#define DEBUG_TYPE "instcombine"
-/// simplifyValueKnownNonZero - The specific integer value is used in a context
-/// where it is known to be non-zero. If this allows us to simplify the
-/// computation, do so and return the new operand, otherwise return null.
+/// The specific integer value is used in a context where it is known to be
+/// non-zero. If this allows us to simplify the computation, do so and return
+/// the new operand, otherwise return null.
static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC,
Instruction &CxtI) {
// If V has multiple uses, then we would have to do more analysis to determine
}
-/// MultiplyOverflows - True if the multiply can not be expressed in an int
-/// this size.
+/// True if the multiply can not be expressed in an int this size.
static bool MultiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
bool IsSigned) {
bool Overflow;
return Changed ? &I : nullptr;
}
-/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
-/// instruction.
+/// Try to fold a divide or remainder of a select instruction.
bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
SelectInst *SI = cast<SelectInst>(I.getOperand(1));
return Builder->CreateSelect(Builder->CreateICmp(Pred, A, B), A, B);
}
-/// GetSelectFoldableOperands - We want to turn code that looks like this:
+/// We want to turn code that looks like this:
/// %C = or %A, %B
/// %D = select %cond, %C, %A
/// into:
}
}
-/// GetSelectFoldableConstant - For the same transformation as the previous
-/// function, return the identity constant that goes into the select.
+/// For the same transformation as the previous function, return the identity
+/// constant that goes into the select.
static Constant *GetSelectFoldableConstant(Instruction *I) {
switch (I->getOpcode()) {
default: llvm_unreachable("This cannot happen!");
}
}
-/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
+/// Here we have (select c, TI, FI), and we know that TI and FI
/// have the same opcode and only one use each. Try to simplify this.
Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
Instruction *FI) {
C2I->isOne() || C2I->isAllOnesValue();
}
-/// FoldSelectIntoOp - Try fold the select into one of the operands to
-/// facilitate further optimization.
+/// Try to fold the select into one of the operands to allow further
+/// optimization.
Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
Value *FalseVal) {
// See the comment above GetSelectFoldableOperands for a description of the
return nullptr;
}
-/// foldSelectICmpAndOr - We want to turn:
+/// We want to turn:
/// (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
/// into:
/// (or (shl (and X, C1), C3), y)
return nullptr;
}
-/// visitSelectInstWithICmp - Visit a SelectInst that has an
-/// ICmpInst as its first operand.
-///
+/// Visit a SelectInst that has an ICmpInst as its first operand.
Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
ICmpInst *ICI) {
bool Changed = false;
}
-/// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
-/// PHI node (but the two may be in different blocks). See if the true/false
-/// values (V) are live in all of the predecessor blocks of the PHI. For
-/// example, cases like this cannot be mapped:
+/// SI is a select whose condition is a PHI node (but the two may be in
+/// different blocks). See if the true/false values (V) are live in all of the
+/// predecessor blocks of the PHI. For example, cases like this can't be mapped:
///
/// X = phi [ C1, BB1], [C2, BB2]
/// Y = add
return false;
}
-/// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
+/// We have an SPF (e.g. a min or max) of an SPF of the form:
/// SPF2(SPF1(A, B), C)
Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
SelectPatternFlavor SPF1,
return nullptr;
}
-/// foldSelectICmpAnd - If one of the constants is zero (we know they can't
-/// both be) and we have an icmp instruction with zero, and we have an 'and'
-/// with the non-constant value and a power of two we can turn the select
-/// into a shift on the result of the 'and'.
+/// If one of the constants is zero (we know they can't both be) and we have an
+/// icmp instruction with zero, and we have an 'and' with the non-constant value
+/// and a power of two we can turn the select into a shift on the result of the
+/// 'and'.
static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal,
ConstantInt *FalseVal,
InstCombiner::BuilderTy *Builder) {
#define DEBUG_TYPE "instcombine"
-/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
-/// is to leave as a vector operation. isConstant indicates whether we're
-/// extracting one known element. If false we're extracting a variable index.
+/// Return true if the value is cheaper to scalarize than it is to leave as a
+/// vector operation. isConstant indicates whether we're extracting one known
+/// element. If false we're extracting a variable index.
static bool CheapToScalarize(Value *V, bool isConstant) {
if (Constant *C = dyn_cast<Constant>(V)) {
if (isConstant) return true;
return nullptr;
}
-/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
-/// elements from either LHS or RHS, return the shuffle mask and true.
-/// Otherwise, return false.
+/// If V is a shuffle of values that ONLY returns elements from either LHS or
+/// RHS, return the shuffle mask and true. Otherwise, return false.
static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
SmallVectorImpl<Constant*> &Mask) {
assert(LHS->getType() == RHS->getType() &&