionDAG &DAG) {
+ SDValue Op = BC->getOperand(0);
+ EVT DstVT = BC->getValueType(0);
+
+ // The only vector instruction that can produce a scalar (remember,
+ // since the bitcast was about to be turned into VMOVDRR, the source
+ // type is i64) from a vector is EXTRACT_VECTOR_ELT.
+ // Moreover, we can do this combine only if there is one use.
+ // Finally, if the destination type is not a vector, there is not
+ // much point on forcing everything on the vector bank.
+ if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
+ !Op.hasOneUse())
+ return SDValue();
+
+ // If the index is not constant, we will introduce an additional
+ // multiply that will stick.
+ // Give up in that case.
+ ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
+ if (!Index)
+ return SDValue();
+ unsigned DstNumElt = DstVT.getVectorNumElements();
+
+ // Compute the new index.
+ const APInt &APIntIndex = Index->getAPIntValue();
+ APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
+ NewIndex *= APIntIndex;
+ // Check if the new constant index fits into i32.
+ if (NewIndex.getBitWidth() > 32)
+ return SDValue();
+
+ // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
+ // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
+ SDLoc dl(Op);
+ SDValue ExtractSrc = Op.getOperand(0);
+ EVT VecVT = EVT::getVectorVT(
+ *DAG.getContext(), DstVT.getScalarType(),
+ ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
+ SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
+ return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
+ DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
+}
+
/// ExpandBITCAST - If the target supports VFP, this function is called to
/// expand a bit convert where either the source or destination type is i64 to
/// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
// Turn i64->f64 into VMOVDRR.
if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
+ // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
+ // if we can combine the bitcast with its source.
+ if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
+ return Val;
+
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
DAG.getConstant(0, dl, MVT::i32));
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
--- /dev/null
+; RUN: llc %s -o - | FileCheck %s
+
+target triple = "thumbv7s-apple-ios"
+
+declare <8 x i8> @llvm.arm.neon.vtbl2(<8 x i8> %shuffle.i.i307, <8 x i8> %shuffle.i27.i308, <8 x i8> %vtbl2.i25.i)
+
+; Check that we get the motivating example:
+; The bitcasts force the values to go through the GPRs, whereas
+; they are defined on VPRs and used on VPRs.
+;
+; CHECK-LABEL: motivatingExample:
+; CHECK: vldr [[ARG2_VAL:d[0-9]+]], [r1]
+; CHECK-NEXT: vld1.32 {[[ARG1_VALlo:d[0-9]+]], [[ARG1_VALhi:d[0-9]+]]}, [r0]
+; CHECK-NEXT: vtbl.8 [[RES:d[0-9]+]], {[[ARG1_VALlo]], [[ARG1_VALhi]]}, [[ARG2_VAL]]
+; CHECK-NEXT: vstr [[RES]], [r1]
+; CHECK-NEXT: bx lr
+define void @motivatingExample(<2 x i64>* %addr, <8 x i8>* %addr2) {
+ %shuffle.i.bc.i309 = load <2 x i64>, <2 x i64>* %addr
+ %vtbl2.i25.i = load <8 x i8>, <8 x i8>* %addr2
+ %shuffle.i.extract.i310 = extractelement <2 x i64> %shuffle.i.bc.i309, i32 0
+ %shuffle.i27.extract.i311 = extractelement <2 x i64> %shuffle.i.bc.i309, i32 1
+ %tmp45 = bitcast i64 %shuffle.i.extract.i310 to <8 x i8>
+ %tmp46 = bitcast i64 %shuffle.i27.extract.i311 to <8 x i8>
+ %vtbl2.i25.i313 = tail call <8 x i8> @llvm.arm.neon.vtbl2(<8 x i8> %tmp45, <8 x i8> %tmp46, <8 x i8> %vtbl2.i25.i)
+ store <8 x i8> %vtbl2.i25.i313, <8 x i8>* %addr2
+ ret void
+}
+
+; Check that we do not perform the transformation for dynamic index.
+; CHECK-LABEL: dynamicIndex:
+; CHECK-NOT: mul
+; CHECK: pop
+define void @dynamicIndex(<2 x i64>* %addr, <8 x i8>* %addr2, i32 %index) {
+ %shuffle.i.bc.i309 = load <2 x i64>, <2 x i64>* %addr
+ %vtbl2.i25.i = load <8 x i8>, <8 x i8>* %addr2
+ %shuffle.i.extract.i310 = extractelement <2 x i64> %shuffle.i.bc.i309, i32 %index
+ %shuffle.i27.extract.i311 = extractelement <2 x i64> %shuffle.i.bc.i309, i32 1
+ %tmp45 = bitcast i64 %shuffle.i.extract.i310 to <8 x i8>
+ %tmp46 = bitcast i64 %shuffle.i27.extract.i311 to <8 x i8>
+ %vtbl2.i25.i313 = tail call <8 x i8> @llvm.arm.neon.vtbl2(<8 x i8> %tmp45, <8 x i8> %tmp46, <8 x i8> %vtbl2.i25.i)
+ store <8 x i8> %vtbl2.i25.i313, <8 x i8>* %addr2
+ ret void
+}
+
+; Check that we do not perform the transformation when there are several uses
+; of the result of the bitcast.
+; CHECK-LABEL: severalUses:
+; ARG1_VALlo is hard coded because we need to access the high part of d0,
+; i.e., s1, and we can't express that with filecheck.
+; CHECK: vld1.32 {[[ARG1_VALlo:d0]], [[ARG1_VALhi:d[0-9]+]]}, [r0]
+; CHECK-NEXT: vldr [[ARG2_VAL:d[0-9]+]], [r1]
+; s1 is actually 2 * ARG1_VALlo + 1, but we cannot express that with filecheck.
+; CHECK-NEXT: vmov [[REThi:r[0-9]+]], s1
+; We build the return value here. s0 is 2 * ARG1_VALlo.
+; CHECK-NEXT: vmov r0, s0
+; This copy is correct but actually useless. We should be able to clean it up.
+; CHECK-NEXT: vmov [[ARG1_VALloCPY:d[0-9]+]], r0, [[REThi]]
+; CHECK-NEXT: vtbl.8 [[RES:d[0-9]+]], {[[ARG1_VALloCPY]], [[ARG1_VALhi]]}, [[ARG2_VAL]]
+; CHECK-NEXT: vstr [[RES]], [r1]
+; CHECK-NEXT: mov r1, [[REThi]]
+; CHECK-NEXT: bx lr
+define i64 @severalUses(<2 x i64>* %addr, <8 x i8>* %addr2) {
+ %shuffle.i.bc.i309 = load <2 x i64>, <2 x i64>* %addr
+ %vtbl2.i25.i = load <8 x i8>, <8 x i8>* %addr2
+ %shuffle.i.extract.i310 = extractelement <2 x i64> %shuffle.i.bc.i309, i32 0
+ %shuffle.i27.extract.i311 = extractelement <2 x i64> %shuffle.i.bc.i309, i32 1
+ %tmp45 = bitcast i64 %shuffle.i.extract.i310 to <8 x i8>
+ %tmp46 = bitcast i64 %shuffle.i27.extract.i311 to <8 x i8>
+ %vtbl2.i25.i313 = tail call <8 x i8> @llvm.arm.neon.vtbl2(<8 x i8> %tmp45, <8 x i8> %tmp46, <8 x i8> %vtbl2.i25.i)
+ store <8 x i8> %vtbl2.i25.i313, <8 x i8>* %addr2
+ ret i64 %shuffle.i.extract.i310
+}