// (X / Y) * Y -> X if the division is exact.
Value *X = 0, *Y = 0;
if ((match(Op0, m_SDiv(m_Value(X), m_Value(Y))) && Y == Op1) || // (X / Y) * Y
- (match(Op1, m_SDiv(m_Value(X), m_Value(Y))) && Y == Op0)) { // Y * (X / Y)
- BinaryOperator *SDiv = cast<BinaryOperator>(Y == Op1 ? Op0 : Op1);
- if (SDiv->isExact())
+ (match(Op0, m_UDiv(m_Value(X), m_Value(Y))) && Y == Op1) ||
+ (match(Op1, m_SDiv(m_Value(X), m_Value(Y))) && Y == Op0) || // Y * (X / Y)
+ (match(Op1, m_UDiv(m_Value(X), m_Value(Y))) && Y == Op0)) {
+ BinaryOperator *Div = cast<BinaryOperator>(Y == Op1 ? Op0 : Op1);
+ if (Div->isExact())
return X;
}
; CHECK: ret i32 %x
}
+
define i32 @udiv1(i32 %x, i32 %y) {
; CHECK: @udiv1
; (no overflow X * Y) / Y -> X
ret i32 %div
; CHECK: ret i32 0
}
+
+define i32 @udiv4(i32 %x, i32 %y) {
+; CHECK: @udiv4
+; (X / Y) * Y -> X if the division is exact
+ %div = udiv exact i32 %x, %y
+ %mul = mul i32 %div, %y
+ ret i32 %mul
+; CHECK: ret i32 %x
+}
+
+define i32 @udiv5(i32 %x, i32 %y) {
+; CHECK: @udiv5
+; Y * (X / Y) -> X if the division is exact
+ %div = udiv exact i32 %x, %y
+ %mul = mul i32 %y, %div
+ ret i32 %mul
+; CHECK: ret i32 %x
+}
+