//
// History:
// 7/02/01 - Vikram Adve - Created
-//***************************************************************************
+//**************************************************************************/
+#include "llvm/Support/MathExtras.h"
#include "llvm/Type.h"
#include "llvm/DerivedTypes.h"
#include "llvm/SymbolTable.h"
unsigned numInstr,
TargetMachine& target);
-static unsigned InsertLoadConstInstructions(unsigned loadConstFlags,
- const InstructionNode* vmInstrNode,
- MachineInstr** mvec,
- unsigned numInstr);
-
-static MachineInstr* MakeOneLoadConstInstr(Instruction* vmInstr,
- Value* val,
- TmpInstruction*& tmpReg);
+static MachineInstr* MakeLoadConstInstr(Instruction* vmInstr,
+ Value* val,
+ TmpInstruction*& tmpReg,
+ MachineInstr*& getMinstr2);
static void ForwardOperand (InstructionNode* treeNode,
InstructionNode* parent,
int operandNum);
-//******************* Externally Visible Functions *************************/
+//************************ Internal Functions ******************************/
//------------------------------------------------------------------------
}
}
-//------------------------------------------------------------------------
-// External Function: GetInstructionsByRule
-//
-// Purpose:
-// Choose machine instructions for the SPARC according to the
-// patterns chosen by the BURG-generated parser.
-//------------------------------------------------------------------------
-unsigned
-GetInstructionsByRule(InstructionNode* subtreeRoot,
- int ruleForNode,
- short* nts,
- TargetMachine &target,
- MachineInstr** mvec)
+static inline MachineOpCode
+ChooseBprInstruction(const InstructionNode* instrNode)
{
- int numInstr = 1; // initialize for common case
- bool checkCast = false; // initialize here to use fall-through
- Value *leftVal, *rightVal;
- const Type* opType;
- int nextRule;
- int forwardOperandNum = -1;
- BranchPattern brPattern;
- int64_t s0 = 0; // variables holding zero to avoid
- uint64_t u0 = 0; // overloading ambiguities below
+ MachineOpCode opCode;
- mvec[0] = mvec[1] = mvec[2] = mvec[3] = NULL; // just for safety
+ Instruction* setCCInstr =
+ ((InstructionNode*) instrNode->leftChild())->getInstruction();
- switch(ruleForNode) {
- case 1: // stmt: Ret
- case 2: // stmt: RetValue(reg)
- // NOTE: Prepass of register allocation is responsible
- // for moving return value to appropriate register.
- // Mark the return-address register as a hidden virtual reg.
- {
- Instruction* returnReg = new TmpInstruction(Instruction::UserOp1,
- subtreeRoot->getInstruction(), NULL);
- subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(returnReg);
-
- mvec[0] = new MachineInstr(RETURN);
- mvec[0]->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,returnReg);
- mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, s0);
-
- returnReg->addMachineInstruction(mvec[0]);
-
- mvec[numInstr++] = new MachineInstr(NOP); // delay slot
- break;
- }
-
- case 3: // stmt: Store(reg,reg)
- case 4: // stmt: Store(reg,ptrreg)
- mvec[0] = new MachineInstr(ChooseStoreInstruction(subtreeRoot->leftChild()->getValue()->getType()));
- SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 5: // stmt: BrUncond
- mvec[0] = new MachineInstr(BA);
- mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, (Value*)NULL);
- mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
- ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
-
- mvec[numInstr++] = new MachineInstr(NOP); // delay slot
- break;
-
- case 6: // stmt: BrCond(boolconst)
- // boolconst => boolean was computed with `%b = setCC type reg1 constant'
- // If the constant is ZERO, we can use the branch-on-integer-register
- // instructions and avoid the SUBcc instruction entirely.
- // Otherwise this is just the same as case 5, so just fall through.
+ switch(setCCInstr->getOpcode())
{
- InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
- assert(constNode && constNode->getNodeType() ==InstrTreeNode::NTConstNode);
- ConstPoolVal* constVal = (ConstPoolVal*) constNode->getValue();
- bool isValidConst;
-
- if (constVal->getType()->isIntegral()
- && GetConstantValueAsSignedInt(constVal, isValidConst) == 0
- && isValidConst)
- {
- // That constant ia a zero after all...
- // Use the left child of the setCC instruction as the first argument!
- mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot));
- mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
- subtreeRoot->leftChild()->leftChild()->getValue());
- mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
- ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
+ case Instruction::SetEQ: opCode = BRZ; break;
+ case Instruction::SetNE: opCode = BRNZ; break;
+ case Instruction::SetLE: opCode = BRLEZ; break;
+ case Instruction::SetGE: opCode = BRGEZ; break;
+ case Instruction::SetLT: opCode = BRLZ; break;
+ case Instruction::SetGT: opCode = BRGZ; break;
+ default:
+ assert(0 && "Unrecognized VM instruction!");
+ opCode = INVALID_OPCODE;
+ break;
+ }
+
+ return opCode;
+}
- // delay slot
- mvec[numInstr++] = new MachineInstr(NOP);
-
- // false branch
- mvec[numInstr++] = new MachineInstr(BA);
- mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
- (Value*) NULL);
- mvec[numInstr-1]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
- break;
- }
- // ELSE FALL THROUGH
+
+static inline MachineOpCode
+ChooseBccInstruction(const InstructionNode* instrNode,
+ bool& isFPBranch)
+{
+ InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
+ BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction();
+ const Type* setCCType = setCCInstr->getOperand(0)->getType();
+
+ isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy);
+
+ if (isFPBranch)
+ return ChooseBFpccInstruction(instrNode, setCCInstr);
+ else
+ return ChooseBpccInstruction(instrNode, setCCInstr);
+}
+
+
+static inline MachineOpCode
+ChooseBpccInstruction(const InstructionNode* instrNode,
+ const BinaryOperator* setCCInstr)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
+
+ if (isSigned)
+ {
+ switch(setCCInstr->getOpcode())
+ {
+ case Instruction::SetEQ: opCode = BE; break;
+ case Instruction::SetNE: opCode = BNE; break;
+ case Instruction::SetLE: opCode = BLE; break;
+ case Instruction::SetGE: opCode = BGE; break;
+ case Instruction::SetLT: opCode = BL; break;
+ case Instruction::SetGT: opCode = BG; break;
+ default:
+ assert(0 && "Unrecognized VM instruction!");
+ break;
+ }
}
-
- case 7: // stmt: BrCond(bool)
- // bool => boolean was computed with `%b = setcc type reg1 reg2'
- // Need to check whether the type was a FP, signed int or unsigned int,
- // and check the branching condition in order to choose the branch to use.
- //
+ else
{
- bool isFPBranch;
- mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot, isFPBranch));
- mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
- subtreeRoot->leftChild()->getValue());
- mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
- ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
-
- // delay slot
- mvec[numInstr++] = new MachineInstr(NOP);
-
- // false branch
- mvec[numInstr++] = new MachineInstr(BA);
- mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
- (Value*) NULL);
- mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp,
- ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
- break;
- }
-
- case 8: // stmt: BrCond(boolreg)
- // bool => boolean is stored in an existing register.
- // Just use the branch-on-integer-register instruction!
- //
- mvec[0] = new MachineInstr(BRNZ);
- mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
- subtreeRoot->leftChild()->getValue());
- mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
- ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
- mvec[numInstr++] = new MachineInstr(NOP); // delay slot
- break;
-
- case 9: // stmt: Switch(reg)
- assert(0 && "*** SWITCH instruction is not implemented yet.");
- numInstr = 0;
- break;
-
- case 10: // reg: VRegList(reg, reg)
- assert(0 && "VRegList should never be the topmost non-chain rule");
- break;
-
- case 21: // reg: Not(reg): Implemented as reg = reg XOR-NOT 0
- mvec[0] = new MachineInstr(XNOR);
- mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
- subtreeRoot->leftChild()->getValue());
- mvec[0]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
- mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
- subtreeRoot->getValue());
- break;
-
- case 22: // reg: ToBoolTy(reg):
- opType = subtreeRoot->leftChild()->getValue()->getType();
- assert(opType->isIntegral() || opType == Type::BoolTy);
- numInstr = 0;
- forwardOperandNum = 0;
- break;
-
- case 23: // reg: ToUByteTy(reg)
- case 25: // reg: ToUShortTy(reg)
- case 27: // reg: ToUIntTy(reg)
- case 29: // reg: ToULongTy(reg)
- opType = subtreeRoot->leftChild()->getValue()->getType();
- assert(opType->isIntegral() ||
- opType->isPointerType() ||
- opType == Type::BoolTy && "Ignoring cast: illegal for other types");
- numInstr = 0;
- forwardOperandNum = 0;
- break;
-
- case 24: // reg: ToSByteTy(reg)
- case 26: // reg: ToShortTy(reg)
- case 28: // reg: ToIntTy(reg)
- case 30: // reg: ToLongTy(reg)
- opType = subtreeRoot->leftChild()->getValue()->getType();
- if (opType->isIntegral() || opType == Type::BoolTy)
- {
- numInstr = 0;
- forwardOperandNum = 0;
- }
- else
- {
- mvec[0] =new MachineInstr(ChooseConvertToIntInstr(subtreeRoot,opType));
- Set2OperandsFromInstr(mvec[0], subtreeRoot, target);
- }
- break;
-
- case 31: // reg: ToFloatTy(reg):
- case 32: // reg: ToDoubleTy(reg):
-
- // If this instruction has a parent (a user) in the tree
- // and the user is translated as an FsMULd instruction,
- // then the cast is unnecessary. So check that first.
- // In the future, we'll want to do the same for the FdMULq instruction,
- // so do the check here instead of only for ToFloatTy(reg).
- //
- if (subtreeRoot->parent() != NULL &&
- ((InstructionNode*) subtreeRoot->parent())->getInstruction()->getMachineInstrVec()[0]->getOpCode() == FSMULD)
- {
- numInstr = 0;
- forwardOperandNum = 0;
- }
- else
- {
- opType = subtreeRoot->leftChild()->getValue()->getType();
- mvec[0] = new MachineInstr(ChooseConvertToFloatInstr(subtreeRoot, opType));
- Set2OperandsFromInstr(mvec[0], subtreeRoot, target);
- }
- break;
-
- case 19: // reg: ToArrayTy(reg):
- case 20: // reg: ToPointerTy(reg):
- numInstr = 0;
- forwardOperandNum = 0;
- break;
-
- case 33: // reg: Add(reg, reg)
- mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot));
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 34: // reg: Sub(reg, reg)
- mvec[0] = new MachineInstr(ChooseSubInstruction(subtreeRoot));
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 135: // reg: Mul(todouble, todouble)
- checkCast = true;
- // FALL THROUGH
-
- case 35: // reg: Mul(reg, reg)
- mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot, checkCast));
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 36: // reg: Div(reg, reg)
- mvec[0] = new MachineInstr(ChooseDivInstruction(subtreeRoot));
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 37: // reg: Rem(reg, reg)
- assert(0 && "REM instruction unimplemented for the SPARC.");
- break;
-
- case 38: // reg: And(reg, reg)
- mvec[0] = new MachineInstr(AND);
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 138: // reg: And(reg, not)
- mvec[0] = new MachineInstr(ANDN);
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 39: // reg: Or(reg, reg)
- mvec[0] = new MachineInstr(ORN);
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 139: // reg: Or(reg, not)
- mvec[0] = new MachineInstr(ORN);
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 40: // reg: Xor(reg, reg)
- mvec[0] = new MachineInstr(XOR);
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 140: // reg: Xor(reg, not)
- mvec[0] = new MachineInstr(XNOR);
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 41: // boolconst: SetCC(reg, Constant)
- // Check if this is an integer comparison, and
- // there is a parent, and the parent decided to use
- // a branch-on-integer-register instead of branch-on-condition-code.
- // If so, the SUBcc instruction is not required.
- // (However, we must still check for constants to be loaded from
- // the constant pool so that such a load can be associated with
- // this instruction.)
- //
- // Otherwise this is just the same as case 42, so just fall through.
- //
- if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() &&
- subtreeRoot->parent() != NULL)
- {
- InstructionNode* parentNode = (InstructionNode*) subtreeRoot->parent();
- assert(parentNode->getNodeType() == InstrTreeNode::NTInstructionNode);
- const vector<MachineInstr*>&
- minstrVec = parentNode->getInstruction()->getMachineInstrVec();
- MachineOpCode parentOpCode;
- if (parentNode->getInstruction()->getOpcode() == Instruction::Br &&
- (parentOpCode = minstrVec[0]->getOpCode()) >= BRZ &&
- parentOpCode <= BRGEZ)
- {
- numInstr = 0; // don't forward the operand!
- break;
- }
- }
- // ELSE FALL THROUGH
-
- case 42: // bool: SetCC(reg, reg):
- {
- // If result of the SetCC is only used for a branch, we can
- // discard the result. otherwise, it must go into an integer register.
- // Note that the user may or may not be in the same tree, so we have
- // to follow SSA def-use edges here, not BURG tree edges.
- //
- Instruction* result = subtreeRoot->getInstruction();
- Value* firstUse = (Value*) * result->use_begin();
- bool discardResult =
- (result->use_size() == 1
- && firstUse->getValueType() == Value::InstructionVal
- && ((Instruction*) firstUse)->getOpcode() == Instruction::Br);
-
- bool mustClearReg;
- int valueToMove;
- MachineOpCode movOpCode;
-
- if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral())
- {
- // integer condition: destination should be %g0 or integer register
- // if result must be saved but condition is not SetEQ then we need
- // a separate instruction to compute the bool result, so discard
- // result of SUBcc instruction anyway.
- //
- mvec[0] = new MachineInstr(SUBcc);
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target, discardResult);
-
- // mark the 4th operand as being a CC register, and a "result"
- mvec[0]->SetMachineOperand(3, MachineOperand::MO_CCRegister,
- subtreeRoot->getValue(), /*def*/ true);
-
- if (!discardResult)
- { // recompute bool if needed, using the integer condition codes
- if (result->getOpcode() == Instruction::SetNE)
- discardResult = true;
- else
- movOpCode =
- ChooseMovpccAfterSub(subtreeRoot, mustClearReg, valueToMove);
- }
- }
- else
- {
- // FP condition: dest of FCMP should be some FCCn register
- mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot));
- mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
- subtreeRoot->getValue());
- mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
- subtreeRoot->leftChild()->getValue());
- mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
- subtreeRoot->rightChild()->getValue());
-
- if (!discardResult)
- {// recompute bool using the FP condition codes
- mustClearReg = true;
- valueToMove = 1;
- movOpCode = ChooseMovFpccInstruction(subtreeRoot);
- }
- }
-
- if (!discardResult)
- {
- if (mustClearReg)
- {// Unconditionally set register to 0
- int n = numInstr++;
- mvec[n] = new MachineInstr(SETHI);
- mvec[n]->SetMachineOperand(0,MachineOperand::MO_UnextendedImmed,s0);
- mvec[n]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
- subtreeRoot->getValue());
- }
-
- // Now conditionally move `valueToMove' (0 or 1) into the register
- int n = numInstr++;
- mvec[n] = new MachineInstr(movOpCode);
- mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
- subtreeRoot->getValue());
- mvec[n]->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
- valueToMove);
- mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
- subtreeRoot->getValue());
- }
- break;
- }
-
- case 43: // boolreg: VReg
- case 44: // boolreg: Constant
- numInstr = 0;
- break;
-
- case 51: // reg: Load(reg)
- case 52: // reg: Load(ptrreg)
- case 53: // reg: LoadIdx(reg,reg)
- case 54: // reg: LoadIdx(ptrreg,reg)
- mvec[0] = new MachineInstr(ChooseLoadInstruction(subtreeRoot->getValue()->getType()));
- SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 55: // reg: GetElemPtr(reg)
- case 56: // reg: GetElemPtrIdx(reg,reg)
- if (subtreeRoot->parent() != NULL)
- {
- // Check if the parent was an array access.
- // If so, we still need to generate this instruction.
- MemAccessInst* memInst =(MemAccessInst*) subtreeRoot->getInstruction();
- const PointerType* ptrType =
- (const PointerType*) memInst->getPtrOperand()->getType();
- if (! ptrType->getValueType()->isArrayType())
- {// we don't need a separate instr
- numInstr = 0; // don't forward operand!
- break;
- }
- }
- // else in all other cases we need to a separate ADD instruction
- mvec[0] = new MachineInstr(ADD);
- SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 57: // reg: Alloca: Implement as 2 instructions:
- // sub %sp, tmp -> %sp
- { // add %sp, 0 -> result
- Instruction* instr = subtreeRoot->getInstruction();
- const PointerType* instrType = (const PointerType*) instr->getType();
- assert(instrType->isPointerType());
- int tsize = (int) target.findOptimalStorageSize(instrType->getValueType());
- assert(tsize != 0 && "Just to check when this can happen");
- // if (tsize == 0)
- // {
- // numInstr = 0;
- // break;
- // }
- //else go on to create the instructions needed...
-
- // Create a temporary Value to hold the constant type-size
- ConstPoolSInt* valueForTSize = new ConstPoolSInt(Type::IntTy, tsize);
- ConstantPool &cpool = instr->getParent()->getParent()->getConstantPool();
- if (cpool.find(valueForTSize) == 0)
- cpool.insert(valueForTSize);
-
- // Instruction 1: sub %sp, tsize -> %sp
- // tsize is always constant, but it may have to be put into a
- // register if it doesn't fit in the immediate field.
- //
- mvec[0] = new MachineInstr(SUB);
- mvec[0]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
- mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, valueForTSize);
- mvec[0]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
-
- // Instruction 2: add %sp, 0 -> result
- numInstr++;
- mvec[1] = new MachineInstr(ADD);
- mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
- mvec[1]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
- mvec[1]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, instr);
- break;
- }
-
- case 58: // reg: Alloca(reg): Implement as 3 instructions:
- // mul num, typeSz -> tmp
- // sub %sp, tmp -> %sp
- { // add %sp, 0 -> result
- Instruction* instr = subtreeRoot->getInstruction();
- const PointerType* instrType = (const PointerType*) instr->getType();
- assert(instrType->isPointerType() &&
- instrType->getValueType()->isArrayType());
- const Type* eltType =
- ((ArrayType*) instrType->getValueType())->getElementType();
- int tsize = (int) target.findOptimalStorageSize(eltType);
-
- assert(tsize != 0 && "Just to check when this can happen");
- // if (tsize == 0)
- // {
- // numInstr = 0;
- // break;
- // }
- //else go on to create the instructions needed...
-
- // Create a temporary Value to hold the constant type-size
- ConstPoolSInt* valueForTSize = new ConstPoolSInt(Type::IntTy, tsize);
- ConstantPool &cpool = instr->getParent()->getParent()->getConstantPool();
- if (cpool.find(valueForTSize) == 0)
- cpool.insert(valueForTSize);
-
- // Create a temporary value to hold `tmp'
- Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1,
- subtreeRoot->leftChild()->getValue(),
- NULL /*could insert tsize here*/);
- subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr);
-
- // Instruction 1: mul numElements, typeSize -> tmp
- mvec[0] = new MachineInstr(MULX);
- mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
- subtreeRoot->leftChild()->getValue());
- mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, valueForTSize);
- mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,tmpInstr);
-
- tmpInstr->addMachineInstruction(mvec[0]);
-
- // Instruction 2: sub %sp, tmp -> %sp
- numInstr++;
- mvec[1] = new MachineInstr(SUB);
- mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
- mvec[1]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,tmpInstr);
- mvec[1]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
-
- // Instruction 3: add %sp, 0 -> result
- numInstr++;
- mvec[2] = new MachineInstr(ADD);
- mvec[2]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
- mvec[2]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
- mvec[2]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, instr);
- break;
- }
-
- case 61: // reg: Call
- // Generate a call-indirect (i.e., JMPL) for now to expose
- // the potential need for registers. If an absolute address
- // is available, replace this with a CALL instruction.
- // Mark both the indirection register and the return-address
- { // register as hidden virtual registers.
-
- Instruction* jmpAddrReg = new TmpInstruction(Instruction::UserOp1,
- ((CallInst*) subtreeRoot->getInstruction())->getCalledMethod(), NULL);
- Instruction* retAddrReg = new TmpInstruction(Instruction::UserOp1,
- subtreeRoot->getValue(), NULL);
- subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(jmpAddrReg);
- subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(retAddrReg);
-
- mvec[0] = new MachineInstr(JMPL);
- mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, jmpAddrReg);
- mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
- (int64_t) 0);
- mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, retAddrReg);
-
- // NOTE: jmpAddrReg will be loaded by a different instruction generated
- // by the final code generator, so we just mark the CALL instruction
- // as computing that value.
- // The retAddrReg is actually computed by the CALL instruction.
- //
- jmpAddrReg->addMachineInstruction(mvec[0]);
- retAddrReg->addMachineInstruction(mvec[0]);
-
- mvec[numInstr++] = new MachineInstr(NOP); // delay slot
- break;
- }
-
- case 62: // reg: Shl(reg, reg)
- opType = subtreeRoot->leftChild()->getValue()->getType();
- assert(opType->isIntegral() || opType == Type::BoolTy);
- mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL);
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 63: // reg: Shr(reg, reg)
- opType = subtreeRoot->leftChild()->getValue()->getType();
- assert(opType->isIntegral() || opType == Type::BoolTy);
- mvec[0] = new MachineInstr((opType->isSigned()
- ? ((opType == Type::LongTy)? SRAX : SRA)
- : ((opType == Type::LongTy)? SRLX : SRL)));
- Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
- break;
-
- case 64: // reg: Phi(reg,reg)
- { // This instruction has variable #operands, so resultPos is 0.
- Instruction* phi = subtreeRoot->getInstruction();
- mvec[0] = new MachineInstr(PHI, 1 + phi->getNumOperands());
- mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
- subtreeRoot->getValue(), true);
- for (unsigned i=0, N=phi->getNumOperands(); i < N; i++)
- mvec[0]->SetMachineOperand(i+1, MachineOperand::MO_VirtualRegister,
- phi->getOperand(i));
- break;
- }
- case 71: // reg: VReg
- case 72: // reg: Constant
- numInstr = 0; // don't forward the value
- break;
-
- case 111: // stmt: reg
- case 112: // stmt: boolconst
- case 113: // stmt: bool
- case 121:
- case 122:
- case 123:
- case 124:
- case 125:
- case 126:
- case 127:
- case 128:
- case 129:
- case 130:
- case 131:
- case 132:
- case 153:
- case 155:
- //
- // These are all chain rules, which have a single nonterminal on the RHS.
- // Get the rule that matches the RHS non-terminal and use that instead.
- //
- assert(ThisIsAChainRule(ruleForNode));
- assert(nts[0] && ! nts[1]
- && "A chain rule should have only one RHS non-terminal!");
- nextRule = burm_rule(subtreeRoot->getBasicNode()->state, nts[0]);
- nts = burm_nts[nextRule];
- numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,target,mvec);
- break;
-
- default:
- assert(0 && "Unrecognized BURG rule");
- numInstr = 0;
- break;
- }
-
- if (forwardOperandNum >= 0)
- { // We did not generate a machine instruction but need to use operand.
- // If user is in the same tree, replace Value in its machine operand.
- // If not, insert a copy instruction which should get coalesced away
- // by register allocation.
- if (subtreeRoot->parent() != NULL)
- ForwardOperand(subtreeRoot, (InstructionNode*) subtreeRoot->parent(),
- forwardOperandNum);
- else
- {
- int n = numInstr++;
- mvec[n] = new MachineInstr(ADD);
- mvec[n]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
- subtreeRoot->getInstruction()->getOperand(forwardOperandNum));
- mvec[n]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
- mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
- subtreeRoot->getInstruction());
- }
- }
-
- if (! ThisIsAChainRule(ruleForNode))
- numInstr = FixConstantOperands(subtreeRoot, mvec, numInstr, target);
-
- return numInstr;
-}
-
-
-//---------------------------------------------------------------------------
-// Private helper routines for SPARC instruction selection.
-//---------------------------------------------------------------------------
-
-
-static MachineOpCode
-ChooseBprInstruction(const InstructionNode* instrNode)
-{
- MachineOpCode opCode;
-
- Instruction* setCCInstr =
- ((InstructionNode*) instrNode->leftChild())->getInstruction();
-
- switch(setCCInstr->getOpcode())
- {
- case Instruction::SetEQ: opCode = BRZ; break;
- case Instruction::SetNE: opCode = BRNZ; break;
- case Instruction::SetLE: opCode = BRLEZ; break;
- case Instruction::SetGE: opCode = BRGEZ; break;
- case Instruction::SetLT: opCode = BRLZ; break;
- case Instruction::SetGT: opCode = BRGZ; break;
- default:
- assert(0 && "Unrecognized VM instruction!");
- opCode = INVALID_OPCODE;
- break;
- }
-
- return opCode;
-}
-
-
-static MachineOpCode
-ChooseBccInstruction(const InstructionNode* instrNode,
- bool& isFPBranch)
-{
- InstructionNode* setCCNode = (InstructionNode*) instrNode->leftChild();
- BinaryOperator* setCCInstr = (BinaryOperator*) setCCNode->getInstruction();
- const Type* setCCType = setCCInstr->getOperand(0)->getType();
-
- isFPBranch = (setCCType == Type::FloatTy || setCCType == Type::DoubleTy);
-
- if (isFPBranch)
- return ChooseBFpccInstruction(instrNode, setCCInstr);
- else
- return ChooseBpccInstruction(instrNode, setCCInstr);
-}
-
-
-static MachineOpCode
-ChooseBpccInstruction(const InstructionNode* instrNode,
- const BinaryOperator* setCCInstr)
-{
- MachineOpCode opCode = INVALID_OPCODE;
-
- bool isSigned = setCCInstr->getOperand(0)->getType()->isSigned();
-
- if (isSigned)
- {
- switch(setCCInstr->getOpcode())
- {
- case Instruction::SetEQ: opCode = BE; break;
- case Instruction::SetNE: opCode = BNE; break;
- case Instruction::SetLE: opCode = BLE; break;
- case Instruction::SetGE: opCode = BGE; break;
- case Instruction::SetLT: opCode = BL; break;
- case Instruction::SetGT: opCode = BG; break;
- default:
- assert(0 && "Unrecognized VM instruction!");
- break;
- }
- }
- else
- {
- switch(setCCInstr->getOpcode())
- {
- case Instruction::SetEQ: opCode = BE; break;
- case Instruction::SetNE: opCode = BNE; break;
- case Instruction::SetLE: opCode = BLEU; break;
- case Instruction::SetGE: opCode = BCC; break;
- case Instruction::SetLT: opCode = BCS; break;
- case Instruction::SetGT: opCode = BGU; break;
- default:
- assert(0 && "Unrecognized VM instruction!");
- break;
- }
+ switch(setCCInstr->getOpcode())
+ {
+ case Instruction::SetEQ: opCode = BE; break;
+ case Instruction::SetNE: opCode = BNE; break;
+ case Instruction::SetLE: opCode = BLEU; break;
+ case Instruction::SetGE: opCode = BCC; break;
+ case Instruction::SetLT: opCode = BCS; break;
+ case Instruction::SetGT: opCode = BGU; break;
+ default:
+ assert(0 && "Unrecognized VM instruction!");
+ break;
+ }
}
return opCode;
}
-static MachineOpCode
+static inline MachineOpCode
ChooseBFpccInstruction(const InstructionNode* instrNode,
const BinaryOperator* setCCInstr)
{
}
-static MachineOpCode
+static inline MachineOpCode
ChooseMovFpccInstruction(const InstructionNode* instrNode)
{
MachineOpCode opCode = INVALID_OPCODE;
}
-static MachineOpCode
+static inline MachineOpCode
ChooseConvertToFloatInstr(const InstructionNode* instrNode,
const Type* opType)
{
return opCode;
}
-static MachineOpCode
+static inline MachineOpCode
ChooseConvertToIntInstr(const InstructionNode* instrNode,
const Type* opType)
{
}
-static MachineOpCode
+static inline MachineOpCode
ChooseAddInstruction(const InstructionNode* instrNode)
{
MachineOpCode opCode = INVALID_OPCODE;
return opCode;
}
-static MachineOpCode
+
+static inline MachineInstr*
+CreateMovFloatInstruction(const InstructionNode* instrNode,
+ const Type* resultType)
+{
+ MachineInstr* minstr = new MachineInstr((resultType == Type::FloatTy)
+ ? FMOVS : FMOVD);
+ minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ instrNode->leftChild()->getValue());
+ minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
+ instrNode->getValue());
+ return minstr;
+}
+
+static inline MachineInstr*
+CreateAddConstInstruction(const InstructionNode* instrNode)
+{
+ MachineInstr* minstr = NULL;
+
+ Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
+ assert(constOp->getValueType() == Value::ConstantVal);
+
+ // Cases worth optimizing are:
+ // (1) Add with 0 for float or double: use an FMOV of appropriate type,
+ // instead of an FADD (1 vs 3 cycles). There is no integer MOV.
+ //
+ const Type* resultType = instrNode->getInstruction()->getType();
+
+ if (resultType == Type::FloatTy ||
+ resultType == Type::DoubleTy)
+ {
+ double dval = ((ConstPoolFP*) constOp)->getValue();
+ if (dval == 0.0)
+ minstr = CreateMovFloatInstruction(instrNode, resultType);
+ }
+
+ return minstr;
+}
+
+
+static inline MachineOpCode
ChooseSubInstruction(const InstructionNode* instrNode)
{
MachineOpCode opCode = INVALID_OPCODE;
}
}
- return opCode;
-}
-
-
-static MachineOpCode
-ChooseFcmpInstruction(const InstructionNode* instrNode)
-{
- MachineOpCode opCode = INVALID_OPCODE;
-
- Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
- switch(operand->getType()->getPrimitiveID())
- {
- case Type::FloatTyID: opCode = FCMPS; break;
- case Type::DoubleTyID: opCode = FCMPD; break;
- default: assert(0 && "Invalid type for ADD instruction"); break;
- }
+ return opCode;
+}
+
+
+static inline MachineInstr*
+CreateSubConstInstruction(const InstructionNode* instrNode)
+{
+ MachineInstr* minstr = NULL;
+
+ Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
+ assert(constOp->getValueType() == Value::ConstantVal);
+
+ // Cases worth optimizing are:
+ // (1) Sub with 0 for float or double: use an FMOV of appropriate type,
+ // instead of an FSUB (1 vs 3 cycles). There is no integer MOV.
+ //
+ const Type* resultType = instrNode->getInstruction()->getType();
+
+ if (resultType == Type::FloatTy ||
+ resultType == Type::DoubleTy)
+ {
+ double dval = ((ConstPoolFP*) constOp)->getValue();
+ if (dval == 0.0)
+ minstr = CreateMovFloatInstruction(instrNode, resultType);
+ }
+
+ return minstr;
+}
+
+
+static inline MachineOpCode
+ChooseFcmpInstruction(const InstructionNode* instrNode)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
+ switch(operand->getType()->getPrimitiveID())
+ {
+ case Type::FloatTyID: opCode = FCMPS; break;
+ case Type::DoubleTyID: opCode = FCMPD; break;
+ default: assert(0 && "Invalid type for FCMP instruction"); break;
+ }
+
+ return opCode;
+}
+
+
+// Assumes that leftArg and rightArg are both cast instructions.
+//
+static inline bool
+BothFloatToDouble(const InstructionNode* instrNode)
+{
+ InstrTreeNode* leftArg = instrNode->leftChild();
+ InstrTreeNode* rightArg = instrNode->rightChild();
+ InstrTreeNode* leftArgArg = leftArg->leftChild();
+ InstrTreeNode* rightArgArg = rightArg->leftChild();
+ assert(leftArg->getValue()->getType() == rightArg->getValue()->getType());
+
+ // Check if both arguments are floats cast to double
+ return (leftArg->getValue()->getType() == Type::DoubleTy &&
+ leftArgArg->getValue()->getType() == Type::FloatTy &&
+ rightArgArg->getValue()->getType() == Type::FloatTy);
+}
+
+
+static inline MachineOpCode
+ChooseMulInstruction(const InstructionNode* instrNode,
+ bool checkCasts)
+{
+ MachineOpCode opCode = INVALID_OPCODE;
+
+ if (checkCasts && BothFloatToDouble(instrNode))
+ {
+ return opCode = FSMULD;
+ }
+ // else fall through and use the regular multiply instructions
+
+ const Type* resultType = instrNode->getInstruction()->getType();
+
+ if (resultType->isIntegral())
+ {
+ opCode = MULX;
+ }
+ else
+ {
+ switch(instrNode->leftChild()->getValue()->getType()->getPrimitiveID())
+ {
+ case Type::FloatTyID: opCode = FMULS; break;
+ case Type::DoubleTyID: opCode = FMULD; break;
+ default: assert(0 && "Invalid type for MUL instruction"); break;
+ }
+ }
+
+ return opCode;
+}
+
+
+static inline MachineInstr*
+CreateIntNegInstruction(Value* vreg)
+{
+ MachineInstr* minstr = new MachineInstr(SUB);
+ minstr->SetMachineOperand(0, /*regNum %g0*/(unsigned int) 0);
+ minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, vreg);
+ minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, vreg);
+ return minstr;
+}
+
+
+static inline MachineInstr*
+CreateMulConstInstruction(const InstructionNode* instrNode,
+ MachineInstr*& getMinstr2)
+{
+ MachineInstr* minstr = NULL;
+ getMinstr2 = NULL;
+ bool needNeg = false;
+
+ Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
+ assert(constOp->getValueType() == Value::ConstantVal);
+
+ // Cases worth optimizing are:
+ // (1) Multiply by 0 or 1 for any type: replace with copy (ADD or FMOV)
+ // (2) Multiply by 2^x for integer types: replace with Shift
+ //
+ const Type* resultType = instrNode->getInstruction()->getType();
+
+ if (resultType->isIntegral())
+ {
+ unsigned pow;
+ bool isValidConst;
+ int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
+ if (isValidConst)
+ {
+ bool needNeg = false;
+ if (C < 0)
+ {
+ needNeg = true;
+ C = -C;
+ }
+
+ if (C == 0 || C == 1)
+ {
+ minstr = new MachineInstr(ADD);
+
+ if (C == 0)
+ minstr->SetMachineOperand(0, /*regNum %g0*/ (unsigned int) 0);
+ else
+ minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
+ instrNode->leftChild()->getValue());
+ minstr->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+ }
+ else if (IsPowerOf2(C, pow))
+ {
+ minstr = new MachineInstr((resultType == Type::LongTy)
+ ? SLLX : SLL);
+ minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ instrNode->leftChild()->getValue());
+ minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
+ pow);
+ }
+
+ if (minstr && needNeg)
+ { // insert <reg = SUB 0, reg> after the instr to flip the sign
+ getMinstr2 = CreateIntNegInstruction(instrNode->getValue());
+ }
+ }
+ }
+ else
+ {
+ if (resultType == Type::FloatTy ||
+ resultType == Type::DoubleTy)
+ {
+ bool isValidConst;
+ double dval = ((ConstPoolFP*) constOp)->getValue();
+
+ if (isValidConst)
+ {
+ if (dval == 0)
+ {
+ minstr = new MachineInstr((resultType == Type::FloatTy)
+ ? FITOS : FITOD);
+ minstr->SetMachineOperand(0, /*regNum %g0*/(unsigned int) 0);
+ }
+ else if (fabs(dval) == 1)
+ {
+ bool needNeg = (dval < 0);
+
+ MachineOpCode opCode = needNeg
+ ? (resultType == Type::FloatTy? FNEGS : FNEGD)
+ : (resultType == Type::FloatTy? FMOVS : FMOVD);
+
+ minstr = new MachineInstr(opCode);
+ minstr->SetMachineOperand(0,
+ MachineOperand::MO_VirtualRegister,
+ instrNode->leftChild()->getValue());
+ }
+ }
+ }
+ }
+
+ if (minstr != NULL)
+ minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+ instrNode->getValue());
- return opCode;
+ return minstr;
}
-static MachineOpCode
-ChooseMulInstruction(const InstructionNode* instrNode,
- bool checkCasts)
+static inline MachineOpCode
+ChooseDivInstruction(const InstructionNode* instrNode)
{
MachineOpCode opCode = INVALID_OPCODE;
- if (checkCasts)
- {
- // Assume that leftArg and rightArg are both cast instructions.
- //
- InstrTreeNode* leftArg = instrNode->leftChild();
- InstrTreeNode* rightArg = instrNode->rightChild();
- InstrTreeNode* leftArgArg = leftArg->leftChild();
- InstrTreeNode* rightArgArg = rightArg->leftChild();
- assert(leftArg->getValue()->getType() ==rightArg->getValue()->getType());
-
- // If both arguments are floats cast to double, use FsMULd
- if (leftArg->getValue()->getType() == Type::DoubleTy &&
- leftArgArg->getValue()->getType() == Type::FloatTy &&
- rightArgArg->getValue()->getType() == Type::FloatTy)
- {
- return opCode = FSMULD;
- }
- // else fall through and use the regular multiply instructions
- }
-
const Type* resultType = instrNode->getInstruction()->getType();
if (resultType->isIntegral())
{
- opCode = MULX;
+ opCode = resultType->isSigned()? SDIVX : UDIVX;
}
else
{
- switch(instrNode->leftChild()->getValue()->getType()->getPrimitiveID())
+ Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
+ switch(operand->getType()->getPrimitiveID())
{
- case Type::FloatTyID: opCode = FMULS; break;
- case Type::DoubleTyID: opCode = FMULD; break;
- default: assert(0 && "Invalid type for MUL instruction"); break;
+ case Type::FloatTyID: opCode = FDIVS; break;
+ case Type::DoubleTyID: opCode = FDIVD; break;
+ default: assert(0 && "Invalid type for DIV instruction"); break;
}
}
}
-static MachineOpCode
-ChooseDivInstruction(const InstructionNode* instrNode)
+static inline MachineInstr*
+CreateDivConstInstruction(const InstructionNode* instrNode,
+ MachineInstr*& getMinstr2)
{
- MachineOpCode opCode = INVALID_OPCODE;
+ MachineInstr* minstr = NULL;
+ getMinstr2 = NULL;
+ Value* constOp = ((InstrTreeNode*) instrNode->rightChild())->getValue();
+ assert(constOp->getValueType() == Value::ConstantVal);
+
+ // Cases worth optimizing are:
+ // (1) Divide by 1 for any type: replace with copy (ADD or FMOV)
+ // (2) Divide by 2^x for integer types: replace with SR[L or A]{X}
+ //
const Type* resultType = instrNode->getInstruction()->getType();
if (resultType->isIntegral())
{
- opCode = resultType->isSigned()? SDIVX : UDIVX;
+ unsigned pow;
+ bool isValidConst;
+ int64_t C = GetConstantValueAsSignedInt(constOp, isValidConst);
+ if (isValidConst)
+ {
+ bool needNeg = false;
+ if (C < 0)
+ {
+ needNeg = true;
+ C = -C;
+ }
+
+ if (C == 1)
+ {
+ minstr = new MachineInstr(ADD);
+ minstr->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
+ instrNode->leftChild()->getValue());
+ minstr->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+ }
+ else if (IsPowerOf2(C, pow))
+ {
+ MachineOpCode opCode= ((resultType->isSigned())
+ ? (resultType==Type::LongTy)? SRAX : SRA
+ : (resultType==Type::LongTy)? SRLX : SRL);
+ minstr = new MachineInstr(opCode);
+ minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ instrNode->leftChild()->getValue());
+ minstr->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
+ pow);
+ }
+
+ if (minstr && needNeg)
+ { // insert <reg = SUB 0, reg> after the instr to flip the sign
+ getMinstr2 = CreateIntNegInstruction(instrNode->getValue());
+ }
+ }
}
else
{
- Value* operand = ((InstrTreeNode*) instrNode->leftChild())->getValue();
- switch(operand->getType()->getPrimitiveID())
+ if (resultType == Type::FloatTy ||
+ resultType == Type::DoubleTy)
{
- case Type::FloatTyID: opCode = FDIVS; break;
- case Type::DoubleTyID: opCode = FDIVD; break;
- default: assert(0 && "Invalid type for DIV instruction"); break;
+ bool isValidConst;
+ double dval = ((ConstPoolFP*) constOp)->getValue();
+
+ if (isValidConst && fabs(dval) == 1)
+ {
+ bool needNeg = (dval < 0);
+
+ MachineOpCode opCode = needNeg
+ ? (resultType == Type::FloatTy? FNEGS : FNEGD)
+ : (resultType == Type::FloatTy? FMOVS : FMOVD);
+
+ minstr = new MachineInstr(opCode);
+ minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ instrNode->leftChild()->getValue());
+ }
}
}
- return opCode;
+ if (minstr != NULL)
+ minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+ instrNode->getValue());
+
+ return minstr;
}
-static MachineOpCode
+static inline MachineOpCode
ChooseLoadInstruction(const Type* resultType)
{
MachineOpCode opCode = INVALID_OPCODE;
}
-static MachineOpCode
+static inline MachineOpCode
ChooseStoreInstruction(const Type* valueType)
{
MachineOpCode opCode = INVALID_OPCODE;
? vmInstrNode->rightChild()
: vmInstrNode->leftChild());
- if (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
- ptrChild->getOpLabel() == GetElemPtrIdx)
+ if (ptrChild->getOpLabel() == Instruction::GetElementPtr ||
+ ptrChild->getOpLabel() == GetElemPtrIdx)
+ {
+ // There is a GetElemPtr instruction and there may be a chain of
+ // more than one. Use the pointer value of the last one in the chain.
+ // Fold the index vectors from the entire chain and from the mem
+ // instruction into one single index vector.
+ // Finally, we never fold for an array instruction so make that NULL.
+
+ newIdxVec = new vector<ConstPoolVal*>;
+ ptrVal = FoldGetElemChain((InstructionNode*) ptrChild, *newIdxVec);
+
+ newIdxVec->insert(newIdxVec->end(), idxVec->begin(), idxVec->end());
+ idxVec = newIdxVec;
+
+ assert(! ((PointerType*)ptrVal->getType())->getValueType()->isArrayType()
+ && "GetElemPtr cannot be folded into array refs in selection");
+ }
+ else
+ {
+ // There is no GetElemPtr instruction.
+ // Use the pointer value and the index vector from the Mem instruction.
+ // If it is an array reference, get the array offset value.
+ //
+ ptrVal = memInst->getPtrOperand();
+
+ const Type* opType =
+ ((const PointerType*) ptrVal->getType())->getValueType();
+ if (opType->isArrayType())
+ {
+ assert((memInst->getNumOperands()
+ == (unsigned) 1 + memInst->getFirstOffsetIdx())
+ && "Array refs must be lowered before Instruction Selection");
+
+ arrayOffsetVal = memInst->getOperand(memInst->getFirstOffsetIdx());
+ }
+ }
+
+ SetMemOperands_Internal(minstr, vmInstrNode, ptrVal, arrayOffsetVal,
+ *idxVec, target);
+
+ if (newIdxVec != NULL)
+ delete newIdxVec;
+}
+
+
+static void
+SetMemOperands_Internal(MachineInstr* minstr,
+ const InstructionNode* vmInstrNode,
+ Value* ptrVal,
+ Value* arrayOffsetVal,
+ const vector<ConstPoolVal*>& idxVec,
+ const TargetMachine& target)
+{
+ MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
+
+ // Initialize so we default to storing the offset in a register.
+ int64_t smallConstOffset;
+ Value* valueForRegOffset = NULL;
+ MachineOperand::MachineOperandType offsetOpType =MachineOperand::MO_VirtualRegister;
+
+ // Check if there is an index vector and if so, if it translates to
+ // a small enough constant to fit in the immediate-offset field.
+ //
+ if (idxVec.size() > 0)
+ {
+ bool isConstantOffset = false;
+ unsigned offset;
+
+ const PointerType* ptrType = (PointerType*) ptrVal->getType();
+
+ if (ptrType->getValueType()->isStructType())
+ {
+ // the offset is always constant for structs
+ isConstantOffset = true;
+
+ // Compute the offset value using the index vector
+ offset = target.DataLayout.getIndexedOffset(ptrType, idxVec);
+ }
+ else
+ {
+ // It must be an array ref. Check if the offset is a constant,
+ // and that the indexing has been lowered to a single offset.
+ //
+ assert(ptrType->getValueType()->isArrayType());
+ assert(arrayOffsetVal != NULL
+ && "Expect to be given Value* for array offsets");
+
+ if (ConstPoolVal *CPV = arrayOffsetVal->castConstant())
+ {
+ isConstantOffset = true; // always constant for structs
+ assert(arrayOffsetVal->getType()->isIntegral());
+ offset = (CPV->getType()->isSigned()
+ ? ((ConstPoolSInt*)CPV)->getValue()
+ : (int64_t) ((ConstPoolUInt*)CPV)->getValue());
+ }
+ else
+ {
+ valueForRegOffset = arrayOffsetVal;
+ }
+ }
+
+ if (isConstantOffset)
+ {
+ // create a virtual register for the constant
+ valueForRegOffset = new ConstPoolSInt(Type::IntTy, offset);
+ }
+ }
+ else
+ {
+ offsetOpType = MachineOperand::MO_SignExtendedImmed;
+ smallConstOffset = 0;
+ }
+
+ // Operand 0 is value for STORE, ptr for LOAD or GET_ELEMENT_PTR
+ // It is the left child in the instruction tree in all cases.
+ Value* leftVal = vmInstrNode->leftChild()->getValue();
+ minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, leftVal);
+
+ // Operand 1 is ptr for STORE, offset for LOAD or GET_ELEMENT_PTR
+ // Operand 3 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR
+ //
+ unsigned offsetOpNum = (memInst->getOpcode() == Instruction::Store)? 2 : 1;
+ if (offsetOpType == MachineOperand::MO_VirtualRegister)
+ {
+ assert(valueForRegOffset != NULL);
+ minstr->SetMachineOperand(offsetOpNum, offsetOpType, valueForRegOffset);
+ }
+ else
+ minstr->SetMachineOperand(offsetOpNum, offsetOpType, smallConstOffset);
+
+ if (memInst->getOpcode() == Instruction::Store)
+ minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, ptrVal);
+ else
+ minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+ vmInstrNode->getValue());
+}
+
+
+// Special handling for constant operands:
+// -- if the constant is 0, use the hardwired 0 register, if any;
+// -- if the constant is of float or double type but has an integer value,
+// use int-to-float conversion instruction instead of generating a load;
+// -- if the constant fits in the IMMEDIATE field, use that field;
+// -- else insert instructions to put the constant into a register, either
+// directly or by loading explicitly from the constant pool.
+//
+static unsigned
+FixConstantOperands(const InstructionNode* vmInstrNode,
+ MachineInstr** mvec,
+ unsigned numInstr,
+ TargetMachine& target)
+{
+ static MachineInstr* loadConstVec[MAX_INSTR_PER_VMINSTR];
+
+ unsigned numNew = 0;
+ Instruction* vmInstr = vmInstrNode->getInstruction();
+
+ for (unsigned i=0; i < numInstr; i++)
+ {
+ MachineInstr* minstr = mvec[i];
+ const MachineInstrDescriptor& instrDesc =
+ target.getInstrInfo().getDescriptor(minstr->getOpCode());
+
+ for (unsigned op=0; op < minstr->getNumOperands(); op++)
+ {
+ const MachineOperand& mop = minstr->getOperand(op);
+
+ // skip the result position (for efficiency below) and any other
+ // positions already marked as not a virtual register
+ if (instrDesc.resultPos == (int) op ||
+ mop.getOperandType() != MachineOperand::MO_VirtualRegister ||
+ mop.getVRegValue() == NULL)
+ {
+ break;
+ }
+
+ Value* opValue = mop.getVRegValue();
+
+ if (opValue->getValueType() == Value::ConstantVal)
+ {
+ unsigned int machineRegNum;
+ int64_t immedValue;
+ MachineOperand::MachineOperandType opType =
+ ChooseRegOrImmed(opValue, minstr->getOpCode(), target,
+ /*canUseImmed*/ (op == 1),
+ machineRegNum, immedValue);
+
+ if (opType == MachineOperand::MO_MachineRegister)
+ minstr->SetMachineOperand(op, machineRegNum);
+ else if (opType == MachineOperand::MO_VirtualRegister)
+ {
+ // value is constant and must be loaded into a register
+ TmpInstruction* tmpReg;
+ MachineInstr* minstr2;
+ loadConstVec[numNew++] = MakeLoadConstInstr(vmInstr, opValue,
+ tmpReg, minstr2);
+ minstr->SetMachineOperand(op, opType, tmpReg);
+ if (minstr2 != NULL)
+ loadConstVec[numNew++] = minstr2;
+ }
+ else
+ minstr->SetMachineOperand(op, opType, immedValue);
+ }
+ }
+ }
+
+ if (numNew > 0)
{
- // There is a GetElemPtr instruction and there may be a chain of
- // more than one. Use the pointer value of the last one in the chain.
- // Fold the index vectors from the entire chain and from the mem
- // instruction into one single index vector.
- // Finally, we never fold for an array instruction so make that NULL.
-
- newIdxVec = new vector<ConstPoolVal*>;
- ptrVal = FoldGetElemChain((InstructionNode*) ptrChild, *newIdxVec);
-
- newIdxVec->insert(newIdxVec->end(), idxVec->begin(), idxVec->end());
- idxVec = newIdxVec;
+ // Insert the new instructions *before* the old ones by moving
+ // the old ones over `numNew' positions (last-to-first, of course!).
+ // We do check *after* returning that we did not exceed the vector mvec.
+ for (int i=numInstr-1; i >= 0; i--)
+ mvec[i+numNew] = mvec[i];
- assert(! ((PointerType*)ptrVal->getType())->getValueType()->isArrayType()
- && "GetElemPtr cannot be folded into array refs in selection");
+ for (unsigned i=0; i < numNew; i++)
+ mvec[i] = loadConstVec[i];
+ }
+
+ return (numInstr + numNew);
+}
+
+
+static inline MachineInstr*
+MakeIntSetInstruction(int64_t C, bool isSigned, Value* dest)
+{
+ MachineInstr* minstr;
+ if (isSigned)
+ {
+ minstr = new MachineInstr(SETSW);
+ minstr->SetMachineOperand(0, MachineOperand::MO_SignExtendedImmed, C);
}
else
{
- // There is no GetElemPtr instruction.
- // Use the pointer value and the index vector from the Mem instruction.
- // If it is an array reference, get the array offset value.
- //
- ptrVal = memInst->getPtrOperand();
-
- const Type* opType =
- ((const PointerType*) ptrVal->getType())->getValueType();
- if (opType->isArrayType())
- {
- assert((memInst->getNumOperands()
- == (unsigned) 1 + memInst->getFirstOffsetIdx())
- && "Array refs must be lowered before Instruction Selection");
-
- arrayOffsetVal = memInst->getOperand(memInst->getFirstOffsetIdx());
- }
+ minstr = new MachineInstr(SETUW);
+ minstr->SetMachineOperand(0, MachineOperand::MO_UnextendedImmed, C);
}
- SetMemOperands_Internal(minstr, vmInstrNode, ptrVal, arrayOffsetVal,
- *idxVec, target);
+ minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, dest);
- if (newIdxVec != NULL)
- delete newIdxVec;
+ return minstr;
}
-static void
-SetMemOperands_Internal(MachineInstr* minstr,
- const InstructionNode* vmInstrNode,
- Value* ptrVal,
- Value* arrayOffsetVal,
- const vector<ConstPoolVal*>& idxVec,
- const TargetMachine& target)
+static MachineInstr*
+MakeLoadConstInstr(Instruction* vmInstr,
+ Value* val,
+ TmpInstruction*& tmpReg,
+ MachineInstr*& getMinstr2)
{
- MemAccessInst* memInst = (MemAccessInst*) vmInstrNode->getInstruction();
+ assert(val->getValueType() == Value::ConstantVal);
- // Initialize so we default to storing the offset in a register.
- int64_t smallConstOffset;
- Value* valueForRegOffset = NULL;
- MachineOperand::MachineOperandType offsetOpType =MachineOperand::MO_VirtualRegister;
-
- // Check if there is an index vector and if so, if it translates to
- // a small enough constant to fit in the immediate-offset field.
+ MachineInstr* minstr;
+
+ getMinstr2 = NULL;
+
+ // Create a TmpInstruction to mark the hidden register used for the constant
+ tmpReg = new TmpInstruction(Instruction::UserOp1, val, NULL);
+ vmInstr->getMachineInstrVec().addTempValue(tmpReg);
+
+ // Use a "set" instruction for known constants that can go in an integer reg.
+ // Use a "set" instruction followed by a int-to-float conversion for known
+ // constants that must go in a floating point reg but have an integer value.
+ // Use a "load" instruction for all other constants, in particular,
+ // floating point constants.
//
- if (idxVec.size() > 0)
+ const Type* valType = val->getType();
+
+ if (valType->isIntegral() ||
+ valType->isPointerType() ||
+ valType == Type::BoolTy)
{
- bool isConstantOffset = false;
- unsigned offset;
-
- const PointerType* ptrType = (PointerType*) ptrVal->getType();
+ bool isValidConstant;
+ int64_t C = GetConstantValueAsSignedInt(val, isValidConstant);
+ assert(isValidConstant && "Unrecognized constant");
- if (ptrType->getValueType()->isStructType())
- {
- // the offset is always constant for structs
- isConstantOffset = true;
-
- // Compute the offset value using the index vector
- offset = target.DataLayout.getIndexedOffset(ptrType, idxVec);
- }
- else
+ minstr = MakeIntSetInstruction(C, valType->isSigned(), tmpReg);
+ }
+ else
+ {
+ assert(valType == Type::FloatTy || valType == Type::DoubleTy);
+ double dval = ((ConstPoolFP*) val)->getValue();
+ if (dval == (int64_t) dval)
{
- // It must be an array ref. Check if the offset is a constant,
- // and that the indexing has been lowered to a single offset.
+ // The constant actually has an integer value, so use a
+ // [set; int-to-float] sequence instead of a load instruction.
//
- assert(ptrType->getValueType()->isArrayType());
- assert(arrayOffsetVal != NULL
- && "Expect to be given Value* for array offsets");
+ TmpInstruction* tmpReg2 = NULL;
+ if (dval != 0.0)
+ { // First, create an integer constant of the same value as dval
+ ConstPoolSInt* ival = new ConstPoolSInt(Type::IntTy,
+ (int64_t) dval);
+ ConstantPool& cpool =
+ vmInstr->getParent()->getParent()->getConstantPool();
+ ConstPoolVal* prev = cpool.find(ival);
+ if (prev == NULL)
+ cpool.insert(ival);
+ else
+ {
+ delete ival;
+ ival = (ConstPoolSInt*) prev;
+ }
+
+ // Create another TmpInstruction for the hidden integer register
+ TmpInstruction* tmpReg2 =
+ new TmpInstruction(Instruction::UserOp1, ival, NULL);
+ vmInstr->getMachineInstrVec().addTempValue(tmpReg2);
- if (ConstPoolVal *CPV = arrayOffsetVal->castConstant()) {
- isConstantOffset = true; // always constant for structs
- assert(arrayOffsetVal->getType()->isIntegral());
- offset = (CPV->getType()->isSigned())
- ? ((ConstPoolSInt*)CPV)->getValue()
- : (int64_t) ((ConstPoolUInt*)CPV)->getValue();
+ // Create the `SET' instruction
+ minstr = MakeIntSetInstruction((int64_t)dval, true, tmpReg2);
}
+
+ // In which variable do we put the second instruction?
+ MachineInstr*& instr2 = (minstr)? getMinstr2 : minstr;
+
+ // Create the int-to-float instruction
+ instr2 = new MachineInstr(valType == Type::FloatTy? FITOS : FITOD);
+
+ if (dval == 0.0)
+ instr2->SetMachineOperand(0, /*regNum %g0*/ (unsigned int) 0);
else
- {
- valueForRegOffset = arrayOffsetVal;
- }
+ instr2->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,
+ tmpReg2);
+
+ instr2->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
+ tmpReg);
}
-
- if (isConstantOffset)
+ else
{
- // create a virtual register for the constant
- valueForRegOffset = new ConstPoolSInt(Type::IntTy, offset);
+ // Make a Load instruction, and make `val' both the ptr value *and*
+ // the result value, and set the offset field to 0. Final code
+ // generation will have to generate the base+offset for the constant.
+ //
+ int64_t zeroOffset = 0; // to avoid ambiguity with (Value*) 0
+ minstr = new MachineInstr(ChooseLoadInstruction(val->getType()));
+ minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,val);
+ minstr->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
+ zeroOffset);
+ minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+ tmpReg);
}
}
- else
+
+ tmpReg->addMachineInstruction(minstr);
+
+ assert(minstr);
+ return minstr;
+}
+
+//
+// Substitute operand `operandNum' of the instruction in node `treeNode'
+// in place the use(s) of that instruction in node `parent'.
+//
+static void
+ForwardOperand(InstructionNode* treeNode,
+ InstructionNode* parent,
+ int operandNum)
+{
+ Instruction* unusedOp = treeNode->getInstruction();
+ Value* fwdOp = unusedOp->getOperand(operandNum);
+ Instruction* userInstr = parent->getInstruction();
+ MachineCodeForVMInstr& mvec = userInstr->getMachineInstrVec();
+ for (unsigned i=0, N=mvec.size(); i < N; i++)
{
- offsetOpType = MachineOperand::MO_SignExtendedImmed;
- smallConstOffset = 0;
+ MachineInstr* minstr = mvec[i];
+ for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; i++)
+ {
+ const MachineOperand& mop = minstr->getOperand(i);
+ if (mop.getOperandType() == MachineOperand::MO_VirtualRegister &&
+ mop.getVRegValue() == unusedOp)
+ {
+ minstr->SetMachineOperand(i, MachineOperand::MO_VirtualRegister,
+ fwdOp);
+ }
+ }
}
+}
+
+
+// This function is currently unused and incomplete but will be
+// used if we have a linear layout of basic blocks in LLVM code.
+// It decides which branch should fall-through, and whether an
+// extra unconditional branch is needed (when neither falls through).
+//
+void
+ChooseBranchPattern(Instruction* vmInstr, BranchPattern& brPattern)
+{
+ BranchInst* brInstr = (BranchInst*) vmInstr;
- // Operand 0 is value for STORE, ptr for LOAD or GET_ELEMENT_PTR
- // It is the left child in the instruction tree in all cases.
- Value* leftVal = vmInstrNode->leftChild()->getValue();
- minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, leftVal);
+ brPattern.flipCondition = false;
+ brPattern.targetBB = brInstr->getSuccessor(0);
+ brPattern.extraBranch = NULL;
- // Operand 1 is ptr for STORE, offset for LOAD or GET_ELEMENT_PTR
- // Operand 3 is offset for STORE, result reg for LOAD or GET_ELEMENT_PTR
- //
- unsigned offsetOpNum = (memInst->getOpcode() == Instruction::Store)? 2 : 1;
- if (offsetOpType == MachineOperand::MO_VirtualRegister)
+ assert(brInstr->getNumSuccessors() > 1 &&
+ "Unnecessary analysis for unconditional branch");
+
+ assert(0 && "Fold branches in peephole optimization");
+}
+
+
+//******************* Externally Visible Functions *************************/
+
+
+//------------------------------------------------------------------------
+// External Function: GetInstructionsByRule
+//
+// Purpose:
+// Choose machine instructions for the SPARC according to the
+// patterns chosen by the BURG-generated parser.
+//------------------------------------------------------------------------
+
+unsigned
+GetInstructionsByRule(InstructionNode* subtreeRoot,
+ int ruleForNode,
+ short* nts,
+ TargetMachine &target,
+ MachineInstr** mvec)
+{
+ int numInstr = 1; // initialize for common case
+ bool checkCast = false; // initialize here to use fall-through
+ Value *leftVal, *rightVal;
+ const Type* opType;
+ int nextRule;
+ int forwardOperandNum = -1;
+ BranchPattern brPattern;
+ int64_t s0 = 0; // variables holding zero to avoid
+ uint64_t u0 = 0; // overloading ambiguities below
+
+ mvec[0] = mvec[1] = mvec[2] = mvec[3] = NULL; // just for safety
+
+ switch(ruleForNode) {
+ case 1: // stmt: Ret
+ case 2: // stmt: RetValue(reg)
+ // NOTE: Prepass of register allocation is responsible
+ // for moving return value to appropriate register.
+ // Mark the return-address register as a hidden virtual reg.
+ {
+ Instruction* returnReg = new TmpInstruction(Instruction::UserOp1,
+ subtreeRoot->getInstruction(), NULL);
+ subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(returnReg);
+
+ mvec[0] = new MachineInstr(RETURN);
+ mvec[0]->SetMachineOperand(0,MachineOperand::MO_VirtualRegister,returnReg);
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed, s0);
+
+ returnReg->addMachineInstruction(mvec[0]);
+
+ mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+ break;
+ }
+
+ case 3: // stmt: Store(reg,reg)
+ case 4: // stmt: Store(reg,ptrreg)
+ mvec[0] = new MachineInstr(ChooseStoreInstruction(subtreeRoot->leftChild()->getValue()->getType()));
+ SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 5: // stmt: BrUncond
+ mvec[0] = new MachineInstr(BA);
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister, (Value*)NULL);
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
+ ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
+
+ // delay slot
+ mvec[numInstr++] = new MachineInstr(NOP);
+ break;
+
+ case 6: // stmt: BrCond(boolconst)
+ // boolconst => boolean was computed with `%b = setCC type reg1 constant'
+ // If the constant is ZERO, we can use the branch-on-integer-register
+ // instructions and avoid the SUBcc instruction entirely.
+ // Otherwise this is just the same as case 5, so just fall through.
{
- assert(valueForRegOffset != NULL);
- minstr->SetMachineOperand(offsetOpNum, offsetOpType, valueForRegOffset);
- }
- else
- minstr->SetMachineOperand(offsetOpNum, offsetOpType, smallConstOffset);
-
- if (memInst->getOpcode() == Instruction::Store)
- minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, ptrVal);
- else
- minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
- vmInstrNode->getValue());
-}
-
+ InstrTreeNode* constNode = subtreeRoot->leftChild()->rightChild();
+ assert(constNode && constNode->getNodeType() ==InstrTreeNode::NTConstNode);
+ ConstPoolVal* constVal = (ConstPoolVal*) constNode->getValue();
+ bool isValidConst;
+
+ if (constVal->getType()->isIntegral()
+ && GetConstantValueAsSignedInt(constVal, isValidConst) == 0
+ && isValidConst)
+ {
+ // That constant ia a zero after all...
+ // Use the left child of the setCC instruction as the first argument!
+ mvec[0] = new MachineInstr(ChooseBprInstruction(subtreeRoot));
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->leftChild()->leftChild()->getValue());
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
+ ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
-// Special handling for constant operands:
-// -- if the constant is 0, use the hardwired 0 register, if any
-// -- if the constant fits in the IMMEDIATE field, use that field
-// -- else insert instructions to put the constant into a register, either
-// directly or by loading explicitly from the constant pool.
-//
-static unsigned
-FixConstantOperands(const InstructionNode* vmInstrNode,
- MachineInstr** mvec,
- unsigned numInstr,
- TargetMachine& target)
-{
- static MachineInstr* loadConstVec[MAX_INSTR_PER_VMINSTR];
+ // delay slot
+ mvec[numInstr++] = new MachineInstr(NOP);
+
+ // false branch
+ mvec[numInstr++] = new MachineInstr(BA);
+ mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
+ (Value*) NULL);
+ mvec[numInstr-1]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp, ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
- unsigned numNew = 0;
- Instruction* vmInstr = vmInstrNode->getInstruction();
-
- for (unsigned i=0; i < numInstr; i++)
- {
- MachineInstr* minstr = mvec[i];
- const MachineInstrDescriptor& instrDesc =
- target.getInstrInfo().getDescriptor(minstr->getOpCode());
-
- for (unsigned op=0; op < minstr->getNumOperands(); op++)
- {
- const MachineOperand& mop = minstr->getOperand(op);
-
- // skip the result position (for efficiency below) and any other
- // positions already marked as not a virtual register
- if (instrDesc.resultPos == (int) op ||
- mop.getOperandType() != MachineOperand::MO_VirtualRegister ||
- mop.getVRegValue() == NULL)
- {
- break;
- }
-
- Value* opValue = mop.getVRegValue();
-
- if (opValue->getValueType() == Value::ConstantVal)
- {
- unsigned int machineRegNum;
- int64_t immedValue;
- MachineOperand::MachineOperandType opType =
- ChooseRegOrImmed(opValue, minstr->getOpCode(), target,
- /*canUseImmed*/ (op == 1),
- machineRegNum, immedValue);
-
- if (opType == MachineOperand::MO_MachineRegister)
- minstr->SetMachineOperand(op, machineRegNum);
- else if (opType == MachineOperand::MO_VirtualRegister)
- {
- // value is constant and must be loaded into a register
- TmpInstruction* tmpReg;
- loadConstVec[numNew++] =
- MakeOneLoadConstInstr(vmInstr, opValue, tmpReg);
- minstr->SetMachineOperand(op, opType, tmpReg);
- }
- else
- minstr->SetMachineOperand(op, opType, immedValue);
- }
- }
+ // delay slot
+ mvec[numInstr++] = new MachineInstr(NOP);
+
+ break;
+ }
+ // ELSE FALL THROUGH
}
-
- if (numNew > 0)
+
+ case 7: // stmt: BrCond(bool)
+ // bool => boolean was computed with `%b = setcc type reg1 reg2'
+ // Need to check whether the type was a FP, signed int or unsigned int,
+ // and check the branching condition in order to choose the branch to use.
+ //
{
- // Insert the new instructions *before* the old ones by moving
- // the old ones over `numNew' positions (last-to-first, of course!).
- //
- for (int i=numInstr-1; i >= ((int) numInstr) - (int) numNew; i--)
- mvec[i+numNew] = mvec[i];
-
- for (unsigned i=0; i < numNew; i++)
- mvec[i] = loadConstVec[i];
+ bool isFPBranch;
+ mvec[0] = new MachineInstr(ChooseBccInstruction(subtreeRoot, isFPBranch));
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
+ subtreeRoot->leftChild()->getValue());
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
+ ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
+
+ // delay slot
+ mvec[numInstr++] = new MachineInstr(NOP);
+
+ // false branch
+ mvec[numInstr++] = new MachineInstr(BA);
+ mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
+ (Value*) NULL);
+ mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp,
+ ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
+
+ // delay slot
+ mvec[numInstr++] = new MachineInstr(NOP);
+ break;
}
-
- return (numInstr + numNew);
-}
+
+ case 8: // stmt: BrCond(boolreg)
+ // bool => boolean is stored in an existing register.
+ // Just use the branch-on-integer-register instruction!
+ //
+ mvec[0] = new MachineInstr(BRNZ);
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->leftChild()->getValue());
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_PCRelativeDisp,
+ ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(0));
+
+ // delay slot
+ mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+ // false branch
+ mvec[numInstr++] = new MachineInstr(BA);
+ mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
+ (Value*) NULL);
+ mvec[numInstr-1]->SetMachineOperand(0, MachineOperand::MO_PCRelativeDisp,
+ ((BranchInst*) subtreeRoot->getInstruction())->getSuccessor(1));
+
+ // delay slot
+ mvec[numInstr++] = new MachineInstr(NOP);
+ break;
+
+ case 9: // stmt: Switch(reg)
+ assert(0 && "*** SWITCH instruction is not implemented yet.");
+ numInstr = 0;
+ break;
+
+ case 10: // reg: VRegList(reg, reg)
+ assert(0 && "VRegList should never be the topmost non-chain rule");
+ break;
+
+ case 21: // reg: Not(reg): Implemented as reg = reg XOR-NOT 0
+ mvec[0] = new MachineInstr(XNOR);
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->leftChild()->getValue());
+ mvec[0]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+ mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->getValue());
+ break;
+
+ case 22: // reg: ToBoolTy(reg):
+ opType = subtreeRoot->leftChild()->getValue()->getType();
+ assert(opType->isIntegral() || opType == Type::BoolTy);
+ numInstr = 0;
+ forwardOperandNum = 0;
+ break;
+
+ case 23: // reg: ToUByteTy(reg)
+ case 25: // reg: ToUShortTy(reg)
+ case 27: // reg: ToUIntTy(reg)
+ case 29: // reg: ToULongTy(reg)
+ opType = subtreeRoot->leftChild()->getValue()->getType();
+ assert(opType->isIntegral() ||
+ opType->isPointerType() ||
+ opType == Type::BoolTy && "Ignoring cast: illegal for other types");
+ numInstr = 0;
+ forwardOperandNum = 0;
+ break;
+
+ case 24: // reg: ToSByteTy(reg)
+ case 26: // reg: ToShortTy(reg)
+ case 28: // reg: ToIntTy(reg)
+ case 30: // reg: ToLongTy(reg)
+ opType = subtreeRoot->leftChild()->getValue()->getType();
+ if (opType->isIntegral() || opType == Type::BoolTy)
+ {
+ numInstr = 0;
+ forwardOperandNum = 0;
+ }
+ else
+ {
+ mvec[0] =new MachineInstr(ChooseConvertToIntInstr(subtreeRoot,opType));
+ Set2OperandsFromInstr(mvec[0], subtreeRoot, target);
+ }
+ break;
+
+ case 31: // reg: ToFloatTy(reg):
+ case 32: // reg: ToDoubleTy(reg):
+
+ // If this instruction has a parent (a user) in the tree
+ // and the user is translated as an FsMULd instruction,
+ // then the cast is unnecessary. So check that first.
+ // In the future, we'll want to do the same for the FdMULq instruction,
+ // so do the check here instead of only for ToFloatTy(reg).
+ //
+ if (subtreeRoot->parent() != NULL &&
+ ((InstructionNode*) subtreeRoot->parent())->getInstruction()->getMachineInstrVec()[0]->getOpCode() == FSMULD)
+ {
+ numInstr = 0;
+ forwardOperandNum = 0;
+ }
+ else
+ {
+ opType = subtreeRoot->leftChild()->getValue()->getType();
+ mvec[0] = new MachineInstr(ChooseConvertToFloatInstr(subtreeRoot, opType));
+ Set2OperandsFromInstr(mvec[0], subtreeRoot, target);
+ }
+ break;
+
+ case 19: // reg: ToArrayTy(reg):
+ case 20: // reg: ToPointerTy(reg):
+ numInstr = 0;
+ forwardOperandNum = 0;
+ break;
+
+ case 233: // reg: Add(reg, Constant)
+ mvec[0] = CreateAddConstInstruction(subtreeRoot);
+ if (mvec[0] != NULL)
+ break;
+ // ELSE FALL THROUGH
+
+ case 33: // reg: Add(reg, reg)
+ mvec[0] = new MachineInstr(ChooseAddInstruction(subtreeRoot));
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 234: // reg: Sub(reg, Constant)
+ mvec[0] = CreateSubConstInstruction(subtreeRoot);
+ if (mvec[0] != NULL)
+ break;
+ // ELSE FALL THROUGH
+
+ case 34: // reg: Sub(reg, reg)
+ mvec[0] = new MachineInstr(ChooseSubInstruction(subtreeRoot));
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 135: // reg: Mul(todouble, todouble)
+ checkCast = true;
+ // FALL THROUGH
+
+ case 35: // reg: Mul(reg, reg)
+ mvec[0] = new MachineInstr(ChooseMulInstruction(subtreeRoot, checkCast));
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
-#if 0
-// Create one or two load instructions to load constants from the
-// constant pool. The first instructions is stored in instrA;
-// the second (if any) in instrB.
-//
-static unsigned
-InsertLoadConstInstructions(unsigned loadConstFlags,
- const InstructionNode* vmInstrNode,
- MachineInstr** mvec,
- unsigned numInstr)
-{
- MachineInstr *instrA = NULL, *instrB = NULL;
+ case 335: // reg: Mul(todouble, todoubleConst)
+ checkCast = true;
+ // FALL THROUGH
+
+ case 235: // reg: Mul(reg, Constant)
+ mvec[0] = CreateMulConstInstruction(subtreeRoot, mvec[1]);
+ if (mvec[0] == NULL)
+ {
+ mvec[0]=new MachineInstr(ChooseMulInstruction(subtreeRoot, checkCast));
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ }
+ else
+ if (mvec[1] != NULL)
+ ++numInstr;
+ break;
- unsigned numNew = 0;
-
- if (loadConstFlags & 0x01)
- {
- instrA = MakeOneLoadConstInstr(vmInstrNode->getInstruction(),
- vmInstrNode->leftChild()->getValue());
- numNew++;
- }
+ case 236: // reg: Div(reg, Constant)
+ mvec[0] = CreateDivConstInstruction(subtreeRoot, mvec[1]);
+ if (mvec[0] != NULL)
+ {
+ if (mvec[1] != NULL)
+ ++numInstr;
+ }
+ else
+ // ELSE FALL THROUGH
+
+ case 36: // reg: Div(reg, reg)
+ mvec[0] = new MachineInstr(ChooseDivInstruction(subtreeRoot));
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 37: // reg: Rem(reg, reg)
+ case 237: // reg: Rem(reg, Constant)
+ assert(0 && "REM instruction unimplemented for the SPARC.");
+ break;
+
+ case 38: // reg: And(reg, reg)
+ case 238: // reg: And(reg, Constant)
+ mvec[0] = new MachineInstr(AND);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 138: // reg: And(reg, not)
+ mvec[0] = new MachineInstr(ANDN);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 39: // reg: Or(reg, reg)
+ case 239: // reg: Or(reg, Constant)
+ mvec[0] = new MachineInstr(ORN);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 139: // reg: Or(reg, not)
+ mvec[0] = new MachineInstr(ORN);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 40: // reg: Xor(reg, reg)
+ case 240: // reg: Xor(reg, Constant)
+ mvec[0] = new MachineInstr(XOR);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 140: // reg: Xor(reg, not)
+ mvec[0] = new MachineInstr(XNOR);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 41: // boolconst: SetCC(reg, Constant)
+ // Check if this is an integer comparison, and
+ // there is a parent, and the parent decided to use
+ // a branch-on-integer-register instead of branch-on-condition-code.
+ // If so, the SUBcc instruction is not required.
+ // (However, we must still check for constants to be loaded from
+ // the constant pool so that such a load can be associated with
+ // this instruction.)
+ //
+ // Otherwise this is just the same as case 42, so just fall through.
+ //
+ if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral() &&
+ subtreeRoot->parent() != NULL)
+ {
+ InstructionNode* parentNode = (InstructionNode*) subtreeRoot->parent();
+ assert(parentNode->getNodeType() == InstrTreeNode::NTInstructionNode);
+ const vector<MachineInstr*>&
+ minstrVec = parentNode->getInstruction()->getMachineInstrVec();
+ MachineOpCode parentOpCode;
+ if (parentNode->getInstruction()->getOpcode() == Instruction::Br &&
+ (parentOpCode = minstrVec[0]->getOpCode()) >= BRZ &&
+ parentOpCode <= BRGEZ)
+ {
+ numInstr = 0; // don't forward the operand!
+ break;
+ }
+ }
+ // ELSE FALL THROUGH
+
+ case 42: // bool: SetCC(reg, reg):
+ {
+ // If result of the SetCC is only used for a branch, we can
+ // discard the result. otherwise, it must go into an integer register.
+ // Note that the user may or may not be in the same tree, so we have
+ // to follow SSA def-use edges here, not BURG tree edges.
+ //
+ Instruction* result = subtreeRoot->getInstruction();
+ Value* firstUse = (Value*) * result->use_begin();
+ bool discardResult =
+ (result->use_size() == 1
+ && firstUse->getValueType() == Value::InstructionVal
+ && ((Instruction*) firstUse)->getOpcode() == Instruction::Br);
+
+ bool mustClearReg;
+ int valueToMove;
+ MachineOpCode movOpCode;
+
+ if (subtreeRoot->leftChild()->getValue()->getType()->isIntegral())
+ {
+ // integer condition: destination should be %g0 or integer register
+ // if result must be saved but condition is not SetEQ then we need
+ // a separate instruction to compute the bool result, so discard
+ // result of SUBcc instruction anyway.
+ //
+ mvec[0] = new MachineInstr(SUBcc);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target, discardResult);
+
+ // mark the 4th operand as being a CC register, and a "result"
+ mvec[0]->SetMachineOperand(3, MachineOperand::MO_CCRegister,
+ subtreeRoot->getValue(), /*def*/ true);
+
+ if (!discardResult)
+ { // recompute bool if needed, using the integer condition codes
+ if (result->getOpcode() == Instruction::SetNE)
+ discardResult = true;
+ else
+ movOpCode =
+ ChooseMovpccAfterSub(subtreeRoot, mustClearReg, valueToMove);
+ }
+ }
+ else
+ {
+ // FP condition: dest of FCMP should be some FCCn register
+ mvec[0] = new MachineInstr(ChooseFcmpInstruction(subtreeRoot));
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
+ subtreeRoot->getValue());
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->leftChild()->getValue());
+ mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->rightChild()->getValue());
+
+ if (!discardResult)
+ {// recompute bool using the FP condition codes
+ mustClearReg = true;
+ valueToMove = 1;
+ movOpCode = ChooseMovFpccInstruction(subtreeRoot);
+ }
+ }
+
+ if (!discardResult)
+ {
+ if (mustClearReg)
+ {// Unconditionally set register to 0
+ int n = numInstr++;
+ mvec[n] = new MachineInstr(SETHI);
+ mvec[n]->SetMachineOperand(0,MachineOperand::MO_UnextendedImmed,s0);
+ mvec[n]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->getValue());
+ }
+
+ // Now conditionally move `valueToMove' (0 or 1) into the register
+ int n = numInstr++;
+ mvec[n] = new MachineInstr(movOpCode);
+ mvec[n]->SetMachineOperand(0, MachineOperand::MO_CCRegister,
+ subtreeRoot->getValue());
+ mvec[n]->SetMachineOperand(1, MachineOperand::MO_UnextendedImmed,
+ valueToMove);
+ mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->getValue());
+ }
+ break;
+ }
- if (loadConstFlags & 0x02)
- {
- instrB = MakeOneLoadConstInstr(vmInstrNode->getInstruction(),
- vmInstrNode->rightChild()->getValue());
- numNew++;
+ case 43: // boolreg: VReg
+ case 44: // boolreg: Constant
+ numInstr = 0;
+ break;
+
+ case 51: // reg: Load(reg)
+ case 52: // reg: Load(ptrreg)
+ case 53: // reg: LoadIdx(reg,reg)
+ case 54: // reg: LoadIdx(ptrreg,reg)
+ mvec[0] = new MachineInstr(ChooseLoadInstruction(subtreeRoot->getValue()->getType()));
+ SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 55: // reg: GetElemPtr(reg)
+ case 56: // reg: GetElemPtrIdx(reg,reg)
+ if (subtreeRoot->parent() != NULL)
+ {
+ // Check if the parent was an array access.
+ // If so, we still need to generate this instruction.
+ MemAccessInst* memInst =(MemAccessInst*) subtreeRoot->getInstruction();
+ const PointerType* ptrType =
+ (const PointerType*) memInst->getPtrOperand()->getType();
+ if (! ptrType->getValueType()->isArrayType())
+ {// we don't need a separate instr
+ numInstr = 0; // don't forward operand!
+ break;
+ }
+ }
+ // else in all other cases we need to a separate ADD instruction
+ mvec[0] = new MachineInstr(ADD);
+ SetOperandsForMemInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 57: // reg: Alloca: Implement as 2 instructions:
+ // sub %sp, tmp -> %sp
+ { // add %sp, 0 -> result
+ Instruction* instr = subtreeRoot->getInstruction();
+ const PointerType* instrType = (const PointerType*) instr->getType();
+ assert(instrType->isPointerType());
+ int tsize = (int) target.findOptimalStorageSize(instrType->getValueType());
+ assert(tsize != 0 && "Just to check when this can happen");
+ // if (tsize == 0)
+ // {
+ // numInstr = 0;
+ // break;
+ // }
+ //else go on to create the instructions needed...
+
+ // Create a temporary Value to hold the constant type-size
+ ConstPoolSInt* valueForTSize = new ConstPoolSInt(Type::IntTy, tsize);
+ ConstantPool &cpool = instr->getParent()->getParent()->getConstantPool();
+ if (cpool.find(valueForTSize) == 0)
+ cpool.insert(valueForTSize);
+
+ // Instruction 1: sub %sp, tsize -> %sp
+ // tsize is always constant, but it may have to be put into a
+ // register if it doesn't fit in the immediate field.
+ //
+ mvec[0] = new MachineInstr(SUB);
+ mvec[0]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, valueForTSize);
+ mvec[0]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+
+ // Instruction 2: add %sp, 0 -> result
+ numInstr++;
+ mvec[1] = new MachineInstr(ADD);
+ mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+ mvec[1]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+ mvec[1]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, instr);
+ break;
}
- // Now insert the new instructions *before* the old ones by
- // moving the old ones over `numNew' positions (last-to-first, of course!).
- //
- for (int i=numInstr-1; i >= ((int) numInstr) - (int) numNew; i--)
- mvec[i+numNew] = mvec[i];
-
- unsigned whichNew = 0;
- if (instrA != NULL)
- mvec[whichNew++] = instrA;
- if (instrB != NULL)
- mvec[whichNew++] = instrB;
- assert(whichNew == numNew);
+ case 58: // reg: Alloca(reg): Implement as 3 instructions:
+ // mul num, typeSz -> tmp
+ // sub %sp, tmp -> %sp
+ { // add %sp, 0 -> result
+ Instruction* instr = subtreeRoot->getInstruction();
+ const PointerType* instrType = (const PointerType*) instr->getType();
+ assert(instrType->isPointerType() &&
+ instrType->getValueType()->isArrayType());
+ const Type* eltType =
+ ((ArrayType*) instrType->getValueType())->getElementType();
+ int tsize = (int) target.findOptimalStorageSize(eltType);
+
+ assert(tsize != 0 && "Just to check when this can happen");
+ // if (tsize == 0)
+ // {
+ // numInstr = 0;
+ // break;
+ // }
+ //else go on to create the instructions needed...
- return numInstr + numNew;
-}
-#endif
+ // Create a temporary Value to hold the constant type-size
+ ConstPoolSInt* valueForTSize = new ConstPoolSInt(Type::IntTy, tsize);
+ ConstantPool &cpool = instr->getParent()->getParent()->getConstantPool();
+ if (cpool.find(valueForTSize) == 0)
+ cpool.insert(valueForTSize);
+
+ // Create a temporary value to hold `tmp'
+ Instruction* tmpInstr = new TmpInstruction(Instruction::UserOp1,
+ subtreeRoot->leftChild()->getValue(),
+ NULL /*could insert tsize here*/);
+ subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(tmpInstr);
+ // Instruction 1: mul numElements, typeSize -> tmp
+ mvec[0] = new MachineInstr(MULX);
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->leftChild()->getValue());
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, valueForTSize);
+ mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,tmpInstr);
-static MachineInstr*
-MakeOneLoadConstInstr(Instruction* vmInstr,
- Value* val,
- TmpInstruction*& tmpReg)
-{
- assert(val->getValueType() == Value::ConstantVal);
-
- MachineInstr* minstr;
-
- // Create a TmpInstruction to mark the hidden register used for the constant
- tmpReg = new TmpInstruction(Instruction::UserOp1, val, NULL);
- vmInstr->getMachineInstrVec().addTempValue(tmpReg);
-
- // Use a "set" instruction for known constants that can go in an integer reg.
- // Use a "load" instruction for all other constants, in particular,
- // floating point constants.
- //
- const Type* valType = val->getType();
- if (valType->isIntegral() ||
- valType->isPointerType() ||
- valType == Type::BoolTy)
- {
- bool isValidConstant;
- if (val->getType()->isSigned())
- {
- minstr = new MachineInstr(SETSW);
- minstr->SetMachineOperand(0, MachineOperand::MO_SignExtendedImmed,
- GetSignedIntConstantValue(val, isValidConstant));
- }
- else
- {
- minstr = new MachineInstr(SETUW);
- minstr->SetMachineOperand(0, MachineOperand::MO_UnextendedImmed,
- GetUnsignedIntConstantValue(val, isValidConstant));
- }
- minstr->SetMachineOperand(1, MachineOperand::MO_VirtualRegister, tmpReg);
- assert(isValidConstant && "Unrecognized constant");
+ tmpInstr->addMachineInstruction(mvec[0]);
+
+ // Instruction 2: sub %sp, tmp -> %sp
+ numInstr++;
+ mvec[1] = new MachineInstr(SUB);
+ mvec[1]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+ mvec[1]->SetMachineOperand(1, MachineOperand::MO_VirtualRegister,tmpInstr);
+ mvec[1]->SetMachineOperand(2, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+
+ // Instruction 3: add %sp, 0 -> result
+ numInstr++;
+ mvec[2] = new MachineInstr(ADD);
+ mvec[2]->SetMachineOperand(0, /*regNum %sp = o6 = r[14]*/(unsigned int)14);
+ mvec[2]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+ mvec[2]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, instr);
+ break;
}
- else
- {
- assert(valType == Type::FloatTy ||
- valType == Type::DoubleTy);
-
- int64_t zeroOffset = 0; // to avoid overloading ambiguity with (Value*) 0
+
+ case 61: // reg: Call
+ // Generate a call-indirect (i.e., JMPL) for now to expose
+ // the potential need for registers. If an absolute address
+ // is available, replace this with a CALL instruction.
+ // Mark both the indirection register and the return-address
+ { // register as hidden virtual registers.
- // Make a Load instruction, and make `val' both the ptr value *and*
- // the result value, and set the offset field to 0. Final code
- // generation will have to generate the base+offset for the constant.
- //
- minstr = new MachineInstr(ChooseLoadInstruction(val->getType()));
- minstr->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, val);
- minstr->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
- zeroOffset);
- minstr->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, tmpReg);
+ Instruction* jmpAddrReg = new TmpInstruction(Instruction::UserOp1,
+ ((CallInst*) subtreeRoot->getInstruction())->getCalledMethod(), NULL);
+ Instruction* retAddrReg = new TmpInstruction(Instruction::UserOp1,
+ subtreeRoot->getValue(), NULL);
+ subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(jmpAddrReg);
+ subtreeRoot->getInstruction()->getMachineInstrVec().addTempValue(retAddrReg);
+
+ mvec[0] = new MachineInstr(JMPL);
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister, jmpAddrReg);
+ mvec[0]->SetMachineOperand(1, MachineOperand::MO_SignExtendedImmed,
+ (int64_t) 0);
+ mvec[0]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister, retAddrReg);
+
+ // NOTE: jmpAddrReg will be loaded by a different instruction generated
+ // by the final code generator, so we just mark the CALL instruction
+ // as computing that value.
+ // The retAddrReg is actually computed by the CALL instruction.
+ //
+ jmpAddrReg->addMachineInstruction(mvec[0]);
+ retAddrReg->addMachineInstruction(mvec[0]);
+
+ mvec[numInstr++] = new MachineInstr(NOP); // delay slot
+ break;
}
-
- tmpReg->addMachineInstruction(minstr);
-
- return minstr;
-}
+
+ case 62: // reg: Shl(reg, reg)
+ opType = subtreeRoot->leftChild()->getValue()->getType();
+ assert(opType->isIntegral() || opType == Type::BoolTy);
+ mvec[0] = new MachineInstr((opType == Type::LongTy)? SLLX : SLL);
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 63: // reg: Shr(reg, reg)
+ opType = subtreeRoot->leftChild()->getValue()->getType();
+ assert(opType->isIntegral() || opType == Type::BoolTy);
+ mvec[0] = new MachineInstr((opType->isSigned()
+ ? ((opType == Type::LongTy)? SRAX : SRA)
+ : ((opType == Type::LongTy)? SRLX : SRL)));
+ Set3OperandsFromInstr(mvec[0], subtreeRoot, target);
+ break;
+
+ case 64: // reg: Phi(reg,reg)
+ { // This instruction has variable #operands, so resultPos is 0.
+ Instruction* phi = subtreeRoot->getInstruction();
+ mvec[0] = new MachineInstr(PHI, 1 + phi->getNumOperands());
+ mvec[0]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->getValue());
+ for (unsigned i=0, N=phi->getNumOperands(); i < N; i++)
+ mvec[0]->SetMachineOperand(i+1, MachineOperand::MO_VirtualRegister,
+ phi->getOperand(i));
+ break;
+ }
+ case 71: // reg: VReg
+ case 72: // reg: Constant
+ numInstr = 0; // don't forward the value
+ break;
-//
-// Substitute operand `operandNum' of the instruction in node `treeNode'
-// in place the use(s) of that instruction in node `parent'.
-//
-static void
-ForwardOperand(InstructionNode* treeNode,
- InstructionNode* parent,
- int operandNum)
-{
- Instruction* unusedOp = treeNode->getInstruction();
- Value* fwdOp = unusedOp->getOperand(operandNum);
- Instruction* userInstr = parent->getInstruction();
- MachineCodeForVMInstr& mvec = userInstr->getMachineInstrVec();
- for (unsigned i=0, N=mvec.size(); i < N; i++)
- {
- MachineInstr* minstr = mvec[i];
- for (unsigned i=0, numOps=minstr->getNumOperands(); i < numOps; i++)
+ case 111: // stmt: reg
+ case 112: // stmt: boolconst
+ case 113: // stmt: bool
+ case 121:
+ case 122:
+ case 123:
+ case 124:
+ case 125:
+ case 126:
+ case 127:
+ case 128:
+ case 129:
+ case 130:
+ case 131:
+ case 132:
+ case 153:
+ case 155:
+ //
+ // These are all chain rules, which have a single nonterminal on the RHS.
+ // Get the rule that matches the RHS non-terminal and use that instead.
+ //
+ assert(ThisIsAChainRule(ruleForNode));
+ assert(nts[0] && ! nts[1]
+ && "A chain rule should have only one RHS non-terminal!");
+ nextRule = burm_rule(subtreeRoot->getBasicNode()->state, nts[0]);
+ nts = burm_nts[nextRule];
+ numInstr = GetInstructionsByRule(subtreeRoot, nextRule, nts,target,mvec);
+ break;
+
+ default:
+ assert(0 && "Unrecognized BURG rule");
+ numInstr = 0;
+ break;
+ }
+
+ if (forwardOperandNum >= 0)
+ { // We did not generate a machine instruction but need to use operand.
+ // If user is in the same tree, replace Value in its machine operand.
+ // If not, insert a copy instruction which should get coalesced away
+ // by register allocation.
+ if (subtreeRoot->parent() != NULL)
+ ForwardOperand(subtreeRoot, (InstructionNode*) subtreeRoot->parent(),
+ forwardOperandNum);
+ else
{
- const MachineOperand& mop = minstr->getOperand(i);
- if (mop.getOperandType() == MachineOperand::MO_VirtualRegister &&
- mop.getVRegValue() == unusedOp)
- {
- minstr->SetMachineOperand(i, MachineOperand::MO_VirtualRegister,
- fwdOp);
- }
+ int n = numInstr++;
+ mvec[n] = new MachineInstr(ADD);
+ mvec[n]->SetMachineOperand(0, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->getInstruction()->getOperand(forwardOperandNum));
+ mvec[n]->SetMachineOperand(1, /*regNum %g0*/ (unsigned int) 0);
+ mvec[n]->SetMachineOperand(2, MachineOperand::MO_VirtualRegister,
+ subtreeRoot->getInstruction());
}
}
-}
-
-
-// This function is currently unused and incomplete but will be
-// used if we have a linear layout of basic blocks in LLVM code.
-// It decides which branch should fall-through, and whether an
-// extra unconditional branch is needed (when neither falls through).
-//
-void
-ChooseBranchPattern(Instruction* vmInstr, BranchPattern& brPattern)
-{
- BranchInst* brInstr = (BranchInst*) vmInstr;
-
- brPattern.flipCondition = false;
- brPattern.targetBB = brInstr->getSuccessor(0);
- brPattern.extraBranch = NULL;
- assert(brInstr->getNumSuccessors() > 1 &&
- "Unnecessary analysis for unconditional branch");
+ if (! ThisIsAChainRule(ruleForNode))
+ numInstr = FixConstantOperands(subtreeRoot, mvec, numInstr, target);
- assert(0 && "Fold branches in peephole optimization");
+ return numInstr;
}
+