{}
};
-/// This POD struct holds information about a potential reduction operation.
-class ReductionInstDesc {
+/// The RecurrenceDescriptor is used to identify recurrences variables in a
+/// loop. Reduction is a special case of recurrence that has uses of the
+/// recurrence variable outside the loop. The method isReductionPHI identifies
+/// reductions that are basic recurrences.
+///
+/// Basic recurrences are defined as the summation, product, OR, AND, XOR, min,
+/// or max of a set of terms. For example: for(i=0; i<n; i++) { total +=
+/// array[i]; } is a summation of array elements. Basic recurrences are a
+/// special case of chains of recurrences (CR). See ScalarEvolution for CR
+/// references.
+
+/// This POD struct holds information about a potential recurrence operation.
+class RecurrenceInstDesc {
public:
- // This enum represents the kind of minmax reduction.
- enum MinMaxReductionKind {
+ // This enum represents the kind of minmax recurrence.
+ enum MinMaxRecurrenceKind {
MRK_Invalid,
MRK_UIntMin,
MRK_UIntMax,
MRK_FloatMin,
MRK_FloatMax
};
- ReductionInstDesc(bool IsRedux, Instruction *I)
- : IsReduction(IsRedux), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
+ RecurrenceInstDesc(bool IsRecur, Instruction *I)
+ : IsRecurrence(IsRecur), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
+
+ RecurrenceInstDesc(Instruction *I, MinMaxRecurrenceKind K)
+ : IsRecurrence(true), PatternLastInst(I), MinMaxKind(K) {}
- ReductionInstDesc(Instruction *I, MinMaxReductionKind K)
- : IsReduction(true), PatternLastInst(I), MinMaxKind(K) {}
+ bool isRecurrence() { return IsRecurrence; }
- bool isReduction() { return IsReduction; }
+ MinMaxRecurrenceKind getMinMaxKind() { return MinMaxKind; }
- MinMaxReductionKind getMinMaxKind() { return MinMaxKind; }
-
Instruction *getPatternInst() { return PatternLastInst; }
private:
- // Is this instruction a reduction candidate.
- bool IsReduction;
+ // Is this instruction a recurrence candidate.
+ bool IsRecurrence;
// The last instruction in a min/max pattern (select of the select(icmp())
- // pattern), or the current reduction instruction otherwise.
+ // pattern), or the current recurrence instruction otherwise.
Instruction *PatternLastInst;
// If this is a min/max pattern the comparison predicate.
- MinMaxReductionKind MinMaxKind;
+ MinMaxRecurrenceKind MinMaxKind;
};
-/// This struct holds information about reduction variables.
-class ReductionDescriptor {
+/// This struct holds information about recurrence variables.
+class RecurrenceDescriptor {
public:
- /// This enum represents the kinds of reductions that we support.
- enum ReductionKind {
- RK_NoReduction, ///< Not a reduction.
+ /// This enum represents the kinds of recurrences that we support.
+ enum RecurrenceKind {
+ RK_NoRecurrence, ///< Not a recurrence.
RK_IntegerAdd, ///< Sum of integers.
RK_IntegerMult, ///< Product of integers.
RK_IntegerOr, ///< Bitwise or logical OR of numbers.
RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()).
};
- ReductionDescriptor()
- : StartValue(nullptr), LoopExitInstr(nullptr), Kind(RK_NoReduction),
- MinMaxKind(ReductionInstDesc::MRK_Invalid) {}
+ RecurrenceDescriptor()
+ : StartValue(nullptr), LoopExitInstr(nullptr), Kind(RK_NoRecurrence),
+ MinMaxKind(RecurrenceInstDesc::MRK_Invalid) {}
- ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
- ReductionInstDesc::MinMaxReductionKind MK)
+ RecurrenceDescriptor(Value *Start, Instruction *Exit, RecurrenceKind K,
+ RecurrenceInstDesc::MinMaxRecurrenceKind MK)
: StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
- /// Returns a struct describing if the instruction 'I' can be a reduction
- /// variable of type 'Kind'. If the reduction is a min/max pattern of
+ /// Returns a struct describing if the instruction 'I' can be a recurrence
+ /// variable of type 'Kind'. If the recurrence is a min/max pattern of
/// select(icmp()) this function advances the instruction pointer 'I' from the
/// compare instruction to the select instruction and stores this pointer in
/// 'PatternLastInst' member of the returned struct.
- static ReductionInstDesc isReductionInstr(Instruction *I, ReductionKind Kind,
- ReductionInstDesc &Prev,
- bool HasFunNoNaNAttr);
+ static RecurrenceInstDesc isRecurrenceInstr(Instruction *I,
+ RecurrenceKind Kind,
+ RecurrenceInstDesc &Prev,
+ bool HasFunNoNaNAttr);
/// Returns true if instuction I has multiple uses in Insts
static bool hasMultipleUsesOf(Instruction *I,
/// Returns a struct describing if the instruction if the instruction is a
/// Select(ICmp(X, Y), X, Y) instruction pattern corresponding to a min(X, Y)
/// or max(X, Y).
- static ReductionInstDesc isMinMaxSelectCmpPattern(Instruction *I,
- ReductionInstDesc &Prev);
+ static RecurrenceInstDesc isMinMaxSelectCmpPattern(Instruction *I,
+ RecurrenceInstDesc &Prev);
- /// Returns identity corresponding to the ReductionKind.
- static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
+ /// Returns identity corresponding to the RecurrenceKind.
+ static Constant *getRecurrenceIdentity(RecurrenceKind K, Type *Tp);
- /// Returns the opcode of binary operation corresponding to the ReductionKind.
- static unsigned getReductionBinOp(ReductionKind Kind);
+ /// Returns the opcode of binary operation corresponding to the
+ /// RecurrenceKind.
+ static unsigned getRecurrenceBinOp(RecurrenceKind Kind);
- /// Returns a Min/Max operation corresponding to MinMaxReductionKind.
+ /// Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
static Value *createMinMaxOp(IRBuilder<> &Builder,
- ReductionInstDesc::MinMaxReductionKind RK,
+ RecurrenceInstDesc::MinMaxRecurrenceKind RK,
Value *Left, Value *Right);
/// Returns true if Phi is a reduction of type Kind and adds it to the
- /// ReductionDescriptor.
- static bool AddReductionVar(PHINode *Phi, ReductionKind Kind, Loop *TheLoop,
+ /// RecurrenceDescriptor.
+ static bool AddReductionVar(PHINode *Phi, RecurrenceKind Kind, Loop *TheLoop,
bool HasFunNoNaNAttr,
- ReductionDescriptor &RedDes);
+ RecurrenceDescriptor &RedDes);
- /// Returns true if Phi is a reduction in TheLoop. The ReductionDescriptor is
+ /// Returns true if Phi is a reduction in TheLoop. The RecurrenceDescriptor is
/// returned in RedDes.
static bool isReductionPHI(PHINode *Phi, Loop *TheLoop,
- ReductionDescriptor &RedDes);
+ RecurrenceDescriptor &RedDes);
- ReductionKind getReductionKind() { return Kind; }
+ RecurrenceKind getRecurrenceKind() { return Kind; }
- ReductionInstDesc::MinMaxReductionKind getMinMaxReductionKind() {
+ RecurrenceInstDesc::MinMaxRecurrenceKind getMinMaxRecurrenceKind() {
return MinMaxKind;
}
- TrackingVH<Value> getReductionStartValue() { return StartValue; }
+ TrackingVH<Value> getRecurrenceStartValue() { return StartValue; }
Instruction *getLoopExitInstr() { return LoopExitInstr; }
private:
- // The starting value of the reduction.
+ // The starting value of the recurrence.
// It does not have to be zero!
TrackingVH<Value> StartValue;
// The instruction who's value is used outside the loop.
Instruction *LoopExitInstr;
- // The kind of the reduction.
- ReductionKind Kind;
- // If this a min/max reduction the kind of reduction.
- ReductionInstDesc::MinMaxReductionKind MinMaxKind;
+ // The kind of the recurrence.
+ RecurrenceKind Kind;
+ // If this a min/max recurrence the kind of recurrence.
+ RecurrenceInstDesc::MinMaxRecurrenceKind MinMaxKind;
};
BasicBlock *InsertPreheaderForLoop(Loop *L, Pass *P);
bool LoopInterchangeLegality::areAllUsesReductions(Instruction *Ins, Loop *L) {
return !std::any_of(Ins->user_begin(), Ins->user_end(), [=](User *U) -> bool {
PHINode *UserIns = dyn_cast<PHINode>(U);
- ReductionDescriptor RD;
- return !UserIns || !ReductionDescriptor::isReductionPHI(UserIns, L, RD);
+ RecurrenceDescriptor RD;
+ return !UserIns || !RecurrenceDescriptor::isReductionPHI(UserIns, L, RD);
});
}
if (!L->getLoopLatch() || !L->getLoopPredecessor())
return false;
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
- ReductionDescriptor RD;
+ RecurrenceDescriptor RD;
PHINode *PHI = cast<PHINode>(I);
ConstantInt *StepValue = nullptr;
if (isInductionPHI(PHI, SE, StepValue))
Inductions.push_back(PHI);
- else if (ReductionDescriptor::isReductionPHI(PHI, L, RD))
+ else if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD))
Reductions.push_back(PHI);
else {
DEBUG(
#define DEBUG_TYPE "loop-utils"
-bool ReductionDescriptor::areAllUsesIn(Instruction *I,
- SmallPtrSetImpl<Instruction *> &Set) {
+bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
+ SmallPtrSetImpl<Instruction *> &Set) {
for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
if (!Set.count(dyn_cast<Instruction>(*Use)))
return false;
return true;
}
-bool ReductionDescriptor::AddReductionVar(PHINode *Phi, ReductionKind Kind,
- Loop *TheLoop, bool HasFunNoNaNAttr,
- ReductionDescriptor &RedDes) {
+bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
+ Loop *TheLoop, bool HasFunNoNaNAttr,
+ RecurrenceDescriptor &RedDes) {
if (Phi->getNumIncomingValues() != 2)
return false;
// the number of instruction we saw from the recognized min/max pattern,
// to make sure we only see exactly the two instructions.
unsigned NumCmpSelectPatternInst = 0;
- ReductionInstDesc ReduxDesc(false, nullptr);
+ RecurrenceInstDesc ReduxDesc(false, nullptr);
SmallPtrSet<Instruction *, 8> VisitedInsts;
SmallVector<Instruction *, 8> Worklist;
return false;
// Any reduction instruction must be of one of the allowed kinds.
- ReduxDesc = isReductionInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
- if (!ReduxDesc.isReduction())
+ ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
+ if (!ReduxDesc.isRecurrence())
return false;
// A reduction operation must only have one use of the reduction value.
// Process instructions only once (termination). Each reduction cycle
// value must only be used once, except by phi nodes and min/max
// reductions which are represented as a cmp followed by a select.
- ReductionInstDesc IgnoredVal(false, nullptr);
+ RecurrenceInstDesc IgnoredVal(false, nullptr);
if (VisitedInsts.insert(UI).second) {
if (isa<PHINode>(UI))
PHIs.push_back(UI);
} else if (!isa<PHINode>(UI) &&
((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
!isa<SelectInst>(UI)) ||
- !isMinMaxSelectCmpPattern(UI, IgnoredVal).isReduction()))
+ !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
return false;
// Remember that we completed the cycle.
// only have a single instruction with out-of-loop users.
// The ExitInstruction(Instruction which is allowed to have out-of-loop users)
- // is saved as part of the ReductionDescriptor.
+ // is saved as part of the RecurrenceDescriptor.
// Save the description of this reduction variable.
- ReductionDescriptor RD(RdxStart, ExitInstruction, Kind,
- ReduxDesc.getMinMaxKind());
+ RecurrenceDescriptor RD(RdxStart, ExitInstruction, Kind,
+ ReduxDesc.getMinMaxKind());
RedDes = RD;
/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
/// pattern corresponding to a min(X, Y) or max(X, Y).
-ReductionInstDesc
-ReductionDescriptor::isMinMaxSelectCmpPattern(Instruction *I,
- ReductionInstDesc &Prev) {
+RecurrenceInstDesc
+RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I,
+ RecurrenceInstDesc &Prev) {
assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
"Expect a select instruction");
// select.
if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
- return ReductionInstDesc(false, I);
- return ReductionInstDesc(Select, Prev.getMinMaxKind());
+ return RecurrenceInstDesc(false, I);
+ return RecurrenceInstDesc(Select, Prev.getMinMaxKind());
}
// Only handle single use cases for now.
if (!(Select = dyn_cast<SelectInst>(I)))
- return ReductionInstDesc(false, I);
+ return RecurrenceInstDesc(false, I);
if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
!(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
- return ReductionInstDesc(false, I);
+ return RecurrenceInstDesc(false, I);
if (!Cmp->hasOneUse())
- return ReductionInstDesc(false, I);
+ return RecurrenceInstDesc(false, I);
Value *CmpLeft;
Value *CmpRight;
// Look for a min/max pattern.
if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
- return ReductionInstDesc(Select, ReductionInstDesc::MRK_UIntMin);
+ return RecurrenceInstDesc(Select, RecurrenceInstDesc::MRK_UIntMin);
else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
- return ReductionInstDesc(Select, ReductionInstDesc::MRK_UIntMax);
+ return RecurrenceInstDesc(Select, RecurrenceInstDesc::MRK_UIntMax);
else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
- return ReductionInstDesc(Select, ReductionInstDesc::MRK_SIntMax);
+ return RecurrenceInstDesc(Select, RecurrenceInstDesc::MRK_SIntMax);
else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
- return ReductionInstDesc(Select, ReductionInstDesc::MRK_SIntMin);
+ return RecurrenceInstDesc(Select, RecurrenceInstDesc::MRK_SIntMin);
else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
- return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMin);
+ return RecurrenceInstDesc(Select, RecurrenceInstDesc::MRK_FloatMin);
else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
- return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMax);
+ return RecurrenceInstDesc(Select, RecurrenceInstDesc::MRK_FloatMax);
else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
- return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMin);
+ return RecurrenceInstDesc(Select, RecurrenceInstDesc::MRK_FloatMin);
else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
- return ReductionInstDesc(Select, ReductionInstDesc::MRK_FloatMax);
+ return RecurrenceInstDesc(Select, RecurrenceInstDesc::MRK_FloatMax);
- return ReductionInstDesc(false, I);
+ return RecurrenceInstDesc(false, I);
}
-ReductionInstDesc ReductionDescriptor::isReductionInstr(Instruction *I,
- ReductionKind Kind,
- ReductionInstDesc &Prev,
- bool HasFunNoNaNAttr) {
+RecurrenceInstDesc
+RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
+ RecurrenceInstDesc &Prev,
+ bool HasFunNoNaNAttr) {
bool FP = I->getType()->isFloatingPointTy();
bool FastMath = FP && I->hasUnsafeAlgebra();
switch (I->getOpcode()) {
default:
- return ReductionInstDesc(false, I);
+ return RecurrenceInstDesc(false, I);
case Instruction::PHI:
if (FP &&
(Kind != RK_FloatMult && Kind != RK_FloatAdd && Kind != RK_FloatMinMax))
- return ReductionInstDesc(false, I);
- return ReductionInstDesc(I, Prev.getMinMaxKind());
+ return RecurrenceInstDesc(false, I);
+ return RecurrenceInstDesc(I, Prev.getMinMaxKind());
case Instruction::Sub:
case Instruction::Add:
- return ReductionInstDesc(Kind == RK_IntegerAdd, I);
+ return RecurrenceInstDesc(Kind == RK_IntegerAdd, I);
case Instruction::Mul:
- return ReductionInstDesc(Kind == RK_IntegerMult, I);
+ return RecurrenceInstDesc(Kind == RK_IntegerMult, I);
case Instruction::And:
- return ReductionInstDesc(Kind == RK_IntegerAnd, I);
+ return RecurrenceInstDesc(Kind == RK_IntegerAnd, I);
case Instruction::Or:
- return ReductionInstDesc(Kind == RK_IntegerOr, I);
+ return RecurrenceInstDesc(Kind == RK_IntegerOr, I);
case Instruction::Xor:
- return ReductionInstDesc(Kind == RK_IntegerXor, I);
+ return RecurrenceInstDesc(Kind == RK_IntegerXor, I);
case Instruction::FMul:
- return ReductionInstDesc(Kind == RK_FloatMult && FastMath, I);
+ return RecurrenceInstDesc(Kind == RK_FloatMult && FastMath, I);
case Instruction::FSub:
case Instruction::FAdd:
- return ReductionInstDesc(Kind == RK_FloatAdd && FastMath, I);
+ return RecurrenceInstDesc(Kind == RK_FloatAdd && FastMath, I);
case Instruction::FCmp:
case Instruction::ICmp:
case Instruction::Select:
if (Kind != RK_IntegerMinMax &&
(!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
- return ReductionInstDesc(false, I);
+ return RecurrenceInstDesc(false, I);
return isMinMaxSelectCmpPattern(I, Prev);
}
}
-bool ReductionDescriptor::hasMultipleUsesOf(
+bool RecurrenceDescriptor::hasMultipleUsesOf(
Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
unsigned NumUses = 0;
for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
return false;
}
-bool ReductionDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
- ReductionDescriptor &RedDes) {
+bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
+ RecurrenceDescriptor &RedDes) {
bool HasFunNoNaNAttr = false;
BasicBlock *Header = TheLoop->getHeader();
/// This function returns the identity element (or neutral element) for
/// the operation K.
-Constant *ReductionDescriptor::getReductionIdentity(ReductionKind K, Type *Tp) {
+Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
+ Type *Tp) {
switch (K) {
case RK_IntegerXor:
case RK_IntegerAdd:
// Adding zero to a number does not change it.
return ConstantFP::get(Tp, 0.0L);
default:
- llvm_unreachable("Unknown reduction kind");
+ llvm_unreachable("Unknown recurrence kind");
}
}
-/// This function translates the reduction kind to an LLVM binary operator.
-unsigned ReductionDescriptor::getReductionBinOp(ReductionKind Kind) {
+/// This function translates the recurrence kind to an LLVM binary operator.
+unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
switch (Kind) {
case RK_IntegerAdd:
return Instruction::Add;
case RK_FloatMinMax:
return Instruction::FCmp;
default:
- llvm_unreachable("Unknown reduction operation");
+ llvm_unreachable("Unknown recurrence operation");
}
}
-Value *
-ReductionDescriptor::createMinMaxOp(IRBuilder<> &Builder,
- ReductionInstDesc::MinMaxReductionKind RK,
- Value *Left, Value *Right) {
+Value *RecurrenceDescriptor::createMinMaxOp(
+ IRBuilder<> &Builder, RecurrenceInstDesc::MinMaxRecurrenceKind RK,
+ Value *Left, Value *Right) {
CmpInst::Predicate P = CmpInst::ICMP_NE;
switch (RK) {
default:
- llvm_unreachable("Unknown min/max reduction kind");
- case ReductionInstDesc::MRK_UIntMin:
+ llvm_unreachable("Unknown min/max recurrence kind");
+ case RecurrenceInstDesc::MRK_UIntMin:
P = CmpInst::ICMP_ULT;
break;
- case ReductionInstDesc::MRK_UIntMax:
+ case RecurrenceInstDesc::MRK_UIntMax:
P = CmpInst::ICMP_UGT;
break;
- case ReductionInstDesc::MRK_SIntMin:
+ case RecurrenceInstDesc::MRK_SIntMin:
P = CmpInst::ICMP_SLT;
break;
- case ReductionInstDesc::MRK_SIntMax:
+ case RecurrenceInstDesc::MRK_SIntMax:
P = CmpInst::ICMP_SGT;
break;
- case ReductionInstDesc::MRK_FloatMin:
+ case RecurrenceInstDesc::MRK_FloatMin:
P = CmpInst::FCMP_OLT;
break;
- case ReductionInstDesc::MRK_FloatMax:
+ case RecurrenceInstDesc::MRK_FloatMax:
P = CmpInst::FCMP_OGT;
break;
}
Value *Cmp;
- if (RK == ReductionInstDesc::MRK_FloatMin ||
- RK == ReductionInstDesc::MRK_FloatMax)
+ if (RK == RecurrenceInstDesc::MRK_FloatMin ||
+ RK == RecurrenceInstDesc::MRK_FloatMax)
Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
else
Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
/// ReductionList contains the reduction descriptors for all
/// of the reductions that were found in the loop.
- typedef DenseMap<PHINode*, ReductionDescriptor> ReductionList;
+ typedef DenseMap<PHINode *, RecurrenceDescriptor> ReductionList;
/// InductionList saves induction variables and maps them to the
/// induction descriptor.
// Find the reduction variable descriptor.
assert(Legal->getReductionVars()->count(RdxPhi) &&
"Unable to find the reduction variable");
- ReductionDescriptor RdxDesc = (*Legal->getReductionVars())[RdxPhi];
+ RecurrenceDescriptor RdxDesc = (*Legal->getReductionVars())[RdxPhi];
- ReductionDescriptor::ReductionKind RK = RdxDesc.getReductionKind();
- TrackingVH<Value> ReductionStartValue = RdxDesc.getReductionStartValue();
+ RecurrenceDescriptor::RecurrenceKind RK = RdxDesc.getRecurrenceKind();
+ TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
- ReductionInstDesc::MinMaxReductionKind MinMaxKind =
- RdxDesc.getMinMaxReductionKind();
+ RecurrenceInstDesc::MinMaxRecurrenceKind MinMaxKind =
+ RdxDesc.getMinMaxRecurrenceKind();
setDebugLocFromInst(Builder, ReductionStartValue);
// We need to generate a reduction vector from the incoming scalar.
// one for multiplication, -1 for And.
Value *Identity;
Value *VectorStart;
- if (RK == ReductionDescriptor::RK_IntegerMinMax ||
- RK == ReductionDescriptor::RK_FloatMinMax) {
+ if (RK == RecurrenceDescriptor::RK_IntegerMinMax ||
+ RK == RecurrenceDescriptor::RK_FloatMinMax) {
// MinMax reduction have the start value as their identify.
if (VF == 1) {
VectorStart = Identity = ReductionStartValue;
}
} else {
// Handle other reduction kinds:
- Constant *Iden =
- ReductionDescriptor::getReductionIdentity(RK, VecTy->getScalarType());
+ Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity(
+ RK, VecTy->getScalarType());
if (VF == 1) {
Identity = Iden;
// This vector is the Identity vector where the first element is the
// Reduce all of the unrolled parts into a single vector.
Value *ReducedPartRdx = RdxParts[0];
- unsigned Op = ReductionDescriptor::getReductionBinOp(RK);
+ unsigned Op = RecurrenceDescriptor::getRecurrenceBinOp(RK);
setDebugLocFromInst(Builder, ReducedPartRdx);
for (unsigned part = 1; part < UF; ++part) {
if (Op != Instruction::ICmp && Op != Instruction::FCmp)
Builder.CreateBinOp((Instruction::BinaryOps)Op, RdxParts[part],
ReducedPartRdx, "bin.rdx"));
else
- ReducedPartRdx = ReductionDescriptor::createMinMaxOp(
+ ReducedPartRdx = RecurrenceDescriptor::createMinMaxOp(
Builder, MinMaxKind, ReducedPartRdx, RdxParts[part]);
}
TmpVec = addFastMathFlag(Builder.CreateBinOp(
(Instruction::BinaryOps)Op, TmpVec, Shuf, "bin.rdx"));
else
- TmpVec = ReductionDescriptor::createMinMaxOp(Builder, MinMaxKind,
- TmpVec, Shuf);
+ TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind,
+ TmpVec, Shuf);
}
// The result is in the first element of the vector.
continue;
}
- if (ReductionDescriptor::isReductionPHI(Phi, TheLoop,
- Reductions[Phi])) {
+ if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop,
+ Reductions[Phi])) {
AllowedExit.insert(Reductions[Phi].getLoopExitInstr());
continue;
}