/// outside of the loop. These are the blocks _inside of the current loop_
/// which branch out. The returned list is always unique.
///
- void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
- // Sort the blocks vector so that we can use binary search to do quick
- // lookups.
- SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
- std::sort(LoopBBs.begin(), LoopBBs.end());
-
- typedef GraphTraits<BlockT*> BlockTraits;
- for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
- for (typename BlockTraits::ChildIteratorType I =
- BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
- I != E; ++I)
- if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
- // Not in current loop? It must be an exit block.
- ExitingBlocks.push_back(*BI);
- break;
- }
- }
+ void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
/// getExitingBlock - If getExitingBlocks would return exactly one block,
/// return that block. Otherwise return null.
- BlockT *getExitingBlock() const {
- SmallVector<BlockT*, 8> ExitingBlocks;
- getExitingBlocks(ExitingBlocks);
- if (ExitingBlocks.size() == 1)
- return ExitingBlocks[0];
- return 0;
- }
+ BlockT *getExitingBlock() const;
/// getExitBlocks - Return all of the successor blocks of this loop. These
/// are the blocks _outside of the current loop_ which are branched to.
///
- void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
- // Sort the blocks vector so that we can use binary search to do quick
- // lookups.
- SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
- std::sort(LoopBBs.begin(), LoopBBs.end());
-
- typedef GraphTraits<BlockT*> BlockTraits;
- for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
- for (typename BlockTraits::ChildIteratorType I =
- BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
- I != E; ++I)
- if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
- // Not in current loop? It must be an exit block.
- ExitBlocks.push_back(*I);
- }
+ void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const;
/// getExitBlock - If getExitBlocks would return exactly one block,
/// return that block. Otherwise return null.
- BlockT *getExitBlock() const {
- SmallVector<BlockT*, 8> ExitBlocks;
- getExitBlocks(ExitBlocks);
- if (ExitBlocks.size() == 1)
- return ExitBlocks[0];
- return 0;
- }
+ BlockT *getExitBlock() const;
/// Edge type.
- typedef std::pair<BlockT*, BlockT*> Edge;
+ typedef std::pair<const BlockT*, const BlockT*> Edge;
/// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
- template <typename EdgeT>
- void getExitEdges(SmallVectorImpl<EdgeT> &ExitEdges) const {
- // Sort the blocks vector so that we can use binary search to do quick
- // lookups.
- SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
- array_pod_sort(LoopBBs.begin(), LoopBBs.end());
-
- typedef GraphTraits<BlockT*> BlockTraits;
- for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
- for (typename BlockTraits::ChildIteratorType I =
- BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
- I != E; ++I)
- if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
- // Not in current loop? It must be an exit block.
- ExitEdges.push_back(EdgeT(*BI, *I));
- }
+ void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
/// getLoopPreheader - If there is a preheader for this loop, return it. A
/// loop has a preheader if there is only one edge to the header of the loop
///
/// This method returns null if there is no preheader for the loop.
///
- BlockT *getLoopPreheader() const {
- // Keep track of nodes outside the loop branching to the header...
- BlockT *Out = getLoopPredecessor();
- if (!Out) return 0;
-
- // Make sure there is only one exit out of the preheader.
- typedef GraphTraits<BlockT*> BlockTraits;
- typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
- ++SI;
- if (SI != BlockTraits::child_end(Out))
- return 0; // Multiple exits from the block, must not be a preheader.
-
- // The predecessor has exactly one successor, so it is a preheader.
- return Out;
- }
+ BlockT *getLoopPreheader() const;
/// getLoopPredecessor - If the given loop's header has exactly one unique
/// predecessor outside the loop, return it. Otherwise return null.
/// This is less strict that the loop "preheader" concept, which requires
/// the predecessor to have exactly one successor.
///
- BlockT *getLoopPredecessor() const {
- // Keep track of nodes outside the loop branching to the header...
- BlockT *Out = 0;
-
- // Loop over the predecessors of the header node...
- BlockT *Header = getHeader();
- typedef GraphTraits<BlockT*> BlockTraits;
- typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
- for (typename InvBlockTraits::ChildIteratorType PI =
- InvBlockTraits::child_begin(Header),
- PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
- typename InvBlockTraits::NodeType *N = *PI;
- if (!contains(N)) { // If the block is not in the loop...
- if (Out && Out != N)
- return 0; // Multiple predecessors outside the loop
- Out = N;
- }
- }
-
- // Make sure there is only one exit out of the preheader.
- assert(Out && "Header of loop has no predecessors from outside loop?");
- return Out;
- }
+ BlockT *getLoopPredecessor() const;
/// getLoopLatch - If there is a single latch block for this loop, return it.
/// A latch block is a block that contains a branch back to the header.
- BlockT *getLoopLatch() const {
- BlockT *Header = getHeader();
- typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
- typename InvBlockTraits::ChildIteratorType PI =
- InvBlockTraits::child_begin(Header);
- typename InvBlockTraits::ChildIteratorType PE =
- InvBlockTraits::child_end(Header);
- BlockT *Latch = 0;
- for (; PI != PE; ++PI) {
- typename InvBlockTraits::NodeType *N = *PI;
- if (contains(N)) {
- if (Latch) return 0;
- Latch = N;
- }
- }
-
- return Latch;
- }
+ BlockT *getLoopLatch() const;
//===--------------------------------------------------------------------===//
// APIs for updating loop information after changing the CFG
/// the OldChild entry in our children list with NewChild, and updates the
/// parent pointer of OldChild to be null and the NewChild to be this loop.
/// This updates the loop depth of the new child.
- void replaceChildLoopWith(LoopT *OldChild,
- LoopT *NewChild) {
- assert(OldChild->ParentLoop == this && "This loop is already broken!");
- assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
- typename std::vector<LoopT *>::iterator I =
- std::find(SubLoops.begin(), SubLoops.end(), OldChild);
- assert(I != SubLoops.end() && "OldChild not in loop!");
- *I = NewChild;
- OldChild->ParentLoop = 0;
- NewChild->ParentLoop = static_cast<LoopT *>(this);
- }
+ void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
/// addChildLoop - Add the specified loop to be a child of this loop. This
/// updates the loop depth of the new child.
}
/// verifyLoop - Verify loop structure
- void verifyLoop() const {
-#ifndef NDEBUG
- assert(!Blocks.empty() && "Loop header is missing");
-
- // Setup for using a depth-first iterator to visit every block in the loop.
- SmallVector<BlockT*, 8> ExitBBs;
- getExitBlocks(ExitBBs);
- llvm::SmallPtrSet<BlockT*, 8> VisitSet;
- VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
- df_ext_iterator<BlockT*, llvm::SmallPtrSet<BlockT*, 8> >
- BI = df_ext_begin(getHeader(), VisitSet),
- BE = df_ext_end(getHeader(), VisitSet);
-
- // Keep track of the number of BBs visited.
- unsigned NumVisited = 0;
-
- // Sort the blocks vector so that we can use binary search to do quick
- // lookups.
- SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
- std::sort(LoopBBs.begin(), LoopBBs.end());
-
- // Check the individual blocks.
- for ( ; BI != BE; ++BI) {
- BlockT *BB = *BI;
- bool HasInsideLoopSuccs = false;
- bool HasInsideLoopPreds = false;
- SmallVector<BlockT *, 2> OutsideLoopPreds;
-
- typedef GraphTraits<BlockT*> BlockTraits;
- for (typename BlockTraits::ChildIteratorType SI =
- BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
- SI != SE; ++SI)
- if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *SI)) {
- HasInsideLoopSuccs = true;
- break;
- }
- typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
- for (typename InvBlockTraits::ChildIteratorType PI =
- InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
- PI != PE; ++PI) {
- BlockT *N = *PI;
- if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), N))
- HasInsideLoopPreds = true;
- else
- OutsideLoopPreds.push_back(N);
- }
-
- if (BB == getHeader()) {
- assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
- } else if (!OutsideLoopPreds.empty()) {
- // A non-header loop shouldn't be reachable from outside the loop,
- // though it is permitted if the predecessor is not itself actually
- // reachable.
- BlockT *EntryBB = BB->getParent()->begin();
- for (df_iterator<BlockT *> NI = df_begin(EntryBB),
- NE = df_end(EntryBB); NI != NE; ++NI)
- for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
- assert(*NI != OutsideLoopPreds[i] &&
- "Loop has multiple entry points!");
- }
- assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
- assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
- assert(BB != getHeader()->getParent()->begin() &&
- "Loop contains function entry block!");
-
- NumVisited++;
- }
-
- assert(NumVisited == getNumBlocks() && "Unreachable block in loop");
-
- // Check the subloops.
- for (iterator I = begin(), E = end(); I != E; ++I)
- // Each block in each subloop should be contained within this loop.
- for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
- BI != BE; ++BI) {
- assert(std::binary_search(LoopBBs.begin(), LoopBBs.end(), *BI) &&
- "Loop does not contain all the blocks of a subloop!");
- }
-
- // Check the parent loop pointer.
- if (ParentLoop) {
- assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
- ParentLoop->end() &&
- "Loop is not a subloop of its parent!");
- }
-#endif
- }
+ void verifyLoop() const;
/// verifyLoop - Verify loop structure of this loop and all nested loops.
- void verifyLoopNest(DenseSet<const LoopT*> *Loops) const {
- Loops->insert(static_cast<const LoopT *>(this));
- // Verify this loop.
- verifyLoop();
- // Verify the subloops.
- for (iterator I = begin(), E = end(); I != E; ++I)
- (*I)->verifyLoopNest(Loops);
- }
-
- void print(raw_ostream &OS, unsigned Depth = 0) const {
- OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
- << " containing: ";
-
- for (unsigned i = 0; i < getBlocks().size(); ++i) {
- if (i) OS << ",";
- BlockT *BB = getBlocks()[i];
- WriteAsOperand(OS, BB, false);
- if (BB == getHeader()) OS << "<header>";
- if (BB == getLoopLatch()) OS << "<latch>";
- if (isLoopExiting(BB)) OS << "<exiting>";
- }
- OS << "\n";
+ void verifyLoopNest(DenseSet<const LoopT*> *Loops) const;
- for (iterator I = begin(), E = end(); I != E; ++I)
- (*I)->print(OS, Depth+2);
- }
+ void print(raw_ostream &OS, unsigned Depth = 0) const;
protected:
friend class LoopInfoBase<BlockT, LoopT>;
return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
}
- void Calculate(DominatorTreeBase<BlockT> &DT) {
- BlockT *RootNode = DT.getRootNode()->getBlock();
-
- for (df_iterator<BlockT*> NI = df_begin(RootNode),
- NE = df_end(RootNode); NI != NE; ++NI)
- if (LoopT *L = ConsiderForLoop(*NI, DT))
- TopLevelLoops.push_back(L);
- }
-
- LoopT *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
- if (BBMap.count(BB)) return 0; // Haven't processed this node?
-
- std::vector<BlockT *> TodoStack;
-
- // Scan the predecessors of BB, checking to see if BB dominates any of
- // them. This identifies backedges which target this node...
- typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
- for (typename InvBlockTraits::ChildIteratorType I =
- InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
- I != E; ++I) {
- typename InvBlockTraits::NodeType *N = *I;
- // If BB dominates its predecessor...
- if (DT.dominates(BB, N) && DT.isReachableFromEntry(N))
- TodoStack.push_back(N);
- }
-
- if (TodoStack.empty()) return 0; // No backedges to this block...
-
- // Create a new loop to represent this basic block...
- LoopT *L = new LoopT(BB);
- BBMap[BB] = L;
-
- while (!TodoStack.empty()) { // Process all the nodes in the loop
- BlockT *X = TodoStack.back();
- TodoStack.pop_back();
-
- if (!L->contains(X) && // As of yet unprocessed??
- DT.isReachableFromEntry(X)) {
- // Check to see if this block already belongs to a loop. If this occurs
- // then we have a case where a loop that is supposed to be a child of
- // the current loop was processed before the current loop. When this
- // occurs, this child loop gets added to a part of the current loop,
- // making it a sibling to the current loop. We have to reparent this
- // loop.
- if (LoopT *SubLoop =
- const_cast<LoopT *>(getLoopFor(X)))
- if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
- // Remove the subloop from its current parent...
- assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
- LoopT *SLP = SubLoop->ParentLoop; // SubLoopParent
- typename std::vector<LoopT *>::iterator I =
- std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
- assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
- SLP->SubLoops.erase(I); // Remove from parent...
-
- // Add the subloop to THIS loop...
- SubLoop->ParentLoop = L;
- L->SubLoops.push_back(SubLoop);
- }
-
- // Normal case, add the block to our loop...
- L->Blocks.push_back(X);
-
- typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
-
- // Add all of the predecessors of X to the end of the work stack...
- TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X),
- InvBlockTraits::child_end(X));
- }
- }
-
- // If there are any loops nested within this loop, create them now!
- for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
- E = L->Blocks.end(); I != E; ++I)
- if (LoopT *NewLoop = ConsiderForLoop(*I, DT)) {
- L->SubLoops.push_back(NewLoop);
- NewLoop->ParentLoop = L;
- }
-
- // Add the basic blocks that comprise this loop to the BBMap so that this
- // loop can be found for them.
- //
- for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
- E = L->Blocks.end(); I != E; ++I)
- BBMap.insert(std::make_pair(*I, L));
-
- // Now that we have a list of all of the child loops of this loop, check to
- // see if any of them should actually be nested inside of each other. We
- // can accidentally pull loops our of their parents, so we must make sure to
- // organize the loop nests correctly now.
- {
- std::map<BlockT *, LoopT *> ContainingLoops;
- for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
- LoopT *Child = L->SubLoops[i];
- assert(Child->getParentLoop() == L && "Not proper child loop?");
-
- if (LoopT *ContainingLoop = ContainingLoops[Child->getHeader()]) {
- // If there is already a loop which contains this loop, move this loop
- // into the containing loop.
- MoveSiblingLoopInto(Child, ContainingLoop);
- --i; // The loop got removed from the SubLoops list.
- } else {
- // This is currently considered to be a top-level loop. Check to see
- // if any of the contained blocks are loop headers for subloops we
- // have already processed.
- for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
- LoopT *&BlockLoop = ContainingLoops[Child->Blocks[b]];
- if (BlockLoop == 0) { // Child block not processed yet...
- BlockLoop = Child;
- } else if (BlockLoop != Child) {
- LoopT *SubLoop = BlockLoop;
- // Reparent all of the blocks which used to belong to BlockLoops
- for (unsigned j = 0, f = SubLoop->Blocks.size(); j != f; ++j)
- ContainingLoops[SubLoop->Blocks[j]] = Child;
-
- // There is already a loop which contains this block, that means
- // that we should reparent the loop which the block is currently
- // considered to belong to to be a child of this loop.
- MoveSiblingLoopInto(SubLoop, Child);
- --i; // We just shrunk the SubLoops list.
- }
- }
- }
- }
- }
+ void Calculate(DominatorTreeBase<BlockT> &DT);
- return L;
- }
+ LoopT *ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT);
/// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
/// of the NewParent Loop, instead of being a sibling of it.
- void MoveSiblingLoopInto(LoopT *NewChild,
- LoopT *NewParent) {
- LoopT *OldParent = NewChild->getParentLoop();
- assert(OldParent && OldParent == NewParent->getParentLoop() &&
- NewChild != NewParent && "Not sibling loops!");
-
- // Remove NewChild from being a child of OldParent
- typename std::vector<LoopT *>::iterator I =
- std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
- NewChild);
- assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
- OldParent->SubLoops.erase(I); // Remove from parent's subloops list
- NewChild->ParentLoop = 0;
-
- InsertLoopInto(NewChild, NewParent);
- }
+ void MoveSiblingLoopInto(LoopT *NewChild, LoopT *NewParent);
/// InsertLoopInto - This inserts loop L into the specified parent loop. If
/// the parent loop contains a loop which should contain L, the loop gets
/// inserted into L instead.
- void InsertLoopInto(LoopT *L, LoopT *Parent) {
- BlockT *LHeader = L->getHeader();
- assert(Parent->contains(LHeader) &&
- "This loop should not be inserted here!");
-
- // Check to see if it belongs in a child loop...
- for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
- i != e; ++i)
- if (Parent->SubLoops[i]->contains(LHeader)) {
- InsertLoopInto(L, Parent->SubLoops[i]);
- return;
- }
-
- // If not, insert it here!
- Parent->SubLoops.push_back(L);
- L->ParentLoop = Parent;
- }
+ void InsertLoopInto(LoopT *L, LoopT *Parent);
// Debugging
- void print(raw_ostream &OS) const {
- for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
- TopLevelLoops[i]->print(OS);
- #if 0
- for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
- E = BBMap.end(); I != E; ++I)
- OS << "BB '" << I->first->getName() << "' level = "
- << I->second->getLoopDepth() << "\n";
- #endif
- }
+ void print(raw_ostream &OS) const;
};
class LoopInfo : public FunctionPass {
}
};
-template<class BlockT, class LoopT>
-void
-LoopBase<BlockT, LoopT>::addBasicBlockToLoop(BlockT *NewBB,
- LoopInfoBase<BlockT, LoopT> &LIB) {
- assert((Blocks.empty() || LIB[getHeader()] == this) &&
- "Incorrect LI specified for this loop!");
- assert(NewBB && "Cannot add a null basic block to the loop!");
- assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
-
- LoopT *L = static_cast<LoopT *>(this);
-
- // Add the loop mapping to the LoopInfo object...
- LIB.BBMap[NewBB] = L;
-
- // Add the basic block to this loop and all parent loops...
- while (L) {
- L->Blocks.push_back(NewBB);
- L = L->getParentLoop();
- }
-}
-
} // End llvm namespace
#endif
--- /dev/null
+//===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is the generic implementation of LoopInfo used for both Loops and
+// MachineLoops.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ANALYSIS_LOOP_INFO_IMPL_H
+#define LLVM_ANALYSIS_LOOP_INFO_IMPL_H
+
+#include "llvm/Analysis/LoopInfo.h"
+
+namespace llvm {
+
+//===----------------------------------------------------------------------===//
+// APIs for simple analysis of the loop. See header notes.
+
+/// getExitingBlocks - Return all blocks inside the loop that have successors
+/// outside of the loop. These are the blocks _inside of the current loop_
+/// which branch out. The returned list is always unique.
+///
+template<class BlockT, class LoopT>
+void LoopBase<BlockT, LoopT>::
+getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const {
+ // Sort the blocks vector so that we can use binary search to do quick
+ // lookups.
+ SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
+ std::sort(LoopBBs.begin(), LoopBBs.end());
+
+ typedef GraphTraits<BlockT*> BlockTraits;
+ for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
+ for (typename BlockTraits::ChildIteratorType I =
+ BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
+ I != E; ++I)
+ if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I)) {
+ // Not in current loop? It must be an exit block.
+ ExitingBlocks.push_back(*BI);
+ break;
+ }
+}
+
+/// getExitingBlock - If getExitingBlocks would return exactly one block,
+/// return that block. Otherwise return null.
+template<class BlockT, class LoopT>
+BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
+ SmallVector<BlockT*, 8> ExitingBlocks;
+ getExitingBlocks(ExitingBlocks);
+ if (ExitingBlocks.size() == 1)
+ return ExitingBlocks[0];
+ return 0;
+}
+
+/// getExitBlocks - Return all of the successor blocks of this loop. These
+/// are the blocks _outside of the current loop_ which are branched to.
+///
+template<class BlockT, class LoopT>
+void LoopBase<BlockT, LoopT>::
+getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const {
+ // Sort the blocks vector so that we can use binary search to do quick
+ // lookups.
+ SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
+ std::sort(LoopBBs.begin(), LoopBBs.end());
+
+ typedef GraphTraits<BlockT*> BlockTraits;
+ for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
+ for (typename BlockTraits::ChildIteratorType I =
+ BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
+ I != E; ++I)
+ if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
+ // Not in current loop? It must be an exit block.
+ ExitBlocks.push_back(*I);
+}
+
+/// getExitBlock - If getExitBlocks would return exactly one block,
+/// return that block. Otherwise return null.
+template<class BlockT, class LoopT>
+BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
+ SmallVector<BlockT*, 8> ExitBlocks;
+ getExitBlocks(ExitBlocks);
+ if (ExitBlocks.size() == 1)
+ return ExitBlocks[0];
+ return 0;
+}
+
+/// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
+template<class BlockT, class LoopT>
+void LoopBase<BlockT, LoopT>::
+getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const {
+ // Sort the blocks vector so that we can use binary search to do quick
+ // lookups.
+ SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
+ array_pod_sort(LoopBBs.begin(), LoopBBs.end());
+
+ typedef GraphTraits<BlockT*> BlockTraits;
+ for (block_iterator BI = block_begin(), BE = block_end(); BI != BE; ++BI)
+ for (typename BlockTraits::ChildIteratorType I =
+ BlockTraits::child_begin(*BI), E = BlockTraits::child_end(*BI);
+ I != E; ++I)
+ if (!std::binary_search(LoopBBs.begin(), LoopBBs.end(), *I))
+ // Not in current loop? It must be an exit block.
+ ExitEdges.push_back(Edge(*BI, *I));
+}
+
+/// getLoopPreheader - If there is a preheader for this loop, return it. A
+/// loop has a preheader if there is only one edge to the header of the loop
+/// from outside of the loop. If this is the case, the block branching to the
+/// header of the loop is the preheader node.
+///
+/// This method returns null if there is no preheader for the loop.
+///
+template<class BlockT, class LoopT>
+BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
+ // Keep track of nodes outside the loop branching to the header...
+ BlockT *Out = getLoopPredecessor();
+ if (!Out) return 0;
+
+ // Make sure there is only one exit out of the preheader.
+ typedef GraphTraits<BlockT*> BlockTraits;
+ typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
+ ++SI;
+ if (SI != BlockTraits::child_end(Out))
+ return 0; // Multiple exits from the block, must not be a preheader.
+
+ // The predecessor has exactly one successor, so it is a preheader.
+ return Out;
+}
+
+/// getLoopPredecessor - If the given loop's header has exactly one unique
+/// predecessor outside the loop, return it. Otherwise return null.
+/// This is less strict that the loop "preheader" concept, which requires
+/// the predecessor to have exactly one successor.
+///
+template<class BlockT, class LoopT>
+BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
+ // Keep track of nodes outside the loop branching to the header...
+ BlockT *Out = 0;
+
+ // Loop over the predecessors of the header node...
+ BlockT *Header = getHeader();
+ typedef GraphTraits<BlockT*> BlockTraits;
+ typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
+ for (typename InvBlockTraits::ChildIteratorType PI =
+ InvBlockTraits::child_begin(Header),
+ PE = InvBlockTraits::child_end(Header); PI != PE; ++PI) {
+ typename InvBlockTraits::NodeType *N = *PI;
+ if (!contains(N)) { // If the block is not in the loop...
+ if (Out && Out != N)
+ return 0; // Multiple predecessors outside the loop
+ Out = N;
+ }
+ }
+
+ // Make sure there is only one exit out of the preheader.
+ assert(Out && "Header of loop has no predecessors from outside loop?");
+ return Out;
+}
+
+/// getLoopLatch - If there is a single latch block for this loop, return it.
+/// A latch block is a block that contains a branch back to the header.
+template<class BlockT, class LoopT>
+BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
+ BlockT *Header = getHeader();
+ typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
+ typename InvBlockTraits::ChildIteratorType PI =
+ InvBlockTraits::child_begin(Header);
+ typename InvBlockTraits::ChildIteratorType PE =
+ InvBlockTraits::child_end(Header);
+ BlockT *Latch = 0;
+ for (; PI != PE; ++PI) {
+ typename InvBlockTraits::NodeType *N = *PI;
+ if (contains(N)) {
+ if (Latch) return 0;
+ Latch = N;
+ }
+ }
+
+ return Latch;
+}
+
+//===----------------------------------------------------------------------===//
+// APIs for updating loop information after changing the CFG
+//
+
+/// addBasicBlockToLoop - This method is used by other analyses to update loop
+/// information. NewBB is set to be a new member of the current loop.
+/// Because of this, it is added as a member of all parent loops, and is added
+/// to the specified LoopInfo object as being in the current basic block. It
+/// is not valid to replace the loop header with this method.
+///
+template<class BlockT, class LoopT>
+void LoopBase<BlockT, LoopT>::
+addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
+ assert((Blocks.empty() || LIB[getHeader()] == this) &&
+ "Incorrect LI specified for this loop!");
+ assert(NewBB && "Cannot add a null basic block to the loop!");
+ assert(LIB[NewBB] == 0 && "BasicBlock already in the loop!");
+
+ LoopT *L = static_cast<LoopT *>(this);
+
+ // Add the loop mapping to the LoopInfo object...
+ LIB.BBMap[NewBB] = L;
+
+ // Add the basic block to this loop and all parent loops...
+ while (L) {
+ L->Blocks.push_back(NewBB);
+ L = L->getParentLoop();
+ }
+}
+
+/// replaceChildLoopWith - This is used when splitting loops up. It replaces
+/// the OldChild entry in our children list with NewChild, and updates the
+/// parent pointer of OldChild to be null and the NewChild to be this loop.
+/// This updates the loop depth of the new child.
+template<class BlockT, class LoopT>
+void LoopBase<BlockT, LoopT>::
+replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild) {
+ assert(OldChild->ParentLoop == this && "This loop is already broken!");
+ assert(NewChild->ParentLoop == 0 && "NewChild already has a parent!");
+ typename std::vector<LoopT *>::iterator I =
+ std::find(SubLoops.begin(), SubLoops.end(), OldChild);
+ assert(I != SubLoops.end() && "OldChild not in loop!");
+ *I = NewChild;
+ OldChild->ParentLoop = 0;
+ NewChild->ParentLoop = static_cast<LoopT *>(this);
+}
+
+/// verifyLoop - Verify loop structure
+template<class BlockT, class LoopT>
+void LoopBase<BlockT, LoopT>::verifyLoop() const {
+#ifndef NDEBUG
+ assert(!Blocks.empty() && "Loop header is missing");
+
+ // Setup for using a depth-first iterator to visit every block in the loop.
+ SmallVector<BlockT*, 8> ExitBBs;
+ getExitBlocks(ExitBBs);
+ llvm::SmallPtrSet<BlockT*, 8> VisitSet;
+ VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
+ df_ext_iterator<BlockT*, llvm::SmallPtrSet<BlockT*, 8> >
+ BI = df_ext_begin(getHeader(), VisitSet),
+ BE = df_ext_end(getHeader(), VisitSet);
+
+ // Keep track of the number of BBs visited.
+ unsigned NumVisited = 0;
+
+ // Sort the blocks vector so that we can use binary search to do quick
+ // lookups.
+ SmallVector<BlockT*, 128> LoopBBs(block_begin(), block_end());
+ std::sort(LoopBBs.begin(), LoopBBs.end());
+
+ // Check the individual blocks.
+ for ( ; BI != BE; ++BI) {
+ BlockT *BB = *BI;
+ bool HasInsideLoopSuccs = false;
+ bool HasInsideLoopPreds = false;
+ SmallVector<BlockT *, 2> OutsideLoopPreds;
+
+ typedef GraphTraits<BlockT*> BlockTraits;
+ for (typename BlockTraits::ChildIteratorType SI =
+ BlockTraits::child_begin(BB), SE = BlockTraits::child_end(BB);
+ SI != SE; ++SI)
+ if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), *SI)) {
+ HasInsideLoopSuccs = true;
+ break;
+ }
+ typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
+ for (typename InvBlockTraits::ChildIteratorType PI =
+ InvBlockTraits::child_begin(BB), PE = InvBlockTraits::child_end(BB);
+ PI != PE; ++PI) {
+ BlockT *N = *PI;
+ if (std::binary_search(LoopBBs.begin(), LoopBBs.end(), N))
+ HasInsideLoopPreds = true;
+ else
+ OutsideLoopPreds.push_back(N);
+ }
+
+ if (BB == getHeader()) {
+ assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
+ } else if (!OutsideLoopPreds.empty()) {
+ // A non-header loop shouldn't be reachable from outside the loop,
+ // though it is permitted if the predecessor is not itself actually
+ // reachable.
+ BlockT *EntryBB = BB->getParent()->begin();
+ for (df_iterator<BlockT *> NI = df_begin(EntryBB),
+ NE = df_end(EntryBB); NI != NE; ++NI)
+ for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
+ assert(*NI != OutsideLoopPreds[i] &&
+ "Loop has multiple entry points!");
+ }
+ assert(HasInsideLoopPreds && "Loop block has no in-loop predecessors!");
+ assert(HasInsideLoopSuccs && "Loop block has no in-loop successors!");
+ assert(BB != getHeader()->getParent()->begin() &&
+ "Loop contains function entry block!");
+
+ NumVisited++;
+ }
+
+ assert(NumVisited == getNumBlocks() && "Unreachable block in loop");
+
+ // Check the subloops.
+ for (iterator I = begin(), E = end(); I != E; ++I)
+ // Each block in each subloop should be contained within this loop.
+ for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
+ BI != BE; ++BI) {
+ assert(std::binary_search(LoopBBs.begin(), LoopBBs.end(), *BI) &&
+ "Loop does not contain all the blocks of a subloop!");
+ }
+
+ // Check the parent loop pointer.
+ if (ParentLoop) {
+ assert(std::find(ParentLoop->begin(), ParentLoop->end(), this) !=
+ ParentLoop->end() &&
+ "Loop is not a subloop of its parent!");
+ }
+#endif
+}
+
+/// verifyLoop - Verify loop structure of this loop and all nested loops.
+template<class BlockT, class LoopT>
+void LoopBase<BlockT, LoopT>::verifyLoopNest(
+ DenseSet<const LoopT*> *Loops) const {
+ Loops->insert(static_cast<const LoopT *>(this));
+ // Verify this loop.
+ verifyLoop();
+ // Verify the subloops.
+ for (iterator I = begin(), E = end(); I != E; ++I)
+ (*I)->verifyLoopNest(Loops);
+}
+
+template<class BlockT, class LoopT>
+void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth) const {
+ OS.indent(Depth*2) << "Loop at depth " << getLoopDepth()
+ << " containing: ";
+
+ for (unsigned i = 0; i < getBlocks().size(); ++i) {
+ if (i) OS << ",";
+ BlockT *BB = getBlocks()[i];
+ WriteAsOperand(OS, BB, false);
+ if (BB == getHeader()) OS << "<header>";
+ if (BB == getLoopLatch()) OS << "<latch>";
+ if (isLoopExiting(BB)) OS << "<exiting>";
+ }
+ OS << "\n";
+
+ for (iterator I = begin(), E = end(); I != E; ++I)
+ (*I)->print(OS, Depth+2);
+}
+
+//===----------------------------------------------------------------------===//
+/// LoopInfo - This class builds and contains all of the top level loop
+/// structures in the specified function.
+///
+
+template<class BlockT, class LoopT>
+void LoopInfoBase<BlockT, LoopT>::Calculate(DominatorTreeBase<BlockT> &DT) {
+ BlockT *RootNode = DT.getRootNode()->getBlock();
+
+ for (df_iterator<BlockT*> NI = df_begin(RootNode),
+ NE = df_end(RootNode); NI != NE; ++NI)
+ if (LoopT *L = ConsiderForLoop(*NI, DT))
+ TopLevelLoops.push_back(L);
+}
+
+template<class BlockT, class LoopT>
+LoopT *LoopInfoBase<BlockT, LoopT>::
+ConsiderForLoop(BlockT *BB, DominatorTreeBase<BlockT> &DT) {
+ if (BBMap.count(BB)) return 0; // Haven't processed this node?
+
+ std::vector<BlockT *> TodoStack;
+
+ // Scan the predecessors of BB, checking to see if BB dominates any of
+ // them. This identifies backedges which target this node...
+ typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
+ for (typename InvBlockTraits::ChildIteratorType I =
+ InvBlockTraits::child_begin(BB), E = InvBlockTraits::child_end(BB);
+ I != E; ++I) {
+ typename InvBlockTraits::NodeType *N = *I;
+ // If BB dominates its predecessor...
+ if (DT.dominates(BB, N) && DT.isReachableFromEntry(N))
+ TodoStack.push_back(N);
+ }
+
+ if (TodoStack.empty()) return 0; // No backedges to this block...
+
+ // Create a new loop to represent this basic block...
+ LoopT *L = new LoopT(BB);
+ BBMap[BB] = L;
+
+ while (!TodoStack.empty()) { // Process all the nodes in the loop
+ BlockT *X = TodoStack.back();
+ TodoStack.pop_back();
+
+ if (!L->contains(X) && // As of yet unprocessed??
+ DT.isReachableFromEntry(X)) {
+ // Check to see if this block already belongs to a loop. If this occurs
+ // then we have a case where a loop that is supposed to be a child of
+ // the current loop was processed before the current loop. When this
+ // occurs, this child loop gets added to a part of the current loop,
+ // making it a sibling to the current loop. We have to reparent this
+ // loop.
+ if (LoopT *SubLoop =
+ const_cast<LoopT *>(getLoopFor(X)))
+ if (SubLoop->getHeader() == X && isNotAlreadyContainedIn(SubLoop, L)){
+ // Remove the subloop from its current parent...
+ assert(SubLoop->ParentLoop && SubLoop->ParentLoop != L);
+ LoopT *SLP = SubLoop->ParentLoop; // SubLoopParent
+ typename std::vector<LoopT *>::iterator I =
+ std::find(SLP->SubLoops.begin(), SLP->SubLoops.end(), SubLoop);
+ assert(I != SLP->SubLoops.end() &&"SubLoop not a child of parent?");
+ SLP->SubLoops.erase(I); // Remove from parent...
+
+ // Add the subloop to THIS loop...
+ SubLoop->ParentLoop = L;
+ L->SubLoops.push_back(SubLoop);
+ }
+
+ // Normal case, add the block to our loop...
+ L->Blocks.push_back(X);
+
+ typedef GraphTraits<Inverse<BlockT*> > InvBlockTraits;
+
+ // Add all of the predecessors of X to the end of the work stack...
+ TodoStack.insert(TodoStack.end(), InvBlockTraits::child_begin(X),
+ InvBlockTraits::child_end(X));
+ }
+ }
+
+ // If there are any loops nested within this loop, create them now!
+ for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
+ E = L->Blocks.end(); I != E; ++I)
+ if (LoopT *NewLoop = ConsiderForLoop(*I, DT)) {
+ L->SubLoops.push_back(NewLoop);
+ NewLoop->ParentLoop = L;
+ }
+
+ // Add the basic blocks that comprise this loop to the BBMap so that this
+ // loop can be found for them.
+ //
+ for (typename std::vector<BlockT*>::iterator I = L->Blocks.begin(),
+ E = L->Blocks.end(); I != E; ++I)
+ BBMap.insert(std::make_pair(*I, L));
+
+ // Now that we have a list of all of the child loops of this loop, check to
+ // see if any of them should actually be nested inside of each other. We
+ // can accidentally pull loops our of their parents, so we must make sure to
+ // organize the loop nests correctly now.
+ {
+ std::map<BlockT *, LoopT *> ContainingLoops;
+ for (unsigned i = 0; i != L->SubLoops.size(); ++i) {
+ LoopT *Child = L->SubLoops[i];
+ assert(Child->getParentLoop() == L && "Not proper child loop?");
+
+ if (LoopT *ContainingLoop = ContainingLoops[Child->getHeader()]) {
+ // If there is already a loop which contains this loop, move this loop
+ // into the containing loop.
+ MoveSiblingLoopInto(Child, ContainingLoop);
+ --i; // The loop got removed from the SubLoops list.
+ } else {
+ // This is currently considered to be a top-level loop. Check to see
+ // if any of the contained blocks are loop headers for subloops we
+ // have already processed.
+ for (unsigned b = 0, e = Child->Blocks.size(); b != e; ++b) {
+ LoopT *&BlockLoop = ContainingLoops[Child->Blocks[b]];
+ if (BlockLoop == 0) { // Child block not processed yet...
+ BlockLoop = Child;
+ } else if (BlockLoop != Child) {
+ LoopT *SubLoop = BlockLoop;
+ // Reparent all of the blocks which used to belong to BlockLoops
+ for (unsigned j = 0, f = SubLoop->Blocks.size(); j != f; ++j)
+ ContainingLoops[SubLoop->Blocks[j]] = Child;
+
+ // There is already a loop which contains this block, that means
+ // that we should reparent the loop which the block is currently
+ // considered to belong to to be a child of this loop.
+ MoveSiblingLoopInto(SubLoop, Child);
+ --i; // We just shrunk the SubLoops list.
+ }
+ }
+ }
+ }
+ }
+
+ return L;
+}
+
+/// MoveSiblingLoopInto - This method moves the NewChild loop to live inside
+/// of the NewParent Loop, instead of being a sibling of it.
+template<class BlockT, class LoopT>
+void LoopInfoBase<BlockT, LoopT>::
+MoveSiblingLoopInto(LoopT *NewChild, LoopT *NewParent) {
+ LoopT *OldParent = NewChild->getParentLoop();
+ assert(OldParent && OldParent == NewParent->getParentLoop() &&
+ NewChild != NewParent && "Not sibling loops!");
+
+ // Remove NewChild from being a child of OldParent
+ typename std::vector<LoopT *>::iterator I =
+ std::find(OldParent->SubLoops.begin(), OldParent->SubLoops.end(),
+ NewChild);
+ assert(I != OldParent->SubLoops.end() && "Parent fields incorrect??");
+ OldParent->SubLoops.erase(I); // Remove from parent's subloops list
+ NewChild->ParentLoop = 0;
+
+ InsertLoopInto(NewChild, NewParent);
+}
+
+/// InsertLoopInto - This inserts loop L into the specified parent loop. If
+/// the parent loop contains a loop which should contain L, the loop gets
+/// inserted into L instead.
+template<class BlockT, class LoopT>
+void LoopInfoBase<BlockT, LoopT>::InsertLoopInto(LoopT *L, LoopT *Parent) {
+ BlockT *LHeader = L->getHeader();
+ assert(Parent->contains(LHeader) &&
+ "This loop should not be inserted here!");
+
+ // Check to see if it belongs in a child loop...
+ for (unsigned i = 0, e = static_cast<unsigned>(Parent->SubLoops.size());
+ i != e; ++i)
+ if (Parent->SubLoops[i]->contains(LHeader)) {
+ InsertLoopInto(L, Parent->SubLoops[i]);
+ return;
+ }
+
+ // If not, insert it here!
+ Parent->SubLoops.push_back(L);
+ L->ParentLoop = Parent;
+}
+
+// Debugging
+template<class BlockT, class LoopT>
+void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
+ for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
+ TopLevelLoops[i]->print(OS);
+#if 0
+ for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
+ E = BBMap.end(); I != E; ++I)
+ OS << "BB '" << I->first->getName() << "' level = "
+ << I->second->getLoopDepth() << "\n";
+#endif
+}
+
+} // End llvm namespace
+
+#endif