OS << "\n";
}
+#ifndef NDEBUG
void AliasSet::dump() const { print(dbgs()); }
void AliasSetTracker::dump() const { print(dbgs()); }
+#endif
//===----------------------------------------------------------------------===//
// ASTCallbackVH Class Implementation
}
}
+#ifndef NDEBUG
void DominanceFrontierBase::dump() const {
print(dbgs());
}
+#endif
for (CallGraph::const_iterator I = begin(), E = end(); I != E; ++I)
I->second->print(OS);
}
+#ifndef NDEBUG
void CallGraph::dump() const {
print(dbgs(), 0);
}
+#endif
//===----------------------------------------------------------------------===//
// Implementations of public modification methods
OS << '\n';
}
+#ifndef NDEBUG
void CallGraphNode::dump() const { print(dbgs()); }
+#endif
/// removeCallEdgeFor - This method removes the edge in the node for the
/// specified call site. Note that this method takes linear time, so it
}
}
+#ifndef NDEBUG
void IVUsers::dump() const {
print(dbgs());
}
+#endif
void IVUsers::releaseMemory() {
Processed.clear();
return AlwaysInline || Cost < Threshold;
}
+#ifndef NDEBUG
/// \brief Dump stats about this call's analysis.
void CallAnalyzer::dump() {
#define DEBUG_PRINT_STAT(x) llvm::dbgs() << " " #x ": " << x << "\n"
DEBUG_PRINT_STAT(SROACostSavingsLost);
#undef DEBUG_PRINT_STAT
}
+#endif
InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS, int Threshold) {
return getInlineCost(CS, CS.getCalledFunction(), Threshold);
return 0;
}
+#ifndef NDEBUG
void Loop::dump() const {
print(dbgs());
}
+#endif
//===----------------------------------------------------------------------===//
// UnloopUpdater implementation
return false;
}
+#ifndef NDEBUG
void PHITransAddr::dump() const {
if (Addr == 0) {
dbgs() << "PHITransAddr: null\n";
for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
dbgs() << " Input #" << i << " is " << *InstInputs[i] << "\n";
}
+#endif
static bool VerifySubExpr(Value *Expr,
OS.indent(level*2) << "} \n";
}
+#ifndef NDEBUG
void Region::dump() const {
print(dbgs(), true, getDepth(), printStyle.getValue());
}
+#endif
void Region::clearNodeCache() {
// Free the cached nodes.
// Implementation of the SCEV class.
//
+#ifndef NDEBUG
void SCEV::dump() const {
print(dbgs());
dbgs() << '\n';
}
+#endif
void SCEV::print(raw_ostream &OS) const {
switch (getSCEVType()) {
O << "; Trace parent function: \n" << *F;
}
+#ifndef NDEBUG
/// dump - Debugger convenience method; writes trace to standard error
/// output stream.
///
void Trace::dump() const {
print(dbgs());
}
+#endif
}
+#ifndef NDEBUG
void MCFragment::dump() {
raw_ostream &OS = llvm::errs();
}
OS << "]>\n";
}
+#endif
// anchors for MC*Fragment vtables
void MCDataFragment::anchor() { }
OS << '"' << getName() << '"';
}
+#ifndef NDEBUG
void MCDwarfFile::dump() const {
print(dbgs());
}
+#endif
// Utility function to write a tuple for .debug_abbrev.
static void EmitAbbrev(MCStreamer *MCOS, uint64_t Name, uint64_t Form) {
llvm_unreachable("Invalid expression kind!");
}
+#ifndef NDEBUG
void MCExpr::dump() const {
print(dbgs());
dbgs() << '\n';
}
+#endif
/* *** */
OS << ">";
}
+#ifndef NDEBUG
void MCOperand::dump() const {
print(dbgs(), 0);
dbgs() << "\n";
}
+#endif
void MCInst::print(raw_ostream &OS, const MCAsmInfo *MAI) const {
OS << "<MCInst " << getOpcode();
OS << ">";
}
+#ifndef NDEBUG
void MCInst::dump() const {
print(dbgs(), 0);
dbgs() << "\n";
}
+#endif
OS << '"' << getInstance() << '"';
}
+#ifndef NDEBUG
void MCLabel::dump() const {
print(dbgs());
}
+#endif
}
void MCParsedAsmOperand::dump() const {
+#ifndef NDEBUG
dbgs() << " " << *this;
+#endif
}
OS << '"' << getName() << '"';
}
+#ifndef NDEBUG
void MCSymbol::dump() const {
print(dbgs());
}
+#endif
OS << " + " << getConstant();
}
+#ifndef NDEBUG
void MCValue::dump() const {
print(dbgs(), 0);
}
+#endif
OS << "\n";
}
+#ifndef NDEBUG
/// dump - Dump feature info.
///
void SubtargetFeatures::dump() const {
print(dbgs());
}
+#endif
/// getDefaultSubtargetFeatures - Return a string listing the features
/// associated with the target triple.
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
+#ifndef NDEBUG
void GVN::dump(DenseMap<uint32_t, Value*>& d) {
errs() << "{\n";
for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
}
errs() << "}\n";
}
+#endif
/// IsValueFullyAvailableInBlock - Return true if we can prove that the value
/// we're analyzing is fully available in the specified block. As we go, keep
OS << "[NumUses=" << UsedByIndices.count() << ']';
}
+#ifndef NDEBUG
void RegSortData::dump() const {
print(errs()); errs() << '\n';
}
+#endif
namespace {
}
}
+#ifndef NDEBUG
void Formula::dump() const {
print(errs()); errs() << '\n';
}
+#endif
/// isAddRecSExtable - Return true if the given addrec can be sign-extended
/// without changing its value.
OS << ", plus " << SetupCost << " setup cost";
}
+#ifndef NDEBUG
void Cost::dump() const {
print(errs()); errs() << '\n';
}
+#endif
namespace {
OS << ", Offset=" << Offset;
}
+#ifndef NDEBUG
void LSRFixup::dump() const {
print(errs()); errs() << '\n';
}
+#endif
namespace {
OS << ", widest fixup type: " << *WidestFixupType;
}
+#ifndef NDEBUG
void LSRUse::dump() const {
print(errs()); errs() << '\n';
}
+#endif
/// isLegalUse - Test whether the use described by AM is "legal", meaning it can
/// be completely folded into the user instruction at isel time. This includes
<< " , add offset " << Imm;
}
+#ifndef NDEBUG
void WorkItem::dump() const {
print(errs()); errs() << '\n';
}
+#endif
/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
/// distance apart and try to form reuse opportunities between them.
print_uses(OS);
}
+#ifndef NDEBUG
void LSRInstance::dump() const {
print(errs()); errs() << '\n';
}
+#endif
namespace {
OS << ']';
}
+#ifndef NDEBUG
void ExtAddrMode::dump() const {
print(dbgs());
dbgs() << '\n';
}
+#endif
/// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.