// datastructure we are processing.
//
struct ScalarInfo {
- Value *Val; // Scalar value in Current Function
- AllocDSNode *AllocNode; // Allocation node it points to
- Value *PoolHandle; // PoolTy* LLVM value
+ Value *Val; // Scalar value in Current Function
+ DSNode *Node; // DataStructure node it points to
+ Value *PoolHandle; // PoolTy* LLVM value
- ScalarInfo(Value *V, AllocDSNode *AN, Value *PH)
- : Val(V), AllocNode(AN), PoolHandle(PH) {}
+ ScalarInfo(Value *V, DSNode *N, Value *PH)
+ : Val(V), Node(N), PoolHandle(PH) {
+ assert(V && N && PH && "Null value passed to ScalarInfo ctor!");
+ }
};
// CallArgInfo - Information on one operand for a call that got expanded.
struct CallArgInfo {
- int ArgNo; // Call argument number this corresponds to
- AllocDSNode *AllocNode; // The allocation graph node for the pool
- Value *PoolHandle; // The LLVM value that is the pool pointer
+ int ArgNo; // Call argument number this corresponds to
+ DSNode *Node; // The graph node for the pool
+ Value *PoolHandle; // The LLVM value that is the pool pointer
- CallArgInfo(int Arg, AllocDSNode *AN, Value *PH)
- : ArgNo(Arg), AllocNode(AN), PoolHandle(PH) {
+ CallArgInfo(int Arg, DSNode *N, Value *PH)
+ : ArgNo(Arg), Node(N), PoolHandle(PH) {
+ assert(Arg >= -1 && N && PH && "Illegal values to CallArgInfo ctor!");
}
+ // operator< when sorting, sort by argument number.
bool operator<(const CallArgInfo &CAI) const {
return ArgNo < CAI.ArgNo;
}
// Func - The function to be transformed...
Function *Func;
+ // The call instruction that is used to map CallArgInfo PoolHandle values
+ // into the new function values.
+ CallInst *Call;
+
// default ctor...
- TransformFunctionInfo() : Func(0) {}
+ TransformFunctionInfo() : Func(0), Call(0) {}
bool operator<(const TransformFunctionInfo &TFI) const {
if (Func < TFI.Func) return true;
void finalizeConstruction() {
// Sort the vector so that the return value is first, followed by the
- // argument records, in order.
- sort(ArgInfo.begin(), ArgInfo.end());
+ // argument records, in order. Note that this must be a stable sort so
+ // that the entries with the same sorting criteria (ie they are multiple
+ // pool entries for the same argument) are kept in depth first order.
+ stable_sort(ArgInfo.begin(), ArgInfo.end());
}
};
// Prototypes that we add to support pool allocation...
Function *PoolInit, *PoolDestroy, *PoolAlloc, *PoolFree;
- // The map of already transformed functions...
+ // The map of already transformed functions... note that the keys of this
+ // map do not have meaningful values for 'Call' or the 'PoolHandle' elements
+ // of the ArgInfo elements.
+ //
map<TransformFunctionInfo, Function*> TransformedFunctions;
// getTransformedFunction - Get a transformed function, or return null if
// CreatePools - Insert instructions into the function we are processing to
// create all of the memory pool objects themselves. This also inserts
// destruction code. Add an alloca for each pool that is allocated to the
- // PoolDescriptors vector.
+ // PoolDescriptors map.
//
void CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
- map<AllocDSNode*, AllocaInst*> &PoolDescriptors);
+ map<DSNode*, Value*> &PoolDescriptors);
// processFunction - Convert a function to use pool allocation where
// available.
//
bool processFunction(Function *F);
-
- void transformFunctionBody(Function *F, vector<ScalarInfo> &Scalars,
- map<AllocDSNode*, AllocaInst*> &PoolDescriptors);
+ // transformFunctionBody - This transforms the instruction in 'F' to use the
+ // pools specified in PoolDescriptors when modifying data structure nodes
+ // specified in the PoolDescriptors map. IPFGraph is the closed data
+ // structure graph for F, of which the PoolDescriptor nodes come from.
+ //
+ void transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
+ map<DSNode*, Value*> &PoolDescriptors);
// transformFunction - Transform the specified function the specified way.
// It we have already transformed that function that way, don't do anything.
+ // The nodes in the TransformFunctionInfo come out of callers data structure
+ // graph.
//
- void transformFunction(TransformFunctionInfo &TFI);
+ void transformFunction(TransformFunctionInfo &TFI,
+ FunctionDSGraph &CallerIPGraph);
};
}
// This fills in the PoolDescriptors map to associate the alloc node with the
// allocation of the memory pool corresponding to it.
//
- map<AllocDSNode*, AllocaInst*> PoolDescriptors;
+ map<DSNode*, Value*> PoolDescriptors;
CreatePools(F, Allocs, PoolDescriptors);
-
- // Loop through the value map looking for scalars that refer to nonescaping
- // allocations. Add them to the Scalars vector. Note that we may have
- // multiple entries in the Scalars vector for each value if it points to more
- // than one object.
- //
- map<Value*, PointerValSet> &ValMap = IPGraph.getValueMap();
- vector<ScalarInfo> Scalars;
-
- for (map<Value*, PointerValSet>::iterator I = ValMap.begin(),
- E = ValMap.end(); I != E; ++I) {
- const PointerValSet &PVS = I->second; // Set of things pointed to by scalar
-
- assert(PVS.size() == 1 &&
- "Only handle scalars that point to one thing so far!");
-
- // Check to see if the scalar points to anything that is an allocation...
- for (unsigned i = 0, e = PVS.size(); i != e; ++i)
- if (AllocDSNode *Alloc = dyn_cast<AllocDSNode>(PVS[i].Node)) {
- assert(PVS[i].Index == 0 && "Nonzero not handled yet!");
-
- // If the allocation is in the nonescaping set...
- map<AllocDSNode*, AllocaInst*>::iterator AI=PoolDescriptors.find(Alloc);
- if (AI != PoolDescriptors.end()) // Add it to the list of scalars
- Scalars.push_back(ScalarInfo(I->first, Alloc, AI->second));
- }
- }
-
// Now we need to figure out what called methods we need to transform, and
// how. To do this, we look at all of the scalars, seeing which functions are
// either used as a scalar value (so they return a data structure), or are
// passed one of our scalar values.
//
- transformFunctionBody(F, Scalars, PoolDescriptors);
+ transformFunctionBody(F, IPGraph, PoolDescriptors);
return true;
}
static void addCallInfo(TransformFunctionInfo &TFI, CallInst *CI, int Arg,
- DSNode *AllocNode,
- map<AllocDSNode*, AllocaInst*> &PoolDescriptors) {
+ DSNode *GraphNode,
+ map<DSNode*, Value*> &PoolDescriptors) {
// For now, add the entire graph that is pointed to by the call argument.
// This graph can and should be pruned to only what the function itself will
// use, because often this will be a dramatically smaller subset of what we
// are providing.
//
- for (df_iterator<DSNode*> I = df_begin(AllocNode), E = df_end(AllocNode);
+ for (df_iterator<DSNode*> I = df_begin(GraphNode), E = df_end(GraphNode);
I != E; ++I) {
- if (AllocDSNode *AN = dyn_cast<AllocDSNode>(*I))
- TFI.ArgInfo.push_back(CallArgInfo(Arg, AN, PoolDescriptors[AN]));
+ TFI.ArgInfo.push_back(CallArgInfo(Arg, *I, PoolDescriptors[*I]));
}
assert(CI->getCalledFunction() && "Cannot handle indirect calls yet!");
assert(TFI.Func == 0 || TFI.Func == CI->getCalledFunction() &&
"Function call record should always call the same function!");
+ assert(TFI.Call == 0 || TFI.Call == CI &&
+ "Call element already filled in with different value!");
TFI.Func = CI->getCalledFunction();
+ TFI.Call = CI;
}
-void PoolAllocate::transformFunctionBody(Function *F,
- vector<ScalarInfo> &Scalars,
- map<AllocDSNode*, AllocaInst*> &PoolDescriptors) {
+
+// transformFunctionBody - This transforms the instruction in 'F' to use the
+// pools specified in PoolDescriptors when modifying data structure nodes
+// specified in the PoolDescriptors map. Specifically, scalar values specified
+// in the Scalars vector must be remapped. IPFGraph is the closed data
+// structure graph for F, of which the PoolDescriptor nodes come from.
+//
+void PoolAllocate::transformFunctionBody(Function *F, FunctionDSGraph &IPFGraph,
+ map<DSNode*, Value*> &PoolDescriptors) {
+
+ // Loop through the value map looking for scalars that refer to nonescaping
+ // allocations. Add them to the Scalars vector. Note that we may have
+ // multiple entries in the Scalars vector for each value if it points to more
+ // than one object.
+ //
+ map<Value*, PointerValSet> &ValMap = IPFGraph.getValueMap();
+ vector<ScalarInfo> Scalars;
+
+ for (map<Value*, PointerValSet>::iterator I = ValMap.begin(),
+ E = ValMap.end(); I != E; ++I) {
+ const PointerValSet &PVS = I->second; // Set of things pointed to by scalar
+
+ assert(PVS.size() == 1 &&
+ "Only handle scalars that point to one thing so far!");
+
+ // Check to see if the scalar points to a data structure node...
+ for (unsigned i = 0, e = PVS.size(); i != e; ++i) {
+ assert(PVS[i].Index == 0 && "Nonzero not handled yet!");
+
+ // If the allocation is in the nonescaping set...
+ map<DSNode*, Value*>::iterator AI = PoolDescriptors.find(PVS[i].Node);
+ if (AI != PoolDescriptors.end()) // Add it to the list of scalars
+ Scalars.push_back(ScalarInfo(I->first, PVS[i].Node, AI->second));
+ }
+ }
+
+
+
cerr << "In '" << F->getName()
<< "': Found the following values that point to poolable nodes:\n";
// Check to see if the scalar _IS_ a call...
if (CallInst *CI = dyn_cast<CallInst>(ScalarVal))
// If so, add information about the pool it will be returning...
- addCallInfo(CallMap[CI], CI, -1, Scalars[i].AllocNode, PoolDescriptors);
+ addCallInfo(CallMap[CI], CI, -1, Scalars[i].Node, PoolDescriptors);
// Check to see if the scalar is an operand to a call...
for (Value::use_iterator UI = ScalarVal->use_begin(),
// than once! It will get multiple entries for the first pointer.
// Add the operand number and pool handle to the call table...
- addCallInfo(CallMap[CI], CI, OI-CI->op_begin()-1, Scalars[i].AllocNode,
+ addCallInfo(CallMap[CI], CI, OI-CI->op_begin()-1, Scalars[i].Node,
PoolDescriptors);
}
}
cerr << "\nFor call: ";
I->first->dump();
I->second.finalizeConstruction();
- cerr << I->second.Func->getName() << " must pass pool pointer for arg #";
+ cerr << I->second.Func->getName() << " must pass pool pointer for args #";
for (unsigned i = 0; i < I->second.ArgInfo.size(); ++i)
- cerr << I->second.ArgInfo[i].ArgNo << " ";
+ cerr << I->second.ArgInfo[i].ArgNo << ", ";
cerr << "\n";
}
E = CallMap.end(); I != E; ++I) {
// Make sure the entries are sorted.
I->second.finalizeConstruction();
- transformFunction(I->second);
+
+ // Transform all of the functions we need, or at least ensure there is a
+ // cached version available.
+ transformFunction(I->second, IPFGraph);
}
// Now that all of the functions that we want to call are available, transform
DS->invalidateFunction(F);
}
+static void addNodeMapping(DSNode *SrcNode, const PointerValSet &PVS,
+ map<DSNode*, PointerValSet> &NodeMapping) {
+ for (unsigned i = 0, e = PVS.size(); i != e; ++i)
+ if (NodeMapping[SrcNode].add(PVS[i])) { // Not in map yet?
+ assert(PVS[i].Index == 0 && "Node indexing not supported yet!");
+ DSNode *DestNode = PVS[i].Node;
+
+ // Loop over all of the outgoing links in the mapped graph
+ for (unsigned l = 0, le = DestNode->getNumOutgoingLinks(); l != le; ++l) {
+ PointerValSet &SrcSet = SrcNode->getOutgoingLink(l);
+ const PointerValSet &DestSet = DestNode->getOutgoingLink(l);
+ assert((!SrcSet.empty() || DestSet.empty()) &&
+ "Dest graph should be a proper subset of the src graph!");
+
+ // Add all of the node mappings now!
+ for (unsigned si = 0, se = SrcSet.size(); si != se; ++si) {
+ assert(SrcSet[si].Index == 0 && "Can't handle node offset!");
+ addNodeMapping(SrcSet[si].Node, DestSet, NodeMapping);
+ }
+ }
+ }
+}
+
+// CalculateNodeMapping - There is a partial isomorphism between the graph
+// passed in and the graph that is actually used by the function. We need to
+// figure out what this mapping is so that we can transformFunctionBody the
+// instructions in the function itself. Note that every node in the graph that
+// we are interested in must be both in the local graph of the called function,
+// and in the local graph of the calling function. Because of this, we only
+// define the mapping for these nodes [conveniently these are the only nodes we
+// CAN define a mapping for...]
+//
+// The roots of the graph that we are transforming is rooted in the arguments
+// passed into the function from the caller. This is where we start our
+// mapping calculation.
+//
+// The NodeMapping calculated maps from the callers graph to the called graph.
+//
+static void CalculateNodeMapping(TransformFunctionInfo &TFI,
+ FunctionDSGraph &CallerGraph,
+ FunctionDSGraph &CalledGraph,
+ map<DSNode*, PointerValSet> &NodeMapping) {
+ int LastArgNo = -2;
+ for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i) {
+ // Figure out what nodes in the called graph the TFI.ArgInfo[i].Node node
+ // corresponds to...
+ //
+ // Only consider first node of sequence. Extra nodes may may be added
+ // to the TFI if the data structure requires more nodes than just the
+ // one the argument points to. We are only interested in the one the
+ // argument points to though.
+ //
+ if (TFI.ArgInfo[i].ArgNo != LastArgNo) {
+ if (TFI.ArgInfo[i].ArgNo == -1) {
+ addNodeMapping(TFI.ArgInfo[i].Node, CalledGraph.getRetNodes(),
+ NodeMapping);
+ } else {
+ // Figure out which node argument # ArgNo points to in the called graph.
+ Value *Arg = TFI.Func->getArgumentList()[TFI.ArgInfo[i].ArgNo];
+ addNodeMapping(TFI.ArgInfo[i].Node, CalledGraph.getValueMap()[Arg],
+ NodeMapping);
+ }
+ LastArgNo = TFI.ArgInfo[i].ArgNo;
+ }
+ }
+}
+
-// transformFunction - Transform the specified function the specified way.
-// It we have already transformed that function that way, don't do anything.
+// transformFunction - Transform the specified function the specified way. It
+// we have already transformed that function that way, don't do anything. The
+// nodes in the TransformFunctionInfo come out of callers data structure graph.
//
-void PoolAllocate::transformFunction(TransformFunctionInfo &TFI) {
+void PoolAllocate::transformFunction(TransformFunctionInfo &TFI,
+ FunctionDSGraph &CallerIPGraph) {
if (getTransformedFunction(TFI)) return; // Function xformation already done?
- Function *FuncToXForm = TFI.Func;
- const FunctionType *OldFuncType = FuncToXForm->getFunctionType();
+ const FunctionType *OldFuncType = TFI.Func->getFunctionType();
assert(!OldFuncType->isVarArg() && "Vararg functions not handled yet!");
// pointers. [in the future when they are implemented].
//
Function *NewFunc = new Function(NewFuncType, true,
- FuncToXForm->getName()+".poolxform");
+ TFI.Func->getName()+".poolxform");
CurModule->getFunctionList().push_back(NewFunc);
// Add the newly formed function to the TransformedFunctions table so that
// Add arguments to the function... starting with all of the old arguments
vector<Value*> ArgMap;
- for (unsigned i = 0, e = FuncToXForm->getArgumentList().size(); i != e; ++i) {
- const FunctionArgument *OFA = FuncToXForm->getArgumentList()[i];
+ for (unsigned i = 0, e = TFI.Func->getArgumentList().size(); i != e; ++i) {
+ const FunctionArgument *OFA = TFI.Func->getArgumentList()[i];
FunctionArgument *NFA = new FunctionArgument(OFA->getType(),OFA->getName());
NewFunc->getArgumentList().push_back(NFA);
ArgMap.push_back(NFA); // Keep track of the arguments
}
// Now clone the body of the old function into the new function...
- CloneFunctionInto(NewFunc, FuncToXForm, ArgMap);
+ CloneFunctionInto(NewFunc, TFI.Func, ArgMap);
// Okay, now we have a function that is identical to the old one, except that
- // it has extra arguments for the pools coming in.
+ // it has extra arguments for the pools coming in. Now we have to get the
+ // data structure graph for the function we are replacing, and figure out how
+ // our graph nodes map to the graph nodes in the dest function.
+ //
+ FunctionDSGraph &DSGraph = DS->getClosedDSGraph(TFI.Func);
+
+ // NodeMapping - Multimap from callers graph to called graph.
+ //
+ map<DSNode*, PointerValSet> NodeMapping;
+
+ CalculateNodeMapping(TFI, CallerIPGraph, DSGraph,
+ NodeMapping);
+
+ // Print out the node mapping...
+ cerr << "\nNode mapping for call of " << TFI.Func->getName() << "\n";
+ for (map<DSNode*, PointerValSet>::iterator I = NodeMapping.begin();
+ I != NodeMapping.end(); ++I) {
+ cerr << "Map: "; I->first->print(cerr);
+ cerr << "To: "; I->second.print(cerr);
+ cerr << "\n";
+ }
+ // Fill in the PoolDescriptor information for the transformed function so that
+ // it can determine which value holds the pool descriptor for each data
+ // structure node that it accesses.
+ //
+ map<DSNode*, Value*> PoolDescriptors;
+
+ cerr << "FIXME: PoolDescriptors not built!\n";
+
+#if 0
+ // First add the incoming arguments to the scalar map...
+ for (unsigned i = 0, e = TFI.ArgInfo.size(); i != e; ++i)
+ if (TFI.ArgInfo[i].ArgNo == -1) {
+
+ } else {
+ Value *Arg = TFI.Func->getArgumentList()[TFI.ArgInfo[i].ArgNo];
+
+ // Find out what nodes the argument points to in the called functions data
+ // structure graph...
+ //
+ PointerValSet &ArgNodes = DSGraph.getValueMap()[Arg];
+
+ // Add mappings for all of the arguments of this function...
+ for (unsigned ArgVal = 0, AVE = ArgNodes.size(); ArgVal != AVE; ++ArgVal){
+ assert(ArgNodes[ArgVal].Index == 0 &&
+ "Arg that points into an object not handled yet!");
+ DSNode *ArgNode = ArgNodes[ArgVal].Node;
+ Scalars.push_back(ScalarInfo(Arg, ArgNode, PoolDescriptors[ArgNode]));
+ }
+ ArgOffset++;
+ }
+
+ // Now that we know everything we need about the function, transform the body
+ // now!
+ //
+ transformFunctionBody(TFI.Func, DSGraph, PoolDescriptors);
+ cerr << "Function after transformation:\n";
+ TFI.Func->dump();
+#endif
}
// PoolDescriptors vector.
//
void PoolAllocate::CreatePools(Function *F, const vector<AllocDSNode*> &Allocs,
- map<AllocDSNode*, AllocaInst*> &PoolDescriptors){
+ map<DSNode*, Value*> &PoolDescriptors) {
// FIXME: This should use an IP version of the UnifyAllExits pass!
vector<BasicBlock*> ReturnNodes;
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)