/// @name Section Access (in layout order)
/// @{
- iterator begin() { return SectionOrder.begin(); }
- const_iterator begin() const { return SectionOrder.begin(); }
-
- iterator end() {return SectionOrder.end();}
- const_iterator end() const {return SectionOrder.end();}
+ llvm::SmallVectorImpl<MCSectionData*> &getSectionOrder() {
+ return SectionOrder;
+ }
+ const llvm::SmallVectorImpl<MCSectionData*> &getSectionOrder() const {
+ return SectionOrder;
+ }
/// @}
/// @name Fragment Layout Data
bool FragmentNeedsRelaxation(const MCInstFragment *IF,
const MCAsmLayout &Layout) const;
- /// LayoutSection - Assign the section the given \arg StartAddress, and then
- /// assign offsets and sizes to the fragments in the section \arg SD, and
- /// update the section size.
- ///
- /// \return The address at the end of the section, for use in laying out the
- /// succeeding section.
- uint64_t LayoutSection(MCSectionData &SD, MCAsmLayout &Layout,
- uint64_t StartAddress);
+ /// LayoutSection - Performs layout of the section referenced by the given
+ /// \arg SectionOrderIndex. The layout assumes that the previous section has
+ /// already been layed out correctly.
+ void LayoutSection(MCAsmLayout &Layout, unsigned SectionOrderIndex);
/// LayoutOnce - Perform one layout iteration and return true if any offsets
/// were adjusted.
//
// FIXME-PERF: This is O(N^2), but will be eliminated once we get smarter.
- // Layout the concrete sections and fragments.
- uint64_t Address = 0;
- for (iterator it = begin(), ie = end(); it != ie; ++it) {
- // Layout the section fragments and its size.
- Address = getAssembler().LayoutSection(**it, *this, Address);
- }
+ // Layout the sections in order.
+ for (unsigned i = 0, e = getSectionOrder().size(); i != e; ++i)
+ getAssembler().LayoutSection(*this, i);
}
uint64_t MCAsmLayout::getFragmentAddress(const MCFragment *F) const {
return IsResolved;
}
-uint64_t MCAssembler::LayoutSection(MCSectionData &SD,
- MCAsmLayout &Layout,
- uint64_t StartAddress) {
+void MCAssembler::LayoutSection(MCAsmLayout &Layout,
+ unsigned SectionOrderIndex) {
+ MCSectionData &SD = *Layout.getSectionOrder()[SectionOrderIndex];
bool IsVirtual = getBackend().isVirtualSection(SD.getSection());
++stats::SectionLayouts;
+ // Get the section start address.
+ uint64_t StartAddress = 0;
+ if (SectionOrderIndex) {
+ MCSectionData *Prev = Layout.getSectionOrder()[SectionOrderIndex - 1];
+ StartAddress = Layout.getSectionAddress(Prev) + Layout.getSectionSize(Prev);
+ }
+
// Align this section if necessary by adding padding bytes to the previous
// section. It is safe to adjust this out-of-band, because no symbol or
// fragment is allowed to point past the end of the section at any time.
Layout.setSectionFileSize(&SD, 0);
else
Layout.setSectionFileSize(&SD, Address - StartAddress);
-
- return Address;
}
/// WriteFragmentData - Write the \arg F data to the output file.
bool MCAssembler::LayoutOnce(MCAsmLayout &Layout) {
++stats::RelaxationSteps;
- // Layout the concrete sections and fragments.
- uint64_t Address = 0;
- for (MCAsmLayout::iterator it = Layout.begin(),
- ie = Layout.end(); it != ie; ++it) {
- // Layout the section fragments and its size.
- Address = LayoutSection(**it, Layout, Address);
- }
+ // Layout the sections in order.
+ for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i)
+ LayoutSection(Layout, i);
// Scan for fragments that need relaxation.
bool WasRelaxed = false;