if (I.getType()->isInteger()) {
APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
+ // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
return BinaryOperator::createUDiv(Op0, Op1, I.getName());
}
}
Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ // Handle the integer rem common cases
if (Instruction *common = commonIRemTransforms(I))
return common;
return &I;
}
- // If the top bits of both operands are zero (i.e. we can prove they are
+ // If the sign bits of both operands are zero (i.e. we can prove they are
// unsigned inputs), turn this into a urem.
- APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
- if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
- // X srem Y -> X urem Y, iff X and Y don't have sign bit set
- return BinaryOperator::createURem(Op0, Op1, I.getName());
+ if (I.getType()->isInteger()) {
+ APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
+ if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
+ // X srem Y -> X urem Y, iff X and Y don't have sign bit set
+ return BinaryOperator::createURem(Op0, Op1, I.getName());
+ }
}
return 0;
--- /dev/null
+; RUN: llvm-as < %s | opt -instcombine | llvm-dis | grep {srem <4 x i32>}
+
+define <4 x i32> @foo(<4 x i32> %t, <4 x i32> %u)
+{
+ %k = sdiv <4 x i32> %t, %u
+ %l = mul <4 x i32> %k, %u
+ %m = sub <4 x i32> %t, %l
+ ret <4 x i32> %m
+}