Numerous bug fixes and the completed modschedSB algorithm (minor bugs still exist...
authorTanya Lattner <tonic@nondot.org>
Fri, 17 Jun 2005 04:00:57 +0000 (04:00 +0000)
committerTanya Lattner <tonic@nondot.org>
Fri, 17 Jun 2005 04:00:57 +0000 (04:00 +0000)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@22239 91177308-0d34-0410-b5e6-96231b3b80d8

lib/Target/SparcV9/ModuloScheduling/DependenceAnalyzer.cpp
lib/Target/SparcV9/ModuloScheduling/MSSchedule.cpp
lib/Target/SparcV9/ModuloScheduling/MSSchedule.h
lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.cpp
lib/Target/SparcV9/ModuloScheduling/ModuloScheduling.h
lib/Target/SparcV9/ModuloScheduling/ModuloSchedulingSuperBlock.cpp
lib/Target/SparcV9/ModuloScheduling/ModuloSchedulingSuperBlock.h

index 25ad03ad7d9062cc9c9438b62dd36771b9d7ab7a..d0b5db304a1db262d7c8e639d8fc41f08b2f1d4f 100644 (file)
@@ -159,10 +159,10 @@ void DependenceAnalyzer::advancedDepAnalysis(GetElementPtrInst *gp1,
   SCEVHandle SV2 = SE->getSCEV(Gep2Idx);
 
   //Now handle special cases of dependence analysis
-  SV1->print(std::cerr);
-  std::cerr << "\n";
-  SV2->print(std::cerr);
-  std::cerr << "\n";
+  //SV1->print(std::cerr);
+  //std::cerr << "\n";
+  //SV2->print(std::cerr);
+  //std::cerr << "\n";
 
   //Check if we have an SCEVAddExpr, cause we can only handle those
   SCEVAddRecExpr *SVAdd1 = dyn_cast<SCEVAddRecExpr>(SV1);
@@ -217,7 +217,7 @@ void DependenceAnalyzer::advancedDepAnalysis(GetElementPtrInst *gp1,
   
   //Find constant index difference
   int diff = A1->getValue()->getRawValue() - A2->getValue()->getRawValue();
-  std::cerr << diff << "\n";
+  //std::cerr << diff << "\n";
   if(diff > 5)
     diff = 2;
 
@@ -240,14 +240,21 @@ void DependenceAnalyzer::createDep(std::vector<Dependence> &deps,
 
   //If load/store pair
   if(valLoad && !val2Load) {
-    //Anti Dep
-    deps.push_back(Dependence(diff, Dependence::AntiDep));
+    if(srcBeforeDest) 
+      //Anti Dep
+      deps.push_back(Dependence(diff, Dependence::AntiDep));
+    else
+      deps.push_back(Dependence(diff, Dependence::TrueDep));
+
     ++NumDeps;
   }
   //If store/load pair
   else if(!valLoad && val2Load) {
-    //True Dep
-    deps.push_back(Dependence(diff, Dependence::TrueDep));
+    if(srcBeforeDest) 
+      //True Dep
+      deps.push_back(Dependence(diff, Dependence::TrueDep));
+    else
+      deps.push_back(Dependence(diff, Dependence::AntiDep));
     ++NumDeps;
   }
   //If store/store pair
index d1aaa4f46b16fbf99db421966e0cc8bc3f1172ce..6e8a6db347320b7e545e818bac574fc886e63ead 100644 (file)
 #include "llvm/Support/Debug.h"
 #include "llvm/Target/TargetSchedInfo.h"
 #include "../SparcV9Internals.h"
+#include "llvm/CodeGen/MachineInstr.h"
 
 using namespace llvm;
 
+//Check if all resources are free
+bool resourcesFree(MSchedGraphNode*, int, 
+std::map<int, std::map<int, int> > &resourceNumPerCycle);
+
 //Returns a boolean indicating if the start cycle needs to be increased/decreased
-bool MSSchedule::insert(MSchedGraphNode *node, int cycle) {
+bool MSSchedule::insert(MSchedGraphNode *node, int cycle, int II) {
 
   //First, check if the cycle has a spot free to start
   if(schedule.find(cycle) != schedule.end()) {
     //Check if we have a free issue slot at this cycle
     if (schedule[cycle].size() < numIssue) {
       //Now check if all the resources in their respective cycles are available
-      if(resourcesFree(node, cycle)) {
+      if(resourcesFree(node, cycle, II)) {
        //Insert to preserve dependencies
        addToSchedule(cycle,node);
        DEBUG(std::cerr << "Found spot in map, and there is an issue slot\n");
@@ -37,7 +42,7 @@ bool MSSchedule::insert(MSchedGraphNode *node, int cycle) {
   }
   //Not in the map yet so put it in
   else {
-    if(resourcesFree(node,cycle)) {
+    if(resourcesFree(node,cycle,II)) {
       std::vector<MSchedGraphNode*> nodes;
       nodes.push_back(node);
       schedule[cycle] = nodes;
@@ -68,99 +73,113 @@ void MSSchedule::addToSchedule(int cycle, MSchedGraphNode *node) {
   schedule[cycle] =  nodes;
 }
 
+bool MSSchedule::resourceAvailable(int resourceNum, int cycle) {
+  bool isFree = true;
+
+  //Get Map for this cycle
+  if(resourceNumPerCycle.count(cycle)) {
+    if(resourceNumPerCycle[cycle].count(resourceNum)) {
+      int maxRes = CPUResource::getCPUResource(resourceNum)->maxNumUsers;
+      if(resourceNumPerCycle[cycle][resourceNum] >= maxRes)
+       isFree = false;
+    }
+  }
+  
+  return isFree;
+}
+
+void MSSchedule::useResource(int resourceNum, int cycle) {
+  
+  //Get Map for this cycle
+  if(resourceNumPerCycle.count(cycle)) {
+    if(resourceNumPerCycle[cycle].count(resourceNum)) {
+      resourceNumPerCycle[cycle][resourceNum]++;
+    }
+    else {
+      resourceNumPerCycle[cycle][resourceNum] = 1;
+    }
+  }
+  //If no map, create one!
+  else {
+    std::map<int, int> resourceUse;
+    resourceUse[resourceNum] = 1;
+    resourceNumPerCycle[cycle] = resourceUse;
+  }
+  
+}
 
-bool MSSchedule::resourcesFree(MSchedGraphNode *node, int cycle) {
+bool MSSchedule::resourcesFree(MSchedGraphNode *node, int cycle, int II) {
 
   //Get Resource usage for this instruction
   const TargetSchedInfo *msi = node->getParent()->getTarget()->getSchedInfo();
   int currentCycle = cycle;
   bool success = true;
 
-  //Get resource usage for this instruction
-  InstrRUsage rUsage = msi->getInstrRUsage(node->getInst()->getOpcode());
-  std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle;
+  //Create vector of starting cycles
+  std::vector<int> cyclesMayConflict;
+  cyclesMayConflict.push_back(cycle);
 
-  //Loop over resources in each cycle and increments their usage count
-  for(unsigned i=0; i < resources.size(); ++i) {
-    for(unsigned j=0; j < resources[i].size(); ++j) {
-
-      //Get Resource to check its availability
-      int resourceNum = resources[i][j];
-
-      DEBUG(std::cerr << "Attempting to schedule Resource Num: " << resourceNum << " in cycle: " << currentCycle << "\n");
-
-       //Check if this resource is available for this cycle
-       std::map<int, std::map<int,int> >::iterator resourcesForCycle = resourceNumPerCycle.find(currentCycle);
+  if(resourceNumPerCycle.size() > 0) {
+    for(int i = cycle-II; i >= (resourceNumPerCycle.begin()->first); i-=II)
+      cyclesMayConflict.push_back(i);
+    for(int i = cycle+II; i <= resourceNumPerCycle.end()->first; i+=II)
+      cyclesMayConflict.push_back(i);
+  }
 
-       //First check if map exists for this cycle
-       if(resourcesForCycle != resourceNumPerCycle.end()) {
-         //A map exists for this cycle, so lets check for the resource
-         std::map<int, int>::iterator resourceUse = resourcesForCycle->second.find(resourceNum);
-         if(resourceUse != resourcesForCycle->second.end()) {
-           //Check if there are enough of this resource and if so, increase count and move on
-           if(resourceUse->second < CPUResource::getCPUResource(resourceNum)->maxNumUsers)
-             ++resourceUse->second;
+  //Now check all cycles for conflicts
+  for(int index = 0; index < (int) cyclesMayConflict.size(); ++index) {
+    currentCycle = cyclesMayConflict[index];
+    
+    //Get resource usage for this instruction
+    InstrRUsage rUsage = msi->getInstrRUsage(node->getInst()->getOpcode());
+    std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle;
+    
+    //Loop over resources in each cycle and increments their usage count
+    for(unsigned i=0; i < resources.size(); ++i) {
+      for(unsigned j=0; j < resources[i].size(); ++j) {
        
-           else {
-             DEBUG(std::cerr << "No resource num " << resourceNum << " available for cycle " << currentCycle << "\n");
-             success = false;
-           }
-         }
-         //Not in the map yet, so put it
-         else
-           resourcesForCycle->second[resourceNum] = 1;
+       //Get Resource to check its availability
+       int resourceNum = resources[i][j];
+       
+       DEBUG(std::cerr << "Attempting to schedule Resource Num: " << resourceNum << " in cycle: " << currentCycle << "\n");
+       
+       success = resourceAvailable(resourceNum, currentCycle); 
        
-       }
-       else {
-         //Create a new map and put in our resource
-         std::map<int, int> resourceMap;
-         resourceMap[resourceNum] = 1;
-         resourceNumPerCycle[currentCycle] = resourceMap;
-       }
        if(!success)
          break;
+       
       }
+      
       if(!success)
        break;
-       
-
+      
       //Increase cycle
       currentCycle++;
+    }
+    
+    if(!success)
+      return false;
   }
 
-  if(!success) {
-    int oldCycle = cycle;
-    DEBUG(std::cerr << "Backtrack\n");
+  //Actually put resources into the map
+  if(success) {
+
+    int currentCycle = cycle;
     //Get resource usage for this instruction
     InstrRUsage rUsage = msi->getInstrRUsage(node->getInst()->getOpcode());
     std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle;
-
+    
     //Loop over resources in each cycle and increments their usage count
     for(unsigned i=0; i < resources.size(); ++i) {
-      if(oldCycle < currentCycle) {
-       
-       //Check if this resource is available for this cycle
-       std::map<int, std::map<int,int> >::iterator resourcesForCycle = resourceNumPerCycle.find(oldCycle);
-       if(resourcesForCycle != resourceNumPerCycle.end()) {
-         for(unsigned j=0; j < resources[i].size(); ++j) {
-           int resourceNum = resources[i][j];
-           //remove from map
-           std::map<int, int>::iterator resourceUse = resourcesForCycle->second.find(resourceNum);
-           //assert if not in the map.. since it should be!
-           //assert(resourceUse != resourcesForCycle.end() && "Resource should be in map!");
-           DEBUG(std::cerr << "Removing resource num " << resourceNum << " from cycle " << oldCycle << "\n");
-           --resourceUse->second;
-         }
-       }
+      for(unsigned j=0; j < resources[i].size(); ++j) {
+       int resourceNum = resources[i][j];
+       useResource(resourceNum, currentCycle);
       }
-      else
-       break;
-      oldCycle++;
+      currentCycle++;
     }
-    return false;
-
   }
 
+
   return true;
 
 }
@@ -174,12 +193,9 @@ bool MSSchedule::constructKernel(int II, std::vector<MSchedGraphNode*> &branches
 
   DEBUG(std::cerr << "Offset: " << offset << "\n");
 
-  //Not sure what happens in this case, but assert if offset is > II
-  //assert(offset > -II && "Offset can not be more then II");
-
+  //Using the schedule, fold up into kernel and check resource conflicts as we go
   std::vector<std::pair<MSchedGraphNode*, int> > tempKernel;
-
-
+  
   int stageNum = ((schedule.rbegin()->first-offset)+1)/ II;
   int maxSN = 0;
 
@@ -192,21 +208,18 @@ bool MSSchedule::constructKernel(int II, std::vector<MSchedGraphNode*> &branches
        for(std::vector<MSchedGraphNode*>::iterator I = schedule[i].begin(),
              E = schedule[i].end(); I != E; ++I) {
          //Check if its a branch
-         if((*I)->isBranch()) {
-           assert(count == 0 && "Branch can not be from a previous iteration");
-           tempKernel.push_back(std::make_pair(*I, count));
-         }
-         else {
-         //FIXME: Check if the instructions in the earlier stage conflict
-           tempKernel.push_back(std::make_pair(*I, count));
-           maxSN = std::max(maxSN, count);
-         }
+         assert(!(*I)->isBranch() && "Branch should not be schedule!");
+
+         tempKernel.push_back(std::make_pair(*I, count));
+         maxSN = std::max(maxSN, count);
+         
        }
       }
       ++count;
     }
   }
 
+
   //Add in induction var code
   for(std::vector<std::pair<MSchedGraphNode*, int> >::iterator I = tempKernel.begin(), IE = tempKernel.end();
       I != IE; ++I) {
@@ -253,6 +266,30 @@ bool MSSchedule::constructKernel(int II, std::vector<MSchedGraphNode*> &branches
   return true;
 }
 
+bool MSSchedule::defPreviousStage(Value *def, int stage) {
+
+  //Loop over kernel and determine if value is being defined in previous stage
+  for(std::vector<std::pair<MachineInstr*, int> >::iterator P = kernel.begin(), PE = kernel.end(); P != PE; ++P) {
+    MachineInstr* inst = P->first;
+
+    //Loop over Machine Operands
+    for(unsigned i=0; i < inst->getNumOperands(); ++i) {
+      //get machine operand
+     const MachineOperand &mOp = inst->getOperand(i);
+     if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
+       if(def == mOp.getVRegValue()) {
+        if(P->second >= stage)
+          return false;
+        else
+          return true;
+       }
+     }
+    }
+  }
+  
+  assert(0 && "We should always have found the def in our kernel\n");
+}
+
 
 void MSSchedule::print(std::ostream &os) const {
   os << "Schedule:\n";
index d9f42a25b4afb53546f8cfdf4b24a6b6c18572d5..92a942b43c146c55ae69a1c1fd11e0df427a3007 100644 (file)
@@ -28,7 +28,9 @@ namespace llvm {
     std::map<int, std::map<int, int> > resourceNumPerCycle;
 
     //Check if all resources are free
-    bool resourcesFree(MSchedGraphNode*, int);
+    bool resourcesFree(MSchedGraphNode*, int, int II); 
+    bool resourceAvailable(int resourceNum, int cycle);
+    void useResource(int resourceNum, int cycle);
 
     //Resulting kernel
     std::vector<std::pair<MachineInstr*, int> > kernel;
@@ -42,13 +44,13 @@ namespace llvm {
   public:
     MSSchedule(int num) : numIssue(num) {}
     MSSchedule() : numIssue(4) {}
-    bool insert(MSchedGraphNode *node, int cycle);
+    bool insert(MSchedGraphNode *node, int cycle, int II);
     int getStartCycle(MSchedGraphNode *node);
     void clear() { schedule.clear(); resourceNumPerCycle.clear(); kernel.clear(); }
     std::vector<std::pair<MachineInstr*, int> >* getKernel() { return &kernel; }
     bool constructKernel(int II, std::vector<MSchedGraphNode*> &branches, std::map<const MachineInstr*, unsigned> &indVar);
     int getMaxStage() { return maxStage; }
-
+    bool defPreviousStage(Value *def, int stage);
 
     //iterators
     typedef std::map<int, std::vector<MSchedGraphNode*> >::iterator schedule_iterator;
index 4e57c65aae1098ace8342d95029017362317af34..65008a67f84955f4688c1d194dec1b9ea6a492eb 100644 (file)
@@ -178,7 +178,7 @@ bool ModuloSchedulingPass::runOnFunction(Function &F) {
       }
       else
        ++JumboBB;
-      std::cerr << "BB Size: " << BI->size() << "\n";
+      
     }
 
   defaultInst = 0;
@@ -230,7 +230,6 @@ bool ModuloSchedulingPass::runOnFunction(Function &F) {
 
     II = std::max(RecMII, ResMII);
     int mII = II;
-    IISum += mII;
 
     //Print out II, RecMII, and ResMII
     DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << " and ResMII=" << ResMII << ")\n");
@@ -285,12 +284,15 @@ bool ModuloSchedulingPass::runOnFunction(Function &F) {
       reconstructLoop(*BI);
       ++MSLoops;
       Changed = true;
+      FinalIISum += II;
+      IISum += mII;
 
       if(schedule.getMaxStage() == 0)
        ++SameStage;
     }
-    else
+    else {
       ++NoSched;
+    }
 
     //Clear out our maps for the next basic block that is processed
     nodeToAttributesMap.clear();
@@ -323,7 +325,9 @@ bool ModuloSchedulingPass::CreateDefMap(MachineBasicBlock *BI) {
       if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
        //assert if this is the second def we have seen
        //DEBUG(std::cerr << "Putting " << *(mOp.getVRegValue()) << " into map\n");
-       assert(!defMap.count(mOp.getVRegValue()) && "Def already in the map");
+       //assert(!defMap.count(mOp.getVRegValue()) && "Def already in the map");
+       if(defMap.count(mOp.getVRegValue()))
+         return false;
 
        defMap[mOp.getVRegValue()] = &*I;
       }
@@ -397,7 +401,7 @@ bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) {
        || OC == V9::MOVRGEZi || OC == V9::MOVLEr || OC == V9::MOVLEi || OC == V9::MOVLEUr
        || OC == V9::MOVLEUi || OC == V9::MOVFLEr || OC == V9::MOVFLEi
        || OC == V9::MOVNEr || OC == V9::MOVNEi || OC == V9::MOVNEGr || OC == V9::MOVNEGi
-       || OC == V9::MOVFNEr || OC == V9::MOVFNEi) {
+       || OC == V9::MOVFNEr || OC == V9::MOVFNEi || OC == V9::MOVGr || OC == V9::MOVGi) {
       ++LoopsWithCondMov;
       return false;
     }
@@ -579,6 +583,8 @@ int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) {
     //Divide the usage count by either the max number we can issue or the number of
     //resources (whichever is its upper bound)
     double finalUsageCount;
+    DEBUG(std::cerr << "Resource Num: " << RB->first << " Usage: " << usageCount << " TotalNum: " << resourceNum << "\n");
+
     if( resourceNum <= issueSlots)
       finalUsageCount = ceil(1.0 * usageCount / resourceNum);
     else
@@ -1035,6 +1041,56 @@ void ModuloSchedulingPass::addRecc(std::vector<MSchedGraphNode*> &stack, std::ma
 
 }
 
+void ModuloSchedulingPass::addSCC(std::vector<MSchedGraphNode*> &SCC, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes) {
+
+  int totalDelay = 0;
+  int totalDistance = 0;
+  std::vector<MSchedGraphNode*> recc;
+  MSchedGraphNode *start = 0;
+  MSchedGraphNode *end = 0;
+
+  //Loop over recurrence, get delay and distance
+  for(std::vector<MSchedGraphNode*>::iterator N = SCC.begin(), NE = SCC.end(); N != NE; ++N) {
+    DEBUG(std::cerr << **N << "\n");
+    totalDelay += (*N)->getLatency();
+    
+    for(unsigned i = 0; i < (*N)->succ_size(); ++i) {
+      MSchedGraphEdge *edge = (*N)->getSuccessor(i);
+      if(find(SCC.begin(), SCC.end(), edge->getDest()) != SCC.end()) {
+       totalDistance += edge->getIteDiff();
+       if(edge->getIteDiff() > 0)
+         if(!start && !end) {
+           start = *N;
+           end = edge->getDest();
+         }
+           
+      }
+    }
+
+
+    //Get the original node
+    recc.push_back(newNodes[*N]);
+
+
+  }
+
+  DEBUG(std::cerr << "End Recc\n");
+  CircCount++;
+
+  assert( (start && end) && "Must have start and end node to ignore edge for SCC");
+
+  if(start && end) {   
+    //Insert reccurrence into the list
+    DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n");
+    edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start])));
+  }
+
+  int lastII = totalDelay / totalDistance;
+
+
+  recurrenceList.insert(std::make_pair(lastII, recc));
+
+}
 
 void ModuloSchedulingPass::findAllCircuits(MSchedGraph *g, int II) {
 
@@ -1074,6 +1130,7 @@ void ModuloSchedulingPass::findAllCircuits(MSchedGraph *g, int II) {
     std::set<MSchedGraphNode*> Visited;
     std::vector<MSchedGraphNode*> Vk;
     MSchedGraphNode* s = 0;
+    int numEdges = 0;
 
     //Find scc with the least vertex
     for (MSchedGraph::iterator GI = MSG->begin(), E = MSG->end(); GI != E; ++GI)
@@ -1085,7 +1142,19 @@ void ModuloSchedulingPass::findAllCircuits(MSchedGraph *g, int II) {
          if (Visited.insert(nextSCC[0]).second) {
            Visited.insert(nextSCC.begin()+1, nextSCC.end());
 
-           DEBUG(std::cerr << "SCC size: " << nextSCC.size() << "\n");
+           if(nextSCC.size() > 1) {
+             std::cerr << "SCC size: " << nextSCC.size() << "\n";
+             
+             for(unsigned i = 0; i < nextSCC.size(); ++i) {
+               //Loop over successor and see if in scc, then count edge
+               MSchedGraphNode *node = nextSCC[i];
+               for(MSchedGraphNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE; ++S) {
+                 if(find(nextSCC.begin(), nextSCC.end(), *S) != nextSCC.end())
+                   numEdges++;
+               }
+             }
+             std::cerr << "Num Edges: " << numEdges << "\n";
+           }
 
            //Ignore self loops
            if(nextSCC.size() > 1) {
@@ -1120,7 +1189,10 @@ void ModuloSchedulingPass::findAllCircuits(MSchedGraph *g, int II) {
       B[*N].clear();
     }
     if(Vk.size() > 1) {
-      circuit(s, stack, blocked, Vk, s, B, II, newNodes);
+      if(numEdges < 98)
+       circuit(s, stack, blocked, Vk, s, B, II, newNodes);
+      else
+       addSCC(Vk, newNodes);
 
       //Delete nodes from the graph
       //Find all nodes up to s and delete them
@@ -1860,8 +1932,8 @@ bool ModuloSchedulingPass::computeSchedule(const MachineBasicBlock *BB, MSchedGr
        schedule.clear();
       }
       DEBUG(std::cerr << "Final II: " << II << "\n");
-      FinalIISum += II;
     }
+   
 
     if(II >= capII) {
       DEBUG(std::cerr << "Maximum II reached, giving up\n");
@@ -1900,7 +1972,7 @@ bool ModuloSchedulingPass::scheduleNode(MSchedGraphNode *node,
 
     increaseSC = false;
 
-    increaseSC = schedule.insert(node, cycle);
+    increaseSC = schedule.insert(node, cycle, II);
 
     if(!increaseSC)
       return true;
@@ -2034,18 +2106,11 @@ void ModuloSchedulingPass::writePrologues(std::vector<MachineBasicBlock *> &prol
       }
     }
 
-
-    /*for(std::vector<MSchedGraphNode*>::iterator BR = branches.begin(), BE = branches.end(); BR != BE; ++BR) {
-
-      //Stick in branch at the end
-      machineBB->push_back((*BR)->getInst()->clone());
-
-      //Add nop
-      BuildMI(machineBB, V9::NOP, 0);
-      }*/
-
-
-  (((MachineBasicBlock*)origBB)->getParent())->getBasicBlockList().push_back(machineBB);
+    MachineFunction *F = (((MachineBasicBlock*)origBB)->getParent());
+    MachineFunction::BasicBlockListType &BL = F->getBasicBlockList();
+    MachineFunction::BasicBlockListType::iterator BLI = origBB;
+    assert(BLI != BL.end() && "Must find original BB in machine function\n");
+    BL.insert(BLI,machineBB);
     prologues.push_back(machineBB);
     llvm_prologues.push_back(llvmBB);
   }
@@ -2143,12 +2208,16 @@ void ModuloSchedulingPass::writeEpilogues(std::vector<MachineBasicBlock *> &epil
       }
      }
 
-    (((MachineBasicBlock*)origBB)->getParent())->getBasicBlockList().push_back(machineBB);
-    epilogues.push_back(machineBB);
-    llvm_epilogues.push_back(llvmBB);
-
-    DEBUG(std::cerr << "EPILOGUE #" << i << "\n");
-    DEBUG(machineBB->print(std::cerr));
+     MachineFunction *F = (((MachineBasicBlock*)origBB)->getParent());
+     MachineFunction::BasicBlockListType &BL = F->getBasicBlockList();
+     MachineFunction::BasicBlockListType::iterator BLI = (MachineBasicBlock*) origBB;
+     assert(BLI != BL.end() && "Must find original BB in machine function\n");
+     BL.insert(BLI,machineBB);
+     epilogues.push_back(machineBB);
+     llvm_epilogues.push_back(llvmBB);
+     
+     DEBUG(std::cerr << "EPILOGUE #" << i << "\n");
+     DEBUG(machineBB->print(std::cerr));
   }
 }
 
@@ -2170,14 +2239,6 @@ void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *ma
 
    DEBUG(std::cerr << "Stage: " << I->second << " Inst: " << *(I->first) << "\n";);
 
-   /*if(I->first->isBranch()) {
-     //Clone instruction
-     const MachineInstr *inst = I->first->getInst();
-     MachineInstr *instClone = inst->clone();
-     branches.push_back(instClone);
-     continue;
-     }*/
-
    //Clone instruction
    const MachineInstr *inst = I->first;
    MachineInstr *instClone = inst->clone();
@@ -2208,6 +2269,8 @@ void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *ma
 
           //Check if we already have a final PHI value for this
           if(!finalPHIValue.count(mOp.getVRegValue())) {
+            //Only create phi if the operand def is from a stage before this one
+            if(schedule.defPreviousStage(mOp.getVRegValue(), I->second)) {
             TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue());
        
             //Get machine code for this instruction
@@ -2220,6 +2283,7 @@ void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *ma
             //save this as our final phi
             finalPHIValue[mOp.getVRegValue()] = tmp;
             newValLocation[tmp] = machineBB;
+            }
           }
           else {
             //Use the previous final phi value
@@ -2538,6 +2602,7 @@ void ModuloSchedulingPass::reconstructLoop(MachineBasicBlock *BB) {
   //Keep track of instructions we have already seen and their stage because
   //we don't want to "save" values if they are used in the kernel immediately
   std::map<const MachineInstr*, int> lastInstrs;
+  std::map<const Value*, int> phiUses;
 
   //Loop over kernel and only look at instructions from a stage > 0
   //Look at its operands and save values *'s that are read
@@ -2557,7 +2622,7 @@ void ModuloSchedulingPass::reconstructLoop(MachineBasicBlock *BB) {
          //find the value in the map
          if (const Value* srcI = mOp.getVRegValue()) {
 
-           if(isa<Constant>(srcI) || isa<Argument>(srcI) || isa<PHINode>(srcI))
+           if(isa<Constant>(srcI) || isa<Argument>(srcI))
              continue;
 
            //Before we declare this Value* one that we should save
@@ -2582,9 +2647,27 @@ void ModuloSchedulingPass::reconstructLoop(MachineBasicBlock *BB) {
              }
            }
        
-           if(save)
+           if(save) {
+             assert(!phiUses.count(srcI) && "Did not expect to see phi use twice");
+             if(isa<PHINode>(srcI))
+               phiUses[srcI] = I->second;
+             
              valuesToSave[srcI] = std::make_pair(I->first, i);
-         }     
+
+           }
+         }
+       }
+       else if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
+         if (const Value* destI = mOp.getVRegValue()) {
+           if(!isa<PHINode>(destI))
+             continue;
+           if(phiUses.count(destI)) {
+             if(phiUses[destI] == I->second) {
+               //remove from save list
+               valuesToSave.erase(destI);
+             }
+           }
+         }
        }
        
        if(mOp.getType() != MachineOperand::MO_VirtualRegister && mOp.isUse()) {
@@ -2623,7 +2706,14 @@ void ModuloSchedulingPass::reconstructLoop(MachineBasicBlock *BB) {
 
   BasicBlock *llvmKernelBB = new BasicBlock("Kernel", (Function*) (BB->getBasicBlock()->getParent()));
   MachineBasicBlock *machineKernelBB = new MachineBasicBlock(llvmKernelBB);
-  (((MachineBasicBlock*)BB)->getParent())->getBasicBlockList().push_back(machineKernelBB);
+  MachineFunction *F = (((MachineBasicBlock*)BB)->getParent());
+  MachineFunction::BasicBlockListType &BL = F->getBasicBlockList();
+  MachineFunction::BasicBlockListType::iterator BLI = BB;
+  assert(BLI != BL.end() && "Must find original BB in machine function\n");
+  BL.insert(BLI,machineKernelBB);
+
+  //(((MachineBasicBlock*)BB)->getParent())->getBasicBlockList().push_back(machineKernelBB);
   writeKernel(llvmKernelBB, machineKernelBB, valuesToSave, newValues, newValLocation, kernelPHIs);
 
 
@@ -2833,7 +2923,8 @@ void ModuloSchedulingPass::fixBranches(std::vector<MachineBasicBlock *> &prologu
                 for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) {
                   MachineOperand &mOp = temp->getOperand(opNum);
                   if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
-                    mOp.setValueReg(llvm_prologues[0]);
+                    if(mOp.getVRegValue() == llvmBB)
+                      mOp.setValueReg(llvm_prologues[0]);
                   }
                 }
               }
@@ -2853,7 +2944,8 @@ void ModuloSchedulingPass::fixBranches(std::vector<MachineBasicBlock *> &prologu
                 for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) {
                   MachineOperand &mOp = temp->getOperand(opNum);
                   if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
-                    mOp.setValueReg(llvmKernelBB);
+                    if(mOp.getVRegValue() == llvmBB)
+                      mOp.setValueReg(llvmKernelBB);
                   }
                 }
               }
index 263a6130de67cde7360a1f67cd3599bd1511d0b6..f47de9f357b11cd4f6b28814521fea24ef358fa3 100644 (file)
@@ -98,6 +98,7 @@ namespace llvm {
     void findAllReccurrences(MSchedGraphNode *node,
                             std::vector<MSchedGraphNode*> &visitedNodes, int II);
     void addReccurrence(std::vector<MSchedGraphNode*> &recurrence, int II, MSchedGraphNode*, MSchedGraphNode*);
+    void addSCC(std::vector<MSchedGraphNode*> &SCC, std::map<MSchedGraphNode*, MSchedGraphNode*> &newNodes);
 
     void findAllCircuits(MSchedGraph *MSG, int II);
     bool circuit(MSchedGraphNode *v, std::vector<MSchedGraphNode*> &stack,
@@ -142,7 +143,7 @@ namespace llvm {
 
     void writeKernel(BasicBlock *llvmBB, MachineBasicBlock *machineBB, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs);
 
-    void removePHIs(const MachineBasicBlock *origBB, std::vector<MachineBasicBlock *> &prologues, std::vector<MachineBasicBlock *> &epilogues, MachineBasicBlock *kernelBB, std::map<Value*, MachineBasicBlock*> &newValLocation);
+    void removePHIs(const MachineBasicBlock* SB, std::vector<MachineBasicBlock*> &prologues, std::vector<MachineBasicBlock *> &epilogues, MachineBasicBlock *kernelBB, std::map<Value*, MachineBasicBlock*> &newValLocation);
 
     void connectedComponentSet(MSchedGraphNode *node, std::set<MSchedGraphNode*> &ccSet, std::set<MSchedGraphNode*> &lastNodes);
 
index bc18027ff4d3a913dbd8778f31f078df57d20fa1..80594c34516e650782bfb6f1f85f373bc6a37e80 100644 (file)
 
 #include "DependenceAnalyzer.h"
 #include "ModuloSchedulingSuperBlock.h"
+#include "llvm/Constants.h"
 #include "llvm/ADT/Statistic.h"
 #include "llvm/CodeGen/MachineFunction.h"
 #include "llvm/CodeGen/Passes.h"
 #include "llvm/Support/CFG.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/GraphWriter.h"
+#include "llvm/Support/Timer.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/SCCIterator.h"
 #include "llvm/Instructions.h"
 #include "../MachineCodeForInstruction.h"
 #include "../SparcV9RegisterInfo.h"
@@ -30,6 +34,8 @@
 #include "../SparcV9TmpInstr.h"
 #include <fstream>
 #include <sstream>
+#include <cmath>
+#include <utility>
 
 using namespace llvm;
 /// Create ModuloSchedulingSBPass
@@ -39,9 +45,18 @@ FunctionPass *llvm::createModuloSchedulingSBPass(TargetMachine & targ) {
   return new ModuloSchedulingSBPass(targ);
 }
 
+
+#if 1
+#define TIME_REGION(VARNAME, DESC) \
+   NamedRegionTimer VARNAME(DESC)
+#else
+#define TIME_REGION(VARNAME, DESC)
+#endif
+
+
 //Graph Traits for printing out the dependence graph
 template<typename GraphType>
-static void WriteGraphToFile(std::ostream &O, const std::string &GraphName,
+static void WriteGraphToFileSB(std::ostream &O, const std::string &GraphName,
                              const GraphType &GT) {
   std::string Filename = GraphName + ".dot";
   O << "Writing '" << Filename << "'...";
@@ -58,8 +73,82 @@ namespace llvm {
   Statistic<> NumLoops("moduloschedSB-numLoops", "Total Number of Loops");
   Statistic<> NumSB("moduloschedSB-numSuperBlocks", "Total Number of SuperBlocks");
   Statistic<> BBWithCalls("modulosched-BBCalls", "Basic Blocks rejected due to calls");
-  Statistic<> BBWithCondMov("modulosched-loopCondMov", "Basic Blocks rejected due to conditional moves");
+  Statistic<> BBWithCondMov("modulosched-loopCondMov", 
+                           "Basic Blocks rejected due to conditional moves");
+  Statistic<> SBResourceConstraint("modulosched-resourceConstraint", 
+                                "Loops constrained by resources");
+  Statistic<> SBRecurrenceConstraint("modulosched-recurrenceConstraint", 
+                                  "Loops constrained by recurrences");
+  Statistic<> SBFinalIISum("modulosched-finalIISum", "Sum of all final II");
+  Statistic<> SBIISum("modulosched-IISum", "Sum of all theoretical II");
+  Statistic<> SBMSLoops("modulosched-schedLoops", "Number of loops successfully modulo-scheduled");
+  Statistic<> SBNoSched("modulosched-noSched", "No schedule");
+  Statistic<> SBSameStage("modulosched-sameStage", "Max stage is 0");
+  Statistic<> SBBLoops("modulosched-SBBLoops", "Number single basic block loops");
+  Statistic<> SBInvalid("modulosched-SBInvalid", "Number invalid superblock loops");
+  Statistic<> SBValid("modulosched-SBValid", "Number valid superblock loops");
+ Statistic<> SBSize("modulosched-SBSize", "Total size of all valid superblocks");
+
+  template<>
+  struct DOTGraphTraits<MSchedGraphSB*> : public DefaultDOTGraphTraits {
+    static std::string getGraphName(MSchedGraphSB *F) {
+      return "Dependence Graph";
+    }
+
+    static std::string getNodeLabel(MSchedGraphSBNode *Node, MSchedGraphSB *Graph) {
+      if(!Node->isPredicate()) {
+       if (Node->getInst()) {
+         std::stringstream ss;
+         ss << *(Node->getInst());
+         return ss.str(); //((MachineInstr*)Node->getInst());
+       }
+       else
+         return "No Inst";
+      }
+      else
+       return "Pred Node";
+    }
+    static std::string getEdgeSourceLabel(MSchedGraphSBNode *Node,
+                                         MSchedGraphSBNode::succ_iterator I) {
+      //Label each edge with the type of dependence
+      std::string edgelabel = "";
+      switch (I.getEdge().getDepOrderType()) {
+       
+      case MSchedGraphSBEdge::TrueDep:
+       edgelabel = "True";
+       break;
+
+      case MSchedGraphSBEdge::AntiDep:
+       edgelabel =  "Anti";
+       break;
+       
+      case MSchedGraphSBEdge::OutputDep:
+       edgelabel = "Output";
+       break;
+       
+      case MSchedGraphSBEdge::NonDataDep:
+       edgelabel = "Pred";
+       break;
+
+      default:
+       edgelabel = "Unknown";
+       break;
+      }
+
+      //FIXME
+      int iteDiff = I.getEdge().getIteDiff();
+      std::string intStr = "(IteDiff: ";
+      intStr += itostr(iteDiff);
+
+      intStr += ")";
+      edgelabel += intStr;
+
+      return edgelabel;
+    }
+  };
+
   bool ModuloSchedulingSBPass::runOnFunction(Function &F) {
+    alarm(100);
     bool Changed = false;
     
     //Get MachineFunction
@@ -91,14 +180,97 @@ namespace llvm {
        continue;
       }
 
-      MSchedGraph *MSG = new MSchedGraph(*SB, target, indVarInstrs[*SB], DA, 
+      MSchedGraphSB *MSG = new MSchedGraphSB(*SB, target, indVarInstrs[*SB], DA, 
                                         machineTollvm[*SB]);
 
       //Write Graph out to file
-      DEBUG(WriteGraphToFile(std::cerr, F.getName(), MSG));
-      DEBUG(MSG->print(std::cerr));
+      DEBUG(WriteGraphToFileSB(std::cerr, F.getName(), MSG));
+      
+      //Calculate Resource II
+      int ResMII = calculateResMII(*SB);
+
+      //Calculate Recurrence II
+      int RecMII = calculateRecMII(MSG, ResMII);
+      
+      DEBUG(std::cerr << "Number of reccurrences found: " << recurrenceList.size() << "\n");
+      
+      //Our starting initiation interval is the maximum of RecMII and ResMII
+      if(RecMII < ResMII)
+       ++SBRecurrenceConstraint;
+      else
+       ++SBResourceConstraint;
+      
+      II = std::max(RecMII, ResMII);
+      int mII = II;
+    
+      
+      //Print out II, RecMII, and ResMII
+      DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << " and ResMII=" << ResMII << ")\n");
+     
+      //Calculate Node Properties
+      calculateNodeAttributes(MSG, ResMII);
+      
+      //Dump node properties if in debug mode
+      DEBUG(for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I =  nodeToAttributesMap.begin(),
+                 E = nodeToAttributesMap.end(); I !=E; ++I) {
+             std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: "
+                       << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth
+                       << " Height: " << I->second.height << "\n";
+           });
+      
+
+      //Put nodes in order to schedule them
+      computePartialOrder();
+      //Dump out partial order
+      DEBUG(for(std::vector<std::set<MSchedGraphSBNode*> >::iterator I = partialOrder.begin(),
+                 E = partialOrder.end(); I !=E; ++I) {
+             std::cerr << "Start set in PO\n";
+             for(std::set<MSchedGraphSBNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J)
+               std::cerr << "PO:" << **J << "\n";
+           });
+
+      //Place nodes in final order
+      orderNodes();
+      
+      //Dump out order of nodes
+      DEBUG(for(std::vector<MSchedGraphSBNode*>::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) {
+             std::cerr << "FO:" << **I << "\n";
+           });
+      
 
+      //Finally schedule nodes
+      bool haveSched = computeSchedule(*SB, MSG);
+      
+      //Print out final schedule
+      DEBUG(schedule.print(std::cerr));
+      
+      //Final scheduling step is to reconstruct the loop only if we actual have
+      //stage > 0
+      if(haveSched) {
+       //schedule.printSchedule(std::cerr);
+       reconstructLoop(*SB);
+       ++SBMSLoops;
+       //Changed = true;
+       SBIISum += mII;
+       SBFinalIISum += II;
+       
+      if(schedule.getMaxStage() == 0)
+       ++SBSameStage;
+      }
+      else
+       ++SBNoSched;
+      
+      //Clear out our maps for the next basic block that is processed
+      nodeToAttributesMap.clear();
+      partialOrder.clear();
+      recurrenceList.clear();
+      FinalNodeOrder.clear();
+      schedule.clear();
+      defMap.clear();
+      
     }
+    alarm(0);
     return Changed;
     
   }
@@ -145,63 +317,211 @@ namespace llvm {
        MachineBasicBlock *currentMBB = bbMap[header];
        bool done = false;
        bool success = true;
+       unsigned offset = 0;
+       std::map<const MachineInstr*, unsigned> indexMap;
 
        while(!done) {
-         
-         if(MachineBBisValid(currentMBB)) {
-
-           //Loop over successors of this BB, they should be in the loop block
-           //and be valid
-           BasicBlock *next = 0;
-           for(succ_iterator I = succ_begin(current), E = succ_end(current);
-               I != E; ++I) {
-             if(L->contains(*I)) {
-               if(!next) 
-                 next = *I;
-               else {
-                 done = true;
-                 success = false;
-                 break;
-               }
-             }
-           }
-           if(success) {
-             superBlock.push_back(currentMBB);
-             if(next == header)
-               done = true;
-             else if(!next->getSinglePredecessor()) {
+         //Loop over successors of this BB, they should be in the
+         //loop block and be valid
+         BasicBlock *next = 0;
+         for(succ_iterator I = succ_begin(current), E = succ_end(current);
+             I != E; ++I) {
+           if(L->contains(*I)) {
+             if(!next) 
+               next = *I;
+             else {
                done = true;
                success = false;
-             }
-             else {
-               //Check that the next BB only has one entry
-               current = next;
-               assert(bbMap.count(current) && "LLVM BB must have corresponding Machine BB");
-               currentMBB = bbMap[current];
+               break;
              }
            }
          }
-         else {
-           done = true;
-           success = false;
+          
+         if(success) {
+           superBlock.push_back(currentMBB);
+           if(next == header)
+             done = true;
+           else if(!next->getSinglePredecessor()) {
+             done = true;
+             success = false;
+           }
+           else {
+             //Check that the next BB only has one entry
+             current = next;
+             assert(bbMap.count(current) && "LLVM BB must have corresponding Machine BB");
+             currentMBB = bbMap[current];
+           }
          }
        }
 
+
+         
+
+
        if(success) {
          ++NumSB;
-         Worklist.push_back(superBlock);
+
+         //Loop over all the blocks in the superblock
+         for(std::vector<const MachineBasicBlock*>::iterator currentMBB = superBlock.begin(), MBBEnd = superBlock.end(); currentMBB != MBBEnd; ++currentMBB) {
+           if(!MachineBBisValid(*currentMBB, indexMap, offset)) {
+             success = false;
+             break;
+           }
+         }
+       }
+       
+       if(success) {
+         if(getIndVar(superBlock, bbMap, indexMap)) {
+           ++SBValid;
+           Worklist.push_back(superBlock);
+           SBSize += superBlock.size();
+         }
+         else
+           ++SBInvalid;
        }
+      }
+    }
+  }
+  
+  
+  bool ModuloSchedulingSBPass::getIndVar(std::vector<const MachineBasicBlock*> &superBlock, std::map<BasicBlock*, MachineBasicBlock*> &bbMap, 
+                                 std::map<const MachineInstr*, unsigned> &indexMap) {
+    //See if we can get induction var instructions
+    std::set<const BasicBlock*> llvmSuperBlock;
+
+    for(unsigned i =0; i < superBlock.size(); ++i)
+      llvmSuperBlock.insert(superBlock[i]->getBasicBlock());
+
+    //Get Target machine instruction info
+    const TargetInstrInfo *TMI = target.getInstrInfo();
+    
+    //Get the loop back branch
+    BranchInst *b = dyn_cast<BranchInst>(((BasicBlock*) (superBlock[superBlock.size()-1])->getBasicBlock())->getTerminator());
+     std::set<Instruction*> indVar;
+
+    if(b->isConditional()) {
+      //Get the condition for the branch 
+      Value *cond = b->getCondition();
+    
+      DEBUG(std::cerr << "Condition: " << *cond << "\n");
+    
+      //List of instructions associated with induction variable
+      std::vector<Instruction*> stack;
+    
+      //Add branch
+      indVar.insert(b);
+    
+      if(Instruction *I = dyn_cast<Instruction>(cond))
+       if(bbMap.count(I->getParent())) {
+         if (!assocIndVar(I, indVar, stack, bbMap, superBlock[(superBlock.size()-1)]->getBasicBlock(), llvmSuperBlock))
+           return false;
+       }
+       else
+         return false;
+      else
+       return false;
+    }
+    else {
+      indVar.insert(b);
+    }
+
+    //Dump out instructions associate with indvar for debug reasons
+    DEBUG(for(std::set<Instruction*>::iterator N = indVar.begin(), NE = indVar.end(); 
+             N != NE; ++N) {
+           std::cerr << **N << "\n";
+         });
+    
+    //Create map of machine instr to llvm instr
+    std::map<MachineInstr*, Instruction*> mllvm;
+    for(std::vector<const MachineBasicBlock*>::iterator MBB = superBlock.begin(), MBE = superBlock.end(); MBB != MBE; ++MBB) {
+      BasicBlock *BB = (BasicBlock*) (*MBB)->getBasicBlock();
+      for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
+       MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(I);
+       for (unsigned j = 0; j < tempMvec.size(); j++) {
+         mllvm[tempMvec[j]] = I;
+       }
+      }
+    }
 
+      //Convert list of LLVM Instructions to list of Machine instructions
+      std::map<const MachineInstr*, unsigned> mIndVar;
+      for(std::set<Instruction*>::iterator N = indVar.begin(), 
+           NE = indVar.end(); N != NE; ++N) {
+             
+       //If we have a load, we can't handle this loop because
+       //there is no way to preserve dependences between loads
+       //and stores
+       if(isa<LoadInst>(*N))
+         return false;
+
+       MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(*N);
+       for (unsigned j = 0; j < tempMvec.size(); j++) {
+         MachineOpCode OC = (tempMvec[j])->getOpcode();
+         if(TMI->isNop(OC))
+           continue;
+         if(!indexMap.count(tempMvec[j]))
+           continue;
+         mIndVar[(MachineInstr*) tempMvec[j]] = indexMap[(MachineInstr*) tempMvec[j]];
+         DEBUG(std::cerr << *(tempMvec[j]) << " at index " << indexMap[(MachineInstr*) tempMvec[j]] << "\n");
+       }
       }
+      
+      //Put into a map for future access
+      indVarInstrs[superBlock] = mIndVar;
+      machineTollvm[superBlock] = mllvm;
+      
+      return true;
+      
+  }
 
+  bool ModuloSchedulingSBPass::assocIndVar(Instruction *I, 
+                                          std::set<Instruction*> &indVar,
+                                          std::vector<Instruction*> &stack, 
+                                      std::map<BasicBlock*, MachineBasicBlock*> &bbMap, 
+                                          const BasicBlock *last, std::set<const BasicBlock*> &llvmSuperBlock) {
+
+    stack.push_back(I);
+    
+    //If this is a phi node, check if its the canonical indvar
+    if(PHINode *PN = dyn_cast<PHINode>(I)) {
+      if(llvmSuperBlock.count(PN->getParent())) {
+       if (Instruction *Inc =
+           dyn_cast<Instruction>(PN->getIncomingValueForBlock(last)))
+         if (Inc->getOpcode() == Instruction::Add && Inc->getOperand(0) == PN)
+           if (ConstantInt *CI = dyn_cast<ConstantInt>(Inc->getOperand(1)))
+             if (CI->equalsInt(1)) {
+               //We have found the indvar, so add the stack, and inc instruction to the set
+               indVar.insert(stack.begin(), stack.end());
+               indVar.insert(Inc);
+               stack.pop_back();
+               return true;
+             }
+       return false;
+      }
+    }
+    else {
+      //Loop over each of the instructions operands, check if they are an instruction and in this BB
+      for(unsigned i = 0; i < I->getNumOperands(); ++i) {
+       if(Instruction *N =  dyn_cast<Instruction>(I->getOperand(i))) {
+         if(bbMap.count(N->getParent()))
+           if(!assocIndVar(N, indVar, stack, bbMap, last, llvmSuperBlock))
+             return false;
+       }
+      }
     }
+    
+    stack.pop_back();
+    return true;
   }
   
+
   /// This function checks if a Machine Basic Block is valid for modulo
   /// scheduling. This means that it has no control flow (if/else or
   /// calls) in the block.  Currently ModuloScheduling only works on
   /// single basic block loops.
-  bool ModuloSchedulingSBPass::MachineBBisValid(const MachineBasicBlock *BI) {
+  bool ModuloSchedulingSBPass::MachineBBisValid(const MachineBasicBlock *BI,     
+                       std::map<const MachineInstr*, unsigned> &indexMap, 
+                                               unsigned &offset) {
     
     //Check size of our basic block.. make sure we have more then just the terminator in it
     if(BI->getBasicBlock()->size() == 1)
@@ -210,9 +530,6 @@ namespace llvm {
     //Get Target machine instruction info
     const TargetInstrInfo *TMI = target.getInstrInfo();
 
-    //Check each instruction and look for calls, keep map to get index later
-    std::map<const MachineInstr*, unsigned> indexMap;
-
     unsigned count = 0;
     for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
       //Get opcode to check instruction type
@@ -236,7 +553,7 @@ namespace llvm {
        return false;
       }
 
-      indexMap[I] = count;
+      indexMap[I] = count + offset;
 
       if(TMI->isNop(OC))
        continue;
@@ -244,6 +561,8 @@ namespace llvm {
       ++count;
     }
 
+    offset += count;
+
     return true;
   }
 }
@@ -258,10 +577,16 @@ bool ModuloSchedulingSBPass::CreateDefMap(std::vector<const MachineBasicBlock*>
       for(unsigned opNum = 0; opNum < I->getNumOperands(); ++opNum) {
        const MachineOperand &mOp = I->getOperand(opNum);
        if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
-         
+         Value *V = mOp.getVRegValue();
          //assert if this is the second def we have seen
-         assert(!defMap.count(mOp.getVRegValue()) && "Def already in the map");
-         defMap[mOp.getVRegValue()] = (MachineInstr*) &*I;
+         if(defMap.count(V) && isa<PHINode>(V))
+           DEBUG(std::cerr << "FIXME: Dup def for phi!\n");
+         else {
+           //assert(!defMap.count(V) && "Def already in the map");
+           if(defMap.count(V))
+             return false;
+           defMap[V] = (MachineInstr*) &*I;
+         }
        }
        
        //See if we can use this Value* as our defaultInst
@@ -280,3 +605,2554 @@ bool ModuloSchedulingSBPass::CreateDefMap(std::vector<const MachineBasicBlock*>
   return true;
 
 }
+
+
+//ResMII is calculated by determining the usage count for each resource
+//and using the maximum.
+//FIXME: In future there should be a way to get alternative resources
+//for each instruction
+int ModuloSchedulingSBPass::calculateResMII(std::vector<const MachineBasicBlock*> &superBlock) {
+
+  TIME_REGION(X, "calculateResMII");
+
+  const TargetInstrInfo *mii = target.getInstrInfo();
+  const TargetSchedInfo *msi = target.getSchedInfo();
+
+  int ResMII = 0;
+
+  //Map to keep track of usage count of each resource
+  std::map<unsigned, unsigned> resourceUsageCount;
+
+  for(std::vector<const MachineBasicBlock*>::iterator BI = superBlock.begin(), BE = superBlock.end(); BI != BE; ++BI) {
+    for(MachineBasicBlock::const_iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I) {
+
+      //Get resource usage for this instruction
+      InstrRUsage rUsage = msi->getInstrRUsage(I->getOpcode());
+      std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle;
+
+      //Loop over resources in each cycle and increments their usage count
+      for(unsigned i=0; i < resources.size(); ++i)
+       for(unsigned j=0; j < resources[i].size(); ++j) {
+         if(!resourceUsageCount.count(resources[i][j])) {
+           resourceUsageCount[resources[i][j]] = 1;
+         }
+         else {
+           resourceUsageCount[resources[i][j]] =  resourceUsageCount[resources[i][j]] + 1;
+         }
+       }
+    }
+  }
+
+  //Find maximum usage count
+
+  //Get max number of instructions that can be issued at once. (FIXME)
+  int issueSlots = msi->maxNumIssueTotal;
+
+  for(std::map<unsigned,unsigned>::iterator RB = resourceUsageCount.begin(), RE = resourceUsageCount.end(); RB != RE; ++RB) {
+
+    //Get the total number of the resources in our cpu
+    int resourceNum = CPUResource::getCPUResource(RB->first)->maxNumUsers;
+
+    //Get total usage count for this resources
+    unsigned usageCount = RB->second;
+
+    //Divide the usage count by either the max number we can issue or the number of
+    //resources (whichever is its upper bound)
+    double finalUsageCount;
+    DEBUG(std::cerr << "Resource Num: " << RB->first << " Usage: " << usageCount << " TotalNum: " << resourceNum << "\n");
+
+    if( resourceNum <= issueSlots)
+      finalUsageCount = ceil(1.0 * usageCount / resourceNum);
+    else
+      finalUsageCount = ceil(1.0 * usageCount / issueSlots);
+
+
+    //Only keep track of the max
+    ResMII = std::max( (int) finalUsageCount, ResMII);
+
+  }
+
+  return ResMII;
+  
+}
+
+/// calculateRecMII - Calculates the value of the highest recurrence
+/// By value we mean the total latency/distance
+int ModuloSchedulingSBPass::calculateRecMII(MSchedGraphSB *graph, int MII) {
+  
+  TIME_REGION(X, "calculateRecMII");
+  
+  findAllCircuits(graph, MII);
+  int RecMII = 0;
+  
+  for(std::set<std::pair<int, std::vector<MSchedGraphSBNode*> > >::iterator I = recurrenceList.begin(), E=recurrenceList.end(); I !=E; ++I) {
+    RecMII = std::max(RecMII, I->first);
+  }
+  
+  return MII;
+}
+
+int CircCountSB;
+
+void ModuloSchedulingSBPass::unblock(MSchedGraphSBNode *u, std::set<MSchedGraphSBNode*> &blocked,
+            std::map<MSchedGraphSBNode*, std::set<MSchedGraphSBNode*> > &B) {
+
+  //Unblock u
+  DEBUG(std::cerr << "Unblocking: " << *u << "\n");
+  blocked.erase(u);
+
+  //std::set<MSchedGraphSBNode*> toErase;
+  while (!B[u].empty()) {
+    MSchedGraphSBNode *W = *B[u].begin();
+    B[u].erase(W);
+    //toErase.insert(*W);
+    DEBUG(std::cerr << "Removed: " << *W << "from B-List\n");
+    if(blocked.count(W))
+      unblock(W, blocked, B);
+  }
+
+}
+
+void ModuloSchedulingSBPass::addSCC(std::vector<MSchedGraphSBNode*> &SCC, std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> &newNodes) {
+
+  int totalDelay = 0;
+  int totalDistance = 0;
+  std::vector<MSchedGraphSBNode*> recc;
+  MSchedGraphSBNode *start = 0;
+  MSchedGraphSBNode *end = 0;
+
+  //Loop over recurrence, get delay and distance
+  for(std::vector<MSchedGraphSBNode*>::iterator N = SCC.begin(), NE = SCC.end(); N != NE; ++N) {
+    DEBUG(std::cerr << **N << "\n");
+    totalDelay += (*N)->getLatency();
+    
+    for(unsigned i = 0; i < (*N)->succ_size(); ++i) {
+      MSchedGraphSBEdge *edge = (*N)->getSuccessor(i);
+      if(find(SCC.begin(), SCC.end(), edge->getDest()) != SCC.end()) {
+       totalDistance += edge->getIteDiff();
+       if(edge->getIteDiff() > 0)
+         if(!start && !end) {
+           start = *N;
+           end = edge->getDest();
+         }
+           
+      }
+    }
+
+
+    //Get the original node
+    recc.push_back(newNodes[*N]);
+
+
+  }
+
+  DEBUG(std::cerr << "End Recc\n");
+  
+
+  assert( (start && end) && "Must have start and end node to ignore edge for SCC");
+
+  if(start && end) {   
+    //Insert reccurrence into the list
+    DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n");
+    edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start])));
+  }
+
+  int lastII = totalDelay / totalDistance;
+
+
+  recurrenceList.insert(std::make_pair(lastII, recc));
+
+}
+
+bool ModuloSchedulingSBPass::circuit(MSchedGraphSBNode *v, std::vector<MSchedGraphSBNode*> &stack,
+            std::set<MSchedGraphSBNode*> &blocked, std::vector<MSchedGraphSBNode*> &SCC,
+            MSchedGraphSBNode *s, std::map<MSchedGraphSBNode*, std::set<MSchedGraphSBNode*> > &B,
+                                  int II, std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> &newNodes) {
+  bool f = false;
+
+  DEBUG(std::cerr << "Finding Circuits Starting with: ( " << v << ")"<< *v << "\n");
+
+  //Push node onto the stack
+  stack.push_back(v);
+
+  //block this node
+  blocked.insert(v);
+
+  //Loop over all successors of node v that are in the scc, create Adjaceny list
+  std::set<MSchedGraphSBNode*> AkV;
+  for(MSchedGraphSBNode::succ_iterator I = v->succ_begin(), E = v->succ_end(); I != E; ++I) {
+    if((std::find(SCC.begin(), SCC.end(), *I) != SCC.end())) {
+      AkV.insert(*I);
+    }
+  }
+
+  for(std::set<MSchedGraphSBNode*>::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I) {
+    if(*I == s) {
+      //We have a circuit, so add it to our list
+      addRecc(stack, newNodes);
+      f = true;
+    }
+    else if(!blocked.count(*I)) {
+      if(circuit(*I, stack, blocked, SCC, s, B, II, newNodes))
+       f = true;
+    }
+    else
+      DEBUG(std::cerr << "Blocked: " << **I << "\n");
+  }
+
+
+  if(f) {
+    unblock(v, blocked, B);
+  }
+  else {
+    for(std::set<MSchedGraphSBNode*>::iterator I = AkV.begin(), E = AkV.end(); I != E; ++I)
+      B[*I].insert(v);
+
+  }
+
+  //Pop v
+  stack.pop_back();
+
+  return f;
+
+}
+
+void ModuloSchedulingSBPass::addRecc(std::vector<MSchedGraphSBNode*> &stack, std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> &newNodes) {
+  std::vector<MSchedGraphSBNode*> recc;
+  //Dump recurrence for now
+  DEBUG(std::cerr << "Starting Recc\n");
+       
+  int totalDelay = 0;
+  int totalDistance = 0;
+  MSchedGraphSBNode *lastN = 0;
+  MSchedGraphSBNode *start = 0;
+  MSchedGraphSBNode *end = 0;
+
+  //Loop over recurrence, get delay and distance
+  for(std::vector<MSchedGraphSBNode*>::iterator N = stack.begin(), NE = stack.end(); N != NE; ++N) {
+    DEBUG(std::cerr << **N << "\n");
+    totalDelay += (*N)->getLatency();
+    if(lastN) {
+      int iteDiff = (*N)->getInEdge(lastN).getIteDiff();
+      totalDistance += iteDiff;
+
+      if(iteDiff > 0) {
+       start = lastN;
+       end = *N;
+      }
+    }
+    //Get the original node
+    lastN = *N;
+    recc.push_back(newNodes[*N]);
+
+
+  }
+
+  //Get the loop edge
+  totalDistance += lastN->getIteDiff(*stack.begin());
+
+  DEBUG(std::cerr << "End Recc\n");
+  CircCountSB++;
+
+  if(start && end) {   
+    //Insert reccurrence into the list
+    DEBUG(std::cerr << "Ignore Edge from!!: " << *start << " to " << *end << "\n");
+    edgesToIgnore.insert(std::make_pair(newNodes[start], (newNodes[end])->getInEdgeNum(newNodes[start])));
+  }
+  else {
+    //Insert reccurrence into the list
+    DEBUG(std::cerr << "Ignore Edge from: " << *lastN << " to " << **stack.begin() << "\n");
+    edgesToIgnore.insert(std::make_pair(newNodes[lastN], newNodes[(*stack.begin())]->getInEdgeNum(newNodes[lastN])));
+
+  }
+  //Adjust II until we get close to the inequality delay - II*distance <= 0
+  int RecMII = II; //Starting value
+  int value = totalDelay-(RecMII * totalDistance);
+  int lastII = II;
+  while(value < 0) {
+         
+    lastII = RecMII;
+    RecMII--;
+    value = totalDelay-(RecMII * totalDistance);
+  }
+
+  recurrenceList.insert(std::make_pair(lastII, recc));
+
+}
+
+
+void ModuloSchedulingSBPass::findAllCircuits(MSchedGraphSB *g, int II) {
+
+  CircCountSB = 0;
+
+  //Keep old to new node mapping information
+  std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> newNodes;
+
+  //copy the graph
+  MSchedGraphSB *MSG = new MSchedGraphSB(*g, newNodes);
+
+  DEBUG(std::cerr << "Finding All Circuits\n");
+
+  //Set of blocked nodes
+  std::set<MSchedGraphSBNode*> blocked;
+
+  //Stack holding current circuit
+  std::vector<MSchedGraphSBNode*> stack;
+
+  //Map for B Lists
+  std::map<MSchedGraphSBNode*, std::set<MSchedGraphSBNode*> > B;
+
+  //current node
+  MSchedGraphSBNode *s;
+
+
+  //Iterate over the graph until its down to one node or empty
+  while(MSG->size() > 1) {
+
+    //Write Graph out to file
+    //WriteGraphToFile(std::cerr, "Graph" + utostr(MSG->size()), MSG);
+
+    DEBUG(std::cerr << "Graph Size: " << MSG->size() << "\n");
+    DEBUG(std::cerr << "Finding strong component Vk with least vertex\n");
+
+    //Iterate over all the SCCs in the graph
+    std::set<MSchedGraphSBNode*> Visited;
+    std::vector<MSchedGraphSBNode*> Vk;
+    MSchedGraphSBNode* s = 0;
+    int numEdges = 0;
+
+    //Find scc with the least vertex
+    for (MSchedGraphSB::iterator GI = MSG->begin(), E = MSG->end(); GI != E; ++GI)
+      if (Visited.insert(GI->second).second) {
+       for (scc_iterator<MSchedGraphSBNode*> SCCI = scc_begin(GI->second),
+              E = scc_end(GI->second); SCCI != E; ++SCCI) {
+         std::vector<MSchedGraphSBNode*> &nextSCC = *SCCI;
+
+         if (Visited.insert(nextSCC[0]).second) {
+           Visited.insert(nextSCC.begin()+1, nextSCC.end());
+
+           if(nextSCC.size() > 1) {
+             DEBUG(std::cerr << "SCC size: " << nextSCC.size() << "\n");
+             
+             for(unsigned i = 0; i < nextSCC.size(); ++i) {
+               //Loop over successor and see if in scc, then count edge
+               MSchedGraphSBNode *node = nextSCC[i];
+               for(MSchedGraphSBNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE; ++S) {
+                 if(find(nextSCC.begin(), nextSCC.end(), *S) != nextSCC.end())
+                   numEdges++;
+               }
+             }
+             DEBUG(std::cerr << "Num Edges: " << numEdges << "\n");
+           }
+           
+           //Ignore self loops
+           if(nextSCC.size() > 1) {
+
+             //Get least vertex in Vk
+             if(!s) {
+               s = nextSCC[0];
+               Vk = nextSCC;
+             }
+
+             for(unsigned i = 0; i < nextSCC.size(); ++i) {
+               if(nextSCC[i] < s) {
+                 s = nextSCC[i];
+                 Vk = nextSCC;
+               }
+             }
+           }
+         }
+       }
+      }
+
+
+
+    //Process SCC
+    DEBUG(for(std::vector<MSchedGraphSBNode*>::iterator N = Vk.begin(), NE = Vk.end();
+             N != NE; ++N) { std::cerr << *((*N)->getInst()); });
+
+    //Iterate over all nodes in this scc
+    for(std::vector<MSchedGraphSBNode*>::iterator N = Vk.begin(), NE = Vk.end();
+       N != NE; ++N) {
+      blocked.erase(*N);
+      B[*N].clear();
+    }
+    if(Vk.size() > 1) {
+      if(numEdges < 98)
+       circuit(s, stack, blocked, Vk, s, B, II, newNodes);
+      else
+       addSCC(Vk, newNodes);
+
+
+      //Delete nodes from the graph
+      //Find all nodes up to s and delete them
+      std::vector<MSchedGraphSBNode*> nodesToRemove;
+      nodesToRemove.push_back(s);
+      for(MSchedGraphSB::iterator N = MSG->begin(), NE = MSG->end(); N != NE; ++N) {
+       if(N->second < s )
+           nodesToRemove.push_back(N->second);
+      }
+      for(std::vector<MSchedGraphSBNode*>::iterator N = nodesToRemove.begin(), NE = nodesToRemove.end(); N != NE; ++N) {
+       DEBUG(std::cerr << "Deleting Node: " << **N << "\n");
+       MSG->deleteNode(*N);
+      }
+    }
+    else
+      break;
+  }    
+  DEBUG(std::cerr << "Num Circuits found: " << CircCountSB << "\n");
+}
+/// calculateNodeAttributes - The following properties are calculated for
+/// each node in the dependence graph: ASAP, ALAP, Depth, Height, and
+/// MOB.
+void ModuloSchedulingSBPass::calculateNodeAttributes(MSchedGraphSB *graph, int MII) {
+
+  TIME_REGION(X, "calculateNodeAttributes");
+
+  assert(nodeToAttributesMap.empty() && "Node attribute map was not cleared");
+
+  //Loop over the nodes and add them to the map
+  for(MSchedGraphSB::iterator I = graph->begin(), E = graph->end(); I != E; ++I) {
+
+    DEBUG(std::cerr << "Inserting node into attribute map: " << *I->second << "\n");
+
+    //Assert if its already in the map
+    assert(nodeToAttributesMap.count(I->second) == 0 &&
+          "Node attributes are already in the map");
+
+    //Put into the map with default attribute values
+    nodeToAttributesMap[I->second] = MSNodeSBAttributes();
+  }
+
+  //Create set to deal with reccurrences
+  std::set<MSchedGraphSBNode*> visitedNodes;
+
+  //Now Loop over map and calculate the node attributes
+  for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
+    calculateASAP(I->first, MII, (MSchedGraphSBNode*) 0);
+    visitedNodes.clear();
+  }
+
+  int maxASAP = findMaxASAP();
+  //Calculate ALAP which depends on ASAP being totally calculated
+  for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
+    calculateALAP(I->first, MII, maxASAP, (MSchedGraphSBNode*) 0);
+    visitedNodes.clear();
+  }
+
+  //Calculate MOB which depends on ASAP being totally calculated, also do depth and height
+  for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
+    (I->second).MOB = std::max(0,(I->second).ALAP - (I->second).ASAP);
+
+    DEBUG(std::cerr << "MOB: " << (I->second).MOB << " (" << *(I->first) << ")\n");
+    calculateDepth(I->first, (MSchedGraphSBNode*) 0);
+    calculateHeight(I->first, (MSchedGraphSBNode*) 0);
+  }
+
+
+}
+
+/// ignoreEdge - Checks to see if this edge of a recurrence should be ignored or not
+bool ModuloSchedulingSBPass::ignoreEdge(MSchedGraphSBNode *srcNode, MSchedGraphSBNode *destNode) {
+  if(destNode == 0 || srcNode ==0)
+    return false;
+
+  bool findEdge = edgesToIgnore.count(std::make_pair(srcNode, destNode->getInEdgeNum(srcNode)));
+
+  DEBUG(std::cerr << "Ignoring edge? from: " << *srcNode << " to " << *destNode << "\n");
+
+  return findEdge;
+}
+
+
+/// calculateASAP - Calculates the
+int  ModuloSchedulingSBPass::calculateASAP(MSchedGraphSBNode *node, int MII, MSchedGraphSBNode *destNode) {
+
+  DEBUG(std::cerr << "Calculating ASAP for " << *node << "\n");
+
+  //Get current node attributes
+  MSNodeSBAttributes &attributes = nodeToAttributesMap.find(node)->second;
+
+  if(attributes.ASAP != -1)
+    return attributes.ASAP;
+
+  int maxPredValue = 0;
+
+  //Iterate over all of the predecessors and find max
+  for(MSchedGraphSBNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
+
+    //Only process if we are not ignoring the edge
+    if(!ignoreEdge(*P, node)) {
+      int predASAP = -1;
+      predASAP = calculateASAP(*P, MII, node);
+
+      assert(predASAP != -1 && "ASAP has not been calculated");
+      int iteDiff = node->getInEdge(*P).getIteDiff();
+
+      int currentPredValue = predASAP + (*P)->getLatency() - (iteDiff * MII);
+      DEBUG(std::cerr << "pred ASAP: " << predASAP << ", iteDiff: " << iteDiff << ", PredLatency: " << (*P)->getLatency() << ", Current ASAP pred: " << currentPredValue << "\n");
+      maxPredValue = std::max(maxPredValue, currentPredValue);
+    }
+  }
+
+  attributes.ASAP = maxPredValue;
+
+  DEBUG(std::cerr << "ASAP: " << attributes.ASAP << " (" << *node << ")\n");
+
+  return maxPredValue;
+}
+
+
+int ModuloSchedulingSBPass::calculateALAP(MSchedGraphSBNode *node, int MII,
+                                       int maxASAP, MSchedGraphSBNode *srcNode) {
+
+  DEBUG(std::cerr << "Calculating ALAP for " << *node << "\n");
+
+  MSNodeSBAttributes &attributes = nodeToAttributesMap.find(node)->second;
+
+  if(attributes.ALAP != -1)
+    return attributes.ALAP;
+
+  if(node->hasSuccessors()) {
+
+    //Trying to deal with the issue where the node has successors, but
+    //we are ignoring all of the edges to them. So this is my hack for
+    //now.. there is probably a more elegant way of doing this (FIXME)
+    bool processedOneEdge = false;
+
+    //FIXME, set to something high to start
+    int minSuccValue = 9999999;
+
+    //Iterate over all of the predecessors and fine max
+    for(MSchedGraphSBNode::succ_iterator P = node->succ_begin(),
+         E = node->succ_end(); P != E; ++P) {
+
+      //Only process if we are not ignoring the edge
+      if(!ignoreEdge(node, *P)) {
+       processedOneEdge = true;
+       int succALAP = -1;
+       succALAP = calculateALAP(*P, MII, maxASAP, node);
+       
+       assert(succALAP != -1 && "Successors ALAP should have been caclulated");
+       
+       int iteDiff = P.getEdge().getIteDiff();
+       
+       int currentSuccValue = succALAP - node->getLatency() + iteDiff * MII;
+       
+       DEBUG(std::cerr << "succ ALAP: " << succALAP << ", iteDiff: " << iteDiff << ", SuccLatency: " << (*P)->getLatency() << ", Current ALAP succ: " << currentSuccValue << "\n");
+
+       minSuccValue = std::min(minSuccValue, currentSuccValue);
+      }
+    }
+
+    if(processedOneEdge)
+       attributes.ALAP = minSuccValue;
+
+    else
+      attributes.ALAP = maxASAP;
+  }
+  else
+    attributes.ALAP = maxASAP;
+
+  DEBUG(std::cerr << "ALAP: " << attributes.ALAP << " (" << *node << ")\n");
+
+  if(attributes.ALAP < 0)
+    attributes.ALAP = 0;
+
+  return attributes.ALAP;
+}
+
+int ModuloSchedulingSBPass::findMaxASAP() {
+  int maxASAP = 0;
+
+  for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(),
+       E = nodeToAttributesMap.end(); I != E; ++I)
+    maxASAP = std::max(maxASAP, I->second.ASAP);
+  return maxASAP;
+}
+
+
+int ModuloSchedulingSBPass::calculateHeight(MSchedGraphSBNode *node,MSchedGraphSBNode *srcNode) {
+
+  MSNodeSBAttributes &attributes = nodeToAttributesMap.find(node)->second;
+
+  if(attributes.height != -1)
+    return attributes.height;
+
+  int maxHeight = 0;
+
+  //Iterate over all of the predecessors and find max
+  for(MSchedGraphSBNode::succ_iterator P = node->succ_begin(),
+       E = node->succ_end(); P != E; ++P) {
+
+
+    if(!ignoreEdge(node, *P)) {
+      int succHeight = calculateHeight(*P, node);
+
+      assert(succHeight != -1 && "Successors Height should have been caclulated");
+
+      int currentHeight = succHeight + node->getLatency();
+      maxHeight = std::max(maxHeight, currentHeight);
+    }
+  }
+  attributes.height = maxHeight;
+  DEBUG(std::cerr << "Height: " << attributes.height << " (" << *node << ")\n");
+  return maxHeight;
+}
+
+
+int ModuloSchedulingSBPass::calculateDepth(MSchedGraphSBNode *node,
+                                         MSchedGraphSBNode *destNode) {
+
+  MSNodeSBAttributes &attributes = nodeToAttributesMap.find(node)->second;
+
+  if(attributes.depth != -1)
+    return attributes.depth;
+
+  int maxDepth = 0;
+
+  //Iterate over all of the predecessors and fine max
+  for(MSchedGraphSBNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
+
+    if(!ignoreEdge(*P, node)) {
+      int predDepth = -1;
+      predDepth = calculateDepth(*P, node);
+
+      assert(predDepth != -1 && "Predecessors ASAP should have been caclulated");
+
+      int currentDepth = predDepth + (*P)->getLatency();
+      maxDepth = std::max(maxDepth, currentDepth);
+    }
+  }
+  attributes.depth = maxDepth;
+
+  DEBUG(std::cerr << "Depth: " << attributes.depth << " (" << *node << "*)\n");
+  return maxDepth;
+}
+
+void ModuloSchedulingSBPass::computePartialOrder() {
+
+  TIME_REGION(X, "calculatePartialOrder");
+  
+  DEBUG(std::cerr << "Computing Partial Order\n");
+
+  //Steps to add a recurrence to the partial order 1) Find reccurrence
+  //with the highest RecMII. Add it to the partial order.  2) For each
+  //recurrence with decreasing RecMII, add it to the partial order
+  //along with any nodes that connect this recurrence to recurrences
+  //already in the partial order
+  for(std::set<std::pair<int, std::vector<MSchedGraphSBNode*> > >::reverse_iterator 
+       I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) {
+
+    std::set<MSchedGraphSBNode*> new_recurrence;
+
+    //Loop through recurrence and remove any nodes already in the partial order
+    for(std::vector<MSchedGraphSBNode*>::const_iterator N = I->second.begin(),
+         NE = I->second.end(); N != NE; ++N) {
+
+      bool found = false;
+      for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(),
+           PE = partialOrder.end(); PO != PE; ++PO) {
+       if(PO->count(*N))
+         found = true;
+      }
+
+      //Check if its a branch, and remove to handle special
+      if(!found) {
+       new_recurrence.insert(*N);
+      }
+
+    }
+
+
+    if(new_recurrence.size() > 0) {
+
+      std::vector<MSchedGraphSBNode*> path;
+      std::set<MSchedGraphSBNode*> nodesToAdd;
+
+      //Dump recc we are dealing with (minus nodes already in PO)
+      DEBUG(std::cerr << "Recc: ");
+      DEBUG(for(std::set<MSchedGraphSBNode*>::iterator R = new_recurrence.begin(), RE = new_recurrence.end(); R != RE; ++R) { std::cerr << **R ; });
+
+      //Add nodes that connect this recurrence to recurrences in the partial path
+      for(std::set<MSchedGraphSBNode*>::iterator N = new_recurrence.begin(),
+          NE = new_recurrence.end(); N != NE; ++N)
+       searchPath(*N, path, nodesToAdd, new_recurrence);
+
+      //Add nodes to this recurrence if they are not already in the partial order
+      for(std::set<MSchedGraphSBNode*>::iterator N = nodesToAdd.begin(), NE = nodesToAdd.end();
+         N != NE; ++N) {
+       bool found = false;
+       for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(),
+             PE = partialOrder.end(); PO != PE; ++PO) {
+         if(PO->count(*N))
+           found = true;
+       }
+       if(!found) {
+         assert("FOUND CONNECTOR");
+         new_recurrence.insert(*N);
+       }
+      }
+
+      partialOrder.push_back(new_recurrence);
+    }
+  }
+
+  //Add any nodes that are not already in the partial order
+  //Add them in a set, one set per connected component
+  std::set<MSchedGraphSBNode*> lastNodes;
+  std::set<MSchedGraphSBNode*> noPredNodes;
+  for(std::map<MSchedGraphSBNode*, MSNodeSBAttributes>::iterator I = nodeToAttributesMap.begin(),
+       E = nodeToAttributesMap.end(); I != E; ++I) {
+
+    bool found = false;
+
+    //Check if its already in our partial order, if not add it to the final vector
+    for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(),
+         PE = partialOrder.end(); PO != PE; ++PO) {
+      if(PO->count(I->first))
+       found = true;
+    }
+    if(!found)
+      lastNodes.insert(I->first);
+  }
+
+  //For each node w/out preds, see if there is a path to one of the
+  //recurrences, and if so add them to that current recc
+  /*for(std::set<MSchedGraphSBNode*>::iterator N = noPredNodes.begin(), NE = noPredNodes.end();
+      N != NE; ++N) {
+    DEBUG(std::cerr << "No Pred Path from: " << **N << "\n");
+    for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(),
+         PE = partialOrder.end(); PO != PE; ++PO) {
+      std::vector<MSchedGraphSBNode*> path;
+      pathToRecc(*N, path, *PO, lastNodes);
+    }
+    }*/
+
+
+  //Break up remaining nodes that are not in the partial order
+  ///into their connected compoenents
+    while(lastNodes.size() > 0) {
+      std::set<MSchedGraphSBNode*> ccSet;
+      connectedComponentSet(*(lastNodes.begin()),ccSet, lastNodes);
+      if(ccSet.size() > 0)
+       partialOrder.push_back(ccSet);
+    }
+
+}
+
+void ModuloSchedulingSBPass::connectedComponentSet(MSchedGraphSBNode *node, std::set<MSchedGraphSBNode*> &ccSet, std::set<MSchedGraphSBNode*> &lastNodes) {
+  
+  //Add to final set
+  if( !ccSet.count(node) && lastNodes.count(node)) {
+    lastNodes.erase(node);
+    ccSet.insert(node);
+  }
+  else
+    return;
+
+  //Loop over successors and recurse if we have not seen this node before
+  for(MSchedGraphSBNode::succ_iterator node_succ = node->succ_begin(), end=node->succ_end(); node_succ != end; ++node_succ) {
+    connectedComponentSet(*node_succ, ccSet, lastNodes);
+  }
+
+}
+
+void ModuloSchedulingSBPass::searchPath(MSchedGraphSBNode *node,
+                                     std::vector<MSchedGraphSBNode*> &path,
+                                     std::set<MSchedGraphSBNode*> &nodesToAdd,
+                                    std::set<MSchedGraphSBNode*> &new_reccurrence) {
+  //Push node onto the path
+  path.push_back(node);
+
+  //Loop over all successors and see if there is a path from this node to
+  //a recurrence in the partial order, if so.. add all nodes to be added to recc
+  for(MSchedGraphSBNode::succ_iterator S = node->succ_begin(), SE = node->succ_end(); S != SE;
+      ++S) {
+
+    //Check if we should ignore this edge first
+    if(ignoreEdge(node,*S))
+      continue;
+    
+    //check if successor is in this recurrence, we will get to it eventually
+    if(new_reccurrence.count(*S))
+      continue;
+
+    //If this node exists in a recurrence already in the partial
+    //order, then add all nodes in the path to the set of nodes to add
+     //Check if its already in our partial order, if not add it to the
+     //final vector
+    bool found = false;
+    for(std::vector<std::set<MSchedGraphSBNode*> >::iterator PO = partialOrder.begin(),
+         PE = partialOrder.end(); PO != PE; ++PO) {
+
+      if(PO->count(*S)) {
+       found = true;
+       break;
+      }
+    }
+
+    if(!found) {
+      nodesToAdd.insert(*S);
+      searchPath(*S, path, nodesToAdd, new_reccurrence);
+    }
+  }
+
+  //Pop Node off the path
+  path.pop_back();
+}
+
+void dumpIntersection(std::set<MSchedGraphSBNode*> &IntersectCurrent) {
+  std::cerr << "Intersection (";
+  for(std::set<MSchedGraphSBNode*>::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I)
+    std::cerr << **I << ", ";
+  std::cerr << ")\n";
+}
+
+void ModuloSchedulingSBPass::orderNodes() {
+
+  TIME_REGION(X, "orderNodes");
+
+  int BOTTOM_UP = 0;
+  int TOP_DOWN = 1;
+
+  //Set default order
+  int order = BOTTOM_UP;
+
+  //Loop over and find all pred nodes and schedule them first
+  /*for(std::vector<std::set<MSchedGraphSBNode*> >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) {
+    for(std::set<MSchedGraphSBNode*>::iterator N = CurrentSet->begin(), NE = CurrentSet->end(); N != NE; ++N)
+      if((*N)->isPredicate()) {
+       FinalNodeOrder.push_back(*N);
+       CurrentSet->erase(*N);
+      }
+      }*/
+
+
+
+  //Loop over all the sets and place them in the final node order
+  for(std::vector<std::set<MSchedGraphSBNode*> >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) {
+
+    DEBUG(std::cerr << "Processing set in S\n");
+    DEBUG(dumpIntersection(*CurrentSet));
+
+    //Result of intersection
+    std::set<MSchedGraphSBNode*> IntersectCurrent;
+
+    predIntersect(*CurrentSet, IntersectCurrent);
+
+    //If the intersection of predecessor and current set is not empty
+    //sort nodes bottom up
+    if(IntersectCurrent.size() != 0) {
+      DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is NOT empty\n");
+      order = BOTTOM_UP;
+    }
+    //If empty, use successors
+    else {
+      DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is empty\n");
+
+      succIntersect(*CurrentSet, IntersectCurrent);
+
+      //sort top-down
+      if(IntersectCurrent.size() != 0) {
+        DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is NOT empty\n");
+       order = TOP_DOWN;
+      }
+      else {
+       DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is empty\n");
+       //Find node with max ASAP in current Set
+       MSchedGraphSBNode *node;
+       int maxASAP = 0;
+       DEBUG(std::cerr << "Using current set of size " << CurrentSet->size() << "to find max ASAP\n");
+       for(std::set<MSchedGraphSBNode*>::iterator J = CurrentSet->begin(), JE = CurrentSet->end(); J != JE; ++J) {
+         //Get node attributes
+         MSNodeSBAttributes nodeAttr= nodeToAttributesMap.find(*J)->second;
+         //assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!");
+       
+         if(maxASAP <= nodeAttr.ASAP) {
+           maxASAP = nodeAttr.ASAP;
+           node = *J;
+         }
+       }
+       assert(node != 0 && "In node ordering node should not be null");
+       IntersectCurrent.insert(node);
+       order = BOTTOM_UP;
+      }
+    }
+
+    //Repeat until all nodes are put into the final order from current set
+    while(IntersectCurrent.size() > 0) {
+
+      if(order == TOP_DOWN) {
+       DEBUG(std::cerr << "Order is TOP DOWN\n");
+
+       while(IntersectCurrent.size() > 0) {
+         DEBUG(std::cerr << "Intersection is not empty, so find heighest height\n");
+       
+         int MOB = 0;
+         int height = 0;
+         MSchedGraphSBNode *highestHeightNode = *(IntersectCurrent.begin());
+               
+         //Find node in intersection with highest heigh and lowest MOB
+         for(std::set<MSchedGraphSBNode*>::iterator I = IntersectCurrent.begin(),
+               E = IntersectCurrent.end(); I != E; ++I) {
+       
+           //Get current nodes properties
+           MSNodeSBAttributes nodeAttr= nodeToAttributesMap.find(*I)->second;
+
+           if(height < nodeAttr.height) {
+             highestHeightNode = *I;
+             height = nodeAttr.height;
+             MOB = nodeAttr.MOB;
+           }
+           else if(height ==  nodeAttr.height) {
+             if(MOB > nodeAttr.height) {
+               highestHeightNode = *I;
+               height =  nodeAttr.height;
+               MOB = nodeAttr.MOB;
+             }
+           }
+         }
+       
+         //Append our node with greatest height to the NodeOrder
+         if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestHeightNode) == FinalNodeOrder.end()) {
+           DEBUG(std::cerr << "Adding node to Final Order: " << *highestHeightNode << "\n");
+           FinalNodeOrder.push_back(highestHeightNode);
+         }
+
+         //Remove V from IntersectOrder
+         IntersectCurrent.erase(std::find(IntersectCurrent.begin(),
+                                     IntersectCurrent.end(), highestHeightNode));
+
+
+         //Intersect V's successors with CurrentSet
+         for(MSchedGraphSBNode::succ_iterator P = highestHeightNode->succ_begin(),
+               E = highestHeightNode->succ_end(); P != E; ++P) {
+           //if(lower_bound(CurrentSet->begin(),
+           //     CurrentSet->end(), *P) != CurrentSet->end()) {
+           if(std::find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) {
+             if(ignoreEdge(highestHeightNode, *P))
+               continue;
+             //If not already in Intersect, add
+             if(!IntersectCurrent.count(*P))
+               IntersectCurrent.insert(*P);
+           }
+         }
+       } //End while loop over Intersect Size
+
+       //Change direction
+       order = BOTTOM_UP;
+
+       //Reset Intersect to reflect changes in OrderNodes
+       IntersectCurrent.clear();
+       predIntersect(*CurrentSet, IntersectCurrent);
+       
+      } //End If TOP_DOWN
+       
+       //Begin if BOTTOM_UP
+      else {
+       DEBUG(std::cerr << "Order is BOTTOM UP\n");
+       while(IntersectCurrent.size() > 0) {
+         DEBUG(std::cerr << "Intersection of size " << IntersectCurrent.size() << ", finding highest depth\n");
+
+         //dump intersection
+         DEBUG(dumpIntersection(IntersectCurrent));
+         //Get node with highest depth, if a tie, use one with lowest
+         //MOB
+         int MOB = 0;
+         int depth = 0;
+         MSchedGraphSBNode *highestDepthNode = *(IntersectCurrent.begin());
+       
+         for(std::set<MSchedGraphSBNode*>::iterator I = IntersectCurrent.begin(),
+               E = IntersectCurrent.end(); I != E; ++I) {
+           //Find node attribute in graph
+           MSNodeSBAttributes nodeAttr= nodeToAttributesMap.find(*I)->second;
+       
+           if(depth < nodeAttr.depth) {
+             highestDepthNode = *I;
+             depth = nodeAttr.depth;
+             MOB = nodeAttr.MOB;
+           }
+           else if(depth == nodeAttr.depth) {
+             if(MOB > nodeAttr.MOB) {
+               highestDepthNode = *I;
+               depth = nodeAttr.depth;
+               MOB = nodeAttr.MOB;
+             }
+           }
+         }
+       
+       
+
+         //Append highest depth node to the NodeOrder
+          if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestDepthNode) == FinalNodeOrder.end()) {
+            DEBUG(std::cerr << "Adding node to Final Order: " << *highestDepthNode << "\n");
+            FinalNodeOrder.push_back(highestDepthNode);
+          }
+         //Remove heightestDepthNode from IntersectOrder
+          IntersectCurrent.erase(highestDepthNode);
+       
+
+         //Intersect heightDepthNode's pred with CurrentSet
+         for(MSchedGraphSBNode::pred_iterator P = highestDepthNode->pred_begin(),
+               E = highestDepthNode->pred_end(); P != E; ++P) {
+           if(CurrentSet->count(*P)) {
+             if(ignoreEdge(*P, highestDepthNode))
+               continue;
+       
+           //If not already in Intersect, add
+           if(!IntersectCurrent.count(*P))
+             IntersectCurrent.insert(*P);
+           }
+         }
+       
+       } //End while loop over Intersect Size
+       
+         //Change order
+       order = TOP_DOWN;
+       
+       //Reset IntersectCurrent to reflect changes in OrderNodes
+       IntersectCurrent.clear();
+       succIntersect(*CurrentSet, IntersectCurrent);
+       } //End if BOTTOM_DOWN
+       
+      DEBUG(std::cerr << "Current Intersection Size: " << IntersectCurrent.size() << "\n");
+    }
+    //End Wrapping while loop
+    DEBUG(std::cerr << "Ending Size of Current Set: " << CurrentSet->size() << "\n");
+  }//End for over all sets of nodes
+
+  //FIXME: As the algorithm stands it will NEVER add an instruction such as ba (with no
+  //data dependencies) to the final order. We add this manually. It will always be
+  //in the last set of S since its not part of a recurrence
+    //Loop over all the sets and place them in the final node order
+  std::vector<std::set<MSchedGraphSBNode*> > ::reverse_iterator LastSet = partialOrder.rbegin();
+  for(std::set<MSchedGraphSBNode*>::iterator CurrentNode = LastSet->begin(), LastNode = LastSet->end();
+      CurrentNode != LastNode; ++CurrentNode) {
+    if((*CurrentNode)->getInst()->getOpcode() == V9::BA)
+      FinalNodeOrder.push_back(*CurrentNode);
+  }
+  //Return final Order
+  //return FinalNodeOrder;
+}
+
+
+void ModuloSchedulingSBPass::predIntersect(std::set<MSchedGraphSBNode*> &CurrentSet, std::set<MSchedGraphSBNode*> &IntersectResult) {
+
+  for(unsigned j=0; j < FinalNodeOrder.size(); ++j) {
+    for(MSchedGraphSBNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(),
+         E = FinalNodeOrder[j]->pred_end(); P != E; ++P) {
+
+      //Check if we are supposed to ignore this edge or not
+      if(ignoreEdge(*P,FinalNodeOrder[j]))
+       continue;
+       
+      if(CurrentSet.count(*P))
+       if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end())
+         IntersectResult.insert(*P);
+    }
+  }
+}
+
+void ModuloSchedulingSBPass::succIntersect(std::set<MSchedGraphSBNode*> &CurrentSet, std::set<MSchedGraphSBNode*> &IntersectResult) {
+
+  for(unsigned j=0; j < FinalNodeOrder.size(); ++j) {
+    for(MSchedGraphSBNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(),
+         E = FinalNodeOrder[j]->succ_end(); P != E; ++P) {
+
+      //Check if we are supposed to ignore this edge or not
+      if(ignoreEdge(FinalNodeOrder[j],*P))
+       continue;
+
+      if(CurrentSet.count(*P))
+       if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end())
+         IntersectResult.insert(*P);
+    }
+  }
+}
+
+
+
+bool ModuloSchedulingSBPass::computeSchedule(std::vector<const MachineBasicBlock*> &SB, MSchedGraphSB *MSG) {
+
+  TIME_REGION(X, "computeSchedule");
+
+  bool success = false;
+
+  //FIXME: Should be set to max II of the original loop
+  //Cap II in order to prevent infinite loop
+  int capII = MSG->totalDelay();
+
+  while(!success) {
+
+    //Keep track of branches, but do not insert into the schedule
+    std::vector<MSchedGraphSBNode*> branches;
+
+    //Loop over the final node order and process each node
+    for(std::vector<MSchedGraphSBNode*>::iterator I = FinalNodeOrder.begin(),
+         E = FinalNodeOrder.end(); I != E; ++I) {
+
+      //CalculateEarly and Late start
+      bool initialLSVal = false;
+      bool initialESVal = false;
+      int EarlyStart = 0;
+      int LateStart = 0; 
+      bool hasSucc = false;
+      bool hasPred = false;
+      bool sched;
+
+      if((*I)->isBranch())
+       if((*I)->hasPredecessors())
+         sched = true;
+       else
+         sched = false;
+      else
+       sched = true;
+
+      if(sched) {
+       //Loop over nodes in the schedule and determine if they are predecessors
+       //or successors of the node we are trying to schedule
+       for(MSScheduleSB::schedule_iterator nodesByCycle = schedule.begin(), nodesByCycleEnd = schedule.end();
+           nodesByCycle != nodesByCycleEnd; ++nodesByCycle) {
+       
+         //For this cycle, get the vector of nodes schedule and loop over it
+         for(std::vector<MSchedGraphSBNode*>::iterator schedNode = nodesByCycle->second.begin(), SNE = nodesByCycle->second.end(); schedNode != SNE; ++schedNode) {
+       
+           if((*I)->isPredecessor(*schedNode)) {
+             int diff = (*I)->getInEdge(*schedNode).getIteDiff();
+             int ES_Temp = nodesByCycle->first + (*schedNode)->getLatency() - diff * II;
+             DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n");
+             DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n");
+             if(initialESVal)
+               EarlyStart = std::max(EarlyStart, ES_Temp);
+             else {
+               EarlyStart = ES_Temp;
+               initialESVal = true;
+             }
+             hasPred = true;
+           }
+           if((*I)->isSuccessor(*schedNode)) {
+             int diff = (*schedNode)->getInEdge(*I).getIteDiff();
+             int LS_Temp = nodesByCycle->first - (*I)->getLatency() + diff * II;
+             DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n");
+             DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n");
+             if(initialLSVal)
+               LateStart = std::min(LateStart, LS_Temp);
+             else {
+               LateStart = LS_Temp;
+               initialLSVal = true;
+             }
+             hasSucc = true;
+           }
+         }
+       }
+      }
+      else {
+       branches.push_back(*I);
+       continue;
+      }
+
+      //Check if the node has no pred or successors and set Early Start to its ASAP
+      if(!hasSucc && !hasPred)
+       EarlyStart = nodeToAttributesMap.find(*I)->second.ASAP;
+
+      DEBUG(std::cerr << "Has Successors: " << hasSucc << ", Has Pred: " << hasPred << "\n");
+      DEBUG(std::cerr << "EarlyStart: " << EarlyStart << ", LateStart: " << LateStart << "\n");
+
+      //Now, try to schedule this node depending upon its pred and successor in the schedule
+      //already
+      if(!hasSucc && hasPred)
+       success = scheduleNode(*I, EarlyStart, (EarlyStart + II -1));
+      else if(!hasPred && hasSucc)
+       success = scheduleNode(*I, LateStart, (LateStart - II +1));
+      else if(hasPred && hasSucc) {
+       if(EarlyStart > LateStart) {
+       success = false;
+         //LateStart = EarlyStart;
+         DEBUG(std::cerr << "Early Start can not be later then the late start cycle, schedule fails\n");
+       }
+       else
+         success = scheduleNode(*I, EarlyStart, std::min(LateStart, (EarlyStart + II -1)));
+      }
+      else
+       success = scheduleNode(*I, EarlyStart, EarlyStart + II - 1);
+
+      if(!success) {
+       ++II; 
+       schedule.clear();
+       break;
+      }
+
+    }
+
+    if(success) {
+      DEBUG(std::cerr << "Constructing Schedule Kernel\n");
+      success = schedule.constructKernel(II, branches, indVarInstrs[SB]);
+      DEBUG(std::cerr << "Done Constructing Schedule Kernel\n");
+      if(!success) {
+       ++II;
+       schedule.clear();
+      }
+      DEBUG(std::cerr << "Final II: " << II << "\n");
+     
+    }
+
+    if(II >= capII) {
+      DEBUG(std::cerr << "Maximum II reached, giving up\n");
+      return false;
+    }
+
+    assert(II < capII && "The II should not exceed the original loop number of cycles");
+  }
+  return true;
+}
+
+
+bool ModuloSchedulingSBPass::scheduleNode(MSchedGraphSBNode *node,
+                                     int start, int end) {
+  bool success = false;
+
+  DEBUG(std::cerr << *node << " (Start Cycle: " << start << ", End Cycle: " << end << ")\n");
+
+  //Make sure start and end are not negative
+  //if(start < 0) {
+  //start = 0;
+
+  //}
+  //if(end < 0)
+  //end = 0;
+
+  bool forward = true;
+  if(start > end)
+    forward = false;
+
+  bool increaseSC = true;
+  int cycle = start ;
+
+
+  while(increaseSC) {
+
+    increaseSC = false;
+
+    increaseSC = schedule.insert(node, cycle, II);
+
+    if(!increaseSC)
+      return true;
+
+    //Increment cycle to try again
+    if(forward) {
+      ++cycle;
+      DEBUG(std::cerr << "Increase cycle: " << cycle << "\n");
+      if(cycle > end)
+       return false;
+    }
+    else {
+      --cycle;
+      DEBUG(std::cerr << "Decrease cycle: " << cycle << "\n");
+      if(cycle < end)
+       return false;
+    }
+  }
+
+  return success;
+}
+
+void ModuloSchedulingSBPass::reconstructLoop(std::vector<const MachineBasicBlock*> &SB) {
+
+  TIME_REGION(X, "reconstructLoop");
+
+
+  DEBUG(std::cerr << "Reconstructing Loop\n");
+
+  //First find the value *'s that we need to "save"
+  std::map<const Value*, std::pair<const MachineInstr*, int> > valuesToSave;
+
+  //Keep track of instructions we have already seen and their stage because
+  //we don't want to "save" values if they are used in the kernel immediately
+  std::map<const MachineInstr*, int> lastInstrs;
+
+
+  std::set<MachineBasicBlock*> seenBranchesBB;
+  const TargetInstrInfo *MTI = target.getInstrInfo();
+  std::map<MachineBasicBlock*, std::vector<std::pair<MachineInstr*, int> > > instrsMovedDown;
+  std::map<MachineBasicBlock*, int> branchStage;
+
+  //Loop over kernel and only look at instructions from a stage > 0
+  //Look at its operands and save values *'s that are read
+  for(MSScheduleSB::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
+    
+    if(I->second !=0) {
+      //For this instruction, get the Value*'s that it reads and put them into the set.
+      //Assert if there is an operand of another type that we need to save
+      const MachineInstr *inst = I->first;
+      lastInstrs[inst] = I->second;
+
+      for(unsigned i=0; i < inst->getNumOperands(); ++i) {
+       //get machine operand
+       const MachineOperand &mOp = inst->getOperand(i);
+       
+       if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
+         //find the value in the map
+         if (const Value* srcI = mOp.getVRegValue()) {
+
+           if(isa<Constant>(srcI) || isa<Argument>(srcI))
+             continue;
+
+           //Before we declare this Value* one that we should save
+           //make sure its def is not of the same stage as this instruction
+           //because it will be consumed before its used
+           Instruction *defInst = (Instruction*) srcI;
+       
+           //Should we save this value?
+           bool save = true;
+
+           //Continue if not in the def map, loop invariant code does not need to be saved
+           if(!defMap.count(srcI))
+             continue;
+
+           MachineInstr *defInstr = defMap[srcI];
+       
+
+           if(lastInstrs.count(defInstr)) {
+             if(lastInstrs[defInstr] == I->second) {
+               save = false;
+               
+             }
+           }
+       
+           if(save)
+             valuesToSave[srcI] = std::make_pair(I->first, i);
+         }     
+       }
+       
+       if(mOp.getType() != MachineOperand::MO_VirtualRegister && mOp.isUse()) {
+         assert("Our assumption is wrong. We have another type of register that needs to be saved\n");
+       }
+      }
+    }
+    
+    
+    //Do a check to see if instruction was moved below its original branch
+    if(MTI->isBranch(I->first->getOpcode())) {
+      seenBranchesBB.insert(I->first->getParent());
+      branchStage[I->first->getParent()] = I->second;
+    }
+    else {
+      instrsMovedDown[I->first->getParent()].push_back(std::make_pair(I->first, I->second));
+      //assert(seenBranchesBB.count(I->first->getParent()) && "Instruction moved below branch\n");
+    }
+
+  }
+
+  //The new loop will consist of one or more prologues, the kernel, and one or more epilogues.
+
+  //Map to keep track of old to new values
+  std::map<Value*, std::map<int, Value*> > newValues;
+
+  //Map to keep track of old to new values in kernel
+  std::map<Value*, std::map<int, Value*> > kernelPHIs;
+
+  //Another map to keep track of what machine basic blocks these new value*s are in since
+  //they have no llvm instruction equivalent
+  std::map<Value*, MachineBasicBlock*> newValLocation;
+
+  std::vector<std::vector<MachineBasicBlock*> > prologues;
+  std::vector<std::vector<BasicBlock*> > llvm_prologues;
+
+  //Map to keep track of where the inner branches go
+  std::map<const MachineBasicBlock*, Value*> sideExits;
+
+  
+  //Write prologue
+  if(schedule.getMaxStage() != 0)
+    writePrologues(prologues, SB, llvm_prologues, valuesToSave, newValues, newValLocation);
+
+  std::vector<BasicBlock*> llvmKernelBBs;
+  std::vector<MachineBasicBlock*> machineKernelBBs;
+  Function *parent = (Function*) SB[0]->getBasicBlock()->getParent();
+
+  for(unsigned i = 0; i < SB.size(); ++i) {
+    llvmKernelBBs.push_back(new BasicBlock("Kernel", parent));
+    
+    machineKernelBBs.push_back(new MachineBasicBlock(llvmKernelBBs[i]));
+    (((MachineBasicBlock*)SB[0])->getParent())->getBasicBlockList().push_back(machineKernelBBs[i]);
+  }
+
+  writeKernel(llvmKernelBBs, machineKernelBBs, valuesToSave, newValues, newValLocation, kernelPHIs);
+
+
+  std::vector<std::vector<MachineBasicBlock*> > epilogues;
+  std::vector<std::vector<BasicBlock*> > llvm_epilogues;
+
+  //Write epilogues
+  if(schedule.getMaxStage() != 0)
+    writeEpilogues(epilogues, SB, llvm_epilogues, valuesToSave, newValues, newValLocation, kernelPHIs);
+
+
+  //Fix our branches
+  fixBranches(prologues, llvm_prologues, machineKernelBBs, llvmKernelBBs, epilogues, llvm_epilogues, SB, sideExits);
+
+  //Print out epilogues and prologue
+  DEBUG(for(std::vector<std::vector<MachineBasicBlock*> >::iterator PI = prologues.begin(), PE = prologues.end();
+      PI != PE; ++PI) {
+         std::cerr << "PROLOGUE\n";
+         for(std::vector<MachineBasicBlock*>::iterator I = PI->begin(), E = PI->end(); I != E; ++I)
+           (*I)->print(std::cerr);
+       });
+
+  DEBUG(std::cerr << "KERNEL\n");
+  DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = machineKernelBBs.begin(), E = machineKernelBBs.end(); I != E; ++I) { (*I)->print(std::cerr);});
+
+  DEBUG(for(std::vector<std::vector<MachineBasicBlock*> >::iterator EI = epilogues.begin(), EE = epilogues.end();
+      EI != EE; ++EI) {
+    std::cerr << "EPILOGUE\n";
+    for(std::vector<MachineBasicBlock*>::iterator I = EI->begin(), E = EI->end(); I != E; ++I)
+      (*I)->print(std::cerr);
+  });
+
+
+  //Remove phis
+  removePHIs(SB, prologues, epilogues, machineKernelBBs, newValLocation);
+
+  //Print out epilogues and prologue
+  DEBUG(for(std::vector<std::vector<MachineBasicBlock*> >::iterator PI = prologues.begin(), PE = prologues.end();
+      PI != PE; ++PI) {
+         std::cerr << "PROLOGUE\n";
+         for(std::vector<MachineBasicBlock*>::iterator I = PI->begin(), E = PI->end(); I != E; ++I)
+           (*I)->print(std::cerr);
+       });
+
+  DEBUG(std::cerr << "KERNEL\n");
+  DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = machineKernelBBs.begin(), E = machineKernelBBs.end(); I != E; ++I) { (*I)->print(std::cerr);});
+
+  DEBUG(for(std::vector<std::vector<MachineBasicBlock*> >::iterator EI = epilogues.begin(), EE = epilogues.end();
+      EI != EE; ++EI) {
+    std::cerr << "EPILOGUE\n";
+    for(std::vector<MachineBasicBlock*>::iterator I = EI->begin(), E = EI->end(); I != E; ++I)
+      (*I)->print(std::cerr);
+  });
+
+  writeSideExits(prologues, llvm_prologues, epilogues, llvm_epilogues, sideExits, instrsMovedDown, SB, machineKernelBBs, branchStage);
+
+
+  DEBUG(std::cerr << "New Machine Function" << "\n");
+}
+
+
+void ModuloSchedulingSBPass::fixBranches(std::vector<std::vector<MachineBasicBlock*> > &prologues, std::vector<std::vector<BasicBlock*> > &llvm_prologues, std::vector<MachineBasicBlock*> &machineKernelBB, std::vector<BasicBlock*> &llvmKernelBB, std::vector<std::vector<MachineBasicBlock*> > &epilogues, std::vector<std::vector<BasicBlock*> > &llvm_epilogues, std::vector<const MachineBasicBlock*> &SB, std::map<const MachineBasicBlock*, Value*> &sideExits) {
+
+  const TargetInstrInfo *TMI = target.getInstrInfo();
+
+  //Get exit BB
+  BasicBlock *last = (BasicBlock*) SB[SB.size()-1]->getBasicBlock();
+  BasicBlock *kernel_exit = 0;
+  bool sawFirst = false;
+
+  for(succ_iterator I = succ_begin(last),
+       E = succ_end(last); I != E; ++I) {
+    if (*I != SB[0]->getBasicBlock()) {
+      kernel_exit = *I;
+      break;
+    }
+    else
+      sawFirst = true;
+  }
+  if(!kernel_exit && sawFirst) {
+    kernel_exit = (BasicBlock*) SB[0]->getBasicBlock();
+  }
+
+  assert(kernel_exit && "Kernel Exit can not be null");
+
+  if(schedule.getMaxStage() != 0) {
+    //Fix prologue branches
+    for(unsigned i = 0; i <  prologues.size(); ++i) {
+
+      for(unsigned j = 0; j < prologues[i].size(); ++j) {
+
+       MachineBasicBlock *currentMBB = prologues[i][j];
+       
+       //Find terminator since getFirstTerminator does not work!
+       for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) {
+         MachineOpCode OC = mInst->getOpcode();
+         //If its a branch update its branchto
+         if(TMI->isBranch(OC)) {
+           for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) {
+             MachineOperand &mOp = mInst->getOperand(opNum);
+             if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
+               //Check if we are branching to the kernel, if not branch to epilogue
+               if(mOp.getVRegValue() == SB[0]->getBasicBlock()) {
+                 if(i >= prologues.size()-1)
+                   mOp.setValueReg(llvmKernelBB[0]);
+                 else
+                   mOp.setValueReg(llvm_prologues[i+1][0]);
+               }
+               else if( (mOp.getVRegValue() == kernel_exit) && (j == prologues[i].size()-1)) {
+                 mOp.setValueReg(llvm_epilogues[i][0]);
+               }
+               else if(mOp.getVRegValue() == SB[j+1]->getBasicBlock()) {
+                 mOp.setValueReg(llvm_prologues[i][j+1]);
+               }
+               
+             }
+           }
+           
+           DEBUG(std::cerr << "New Prologue Branch: " << *mInst << "\n");
+         }
+       }
+
+       //Update llvm basic block with our new branch instr
+       DEBUG(std::cerr << SB[i]->getBasicBlock()->getTerminator() << "\n");
+       
+       const BranchInst *branchVal = dyn_cast<BranchInst>(SB[i]->getBasicBlock()->getTerminator());
+
+       //Check for inner branch
+       if(j < prologues[i].size()-1) {
+         //Find our side exit LLVM basic block
+         BasicBlock *sideExit = 0;
+         for(unsigned s = 0; s < branchVal->getNumSuccessors(); ++s) {
+           if(branchVal->getSuccessor(s) != SB[i+1]->getBasicBlock())
+             sideExit = branchVal->getSuccessor(s);
+         }
+         assert(sideExit && "Must have side exit llvm basic block");
+         TerminatorInst *newBranch = new BranchInst(sideExit,
+                                       llvm_prologues[i][j+1],
+                                       branchVal->getCondition(),
+                                       llvm_prologues[i][j]);
+       }
+       else {
+         //If last prologue
+         if(i == prologues.size()-1) {
+           TerminatorInst *newBranch = new BranchInst(llvmKernelBB[0],
+                                                      llvm_epilogues[i][0],
+                                                      branchVal->getCondition(),
+                                                      llvm_prologues[i][j]);
+         }
+         else {
+           TerminatorInst *newBranch = new BranchInst(llvm_prologues[i+1][0],
+                                                      llvm_epilogues[i][0],
+                                                      branchVal->getCondition(),
+                                                      llvm_prologues[i][j]);
+         }
+       }
+      }
+    }
+  }
+
+  //Fix up kernel machine branches
+  for(unsigned i = 0; i < machineKernelBB.size(); ++i) {
+    MachineBasicBlock *currentMBB = machineKernelBB[i];
+
+    for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) {
+      MachineOpCode OC = mInst->getOpcode();
+      if(TMI->isBranch(OC)) {
+       for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) {
+         MachineOperand &mOp = mInst->getOperand(opNum);
+       
+         if(mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
+           //Deal with inner kernel branches
+           if(i < machineKernelBB.size()-1) {
+             if(mOp.getVRegValue() == SB[i+1]->getBasicBlock())
+               mOp.setValueReg(llvmKernelBB[i+1]);
+             //Side exit!
+             else {
+               sideExits[SB[i]] = mOp.getVRegValue();
+             }
+           }
+           else {
+             if(mOp.getVRegValue() == SB[0]->getBasicBlock())
+               mOp.setValueReg(llvmKernelBB[0]);
+             else {
+               if(llvm_epilogues.size() > 0)
+                 mOp.setValueReg(llvm_epilogues[0][0]);
+             }
+           }
+         }
+       }
+      }
+    }
+
+    //Update kernelLLVM branches
+    const BranchInst *branchVal = dyn_cast<BranchInst>(SB[0]->getBasicBlock()->getTerminator());
+  
+    //deal with inner branch
+    if(i < machineKernelBB.size()-1) {
+      
+      //Find our side exit LLVM basic block
+      BasicBlock *sideExit = 0;
+      for(unsigned s = 0; s < branchVal->getNumSuccessors(); ++s) {
+       if(branchVal->getSuccessor(s) != SB[i+1]->getBasicBlock())
+         sideExit = branchVal->getSuccessor(s);
+      }
+      assert(sideExit && "Must have side exit llvm basic block");
+      TerminatorInst *newBranch = new BranchInst(sideExit,
+                                                llvmKernelBB[i+1],
+                                                branchVal->getCondition(),
+                                                llvmKernelBB[i]);
+    }
+    else {
+      //Deal with outter branches
+      if(epilogues.size() > 0) {
+       TerminatorInst *newBranch = new BranchInst(llvmKernelBB[0],
+                                                  llvm_epilogues[0][0],
+                                                  branchVal->getCondition(),
+                                                  llvmKernelBB[i]);
+      }
+      else {
+       TerminatorInst *newBranch = new BranchInst(llvmKernelBB[0],
+                                                  kernel_exit,
+                                                  branchVal->getCondition(),
+                                                  llvmKernelBB[i]);
+      }
+    }
+  }
+
+  if(schedule.getMaxStage() != 0) {
+  
+    //Lastly add unconditional branches for the epilogues
+    for(unsigned i = 0; i <  epilogues.size(); ++i) {
+
+      for(unsigned j=0; j < epilogues[i].size(); ++j) {
+       //Now since we don't have fall throughs, add a unconditional
+       //branch to the next prologue
+       
+       //Before adding these, we need to check if the epilogue already has
+       //a branch in it
+       bool hasBranch = false;
+       /*if(j < epilogues[i].size()-1) {
+         MachineBasicBlock *currentMBB = epilogues[i][j];
+         for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) {
+           
+           MachineOpCode OC = mInst->getOpcode();
+           
+           //If its a branch update its branchto
+           if(TMI->isBranch(OC)) {
+             hasBranch = true;
+             for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) {
+               MachineOperand &mOp = mInst->getOperand(opNum);
+               if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
+                
+                 if(mOp.getVRegValue() != sideExits[SB[j]]) {
+                   mOp.setValueReg(llvm_epilogues[i][j+1]);
+                 }
+                 
+               }
+             }
+             
+             
+             DEBUG(std::cerr << "New Epilogue Branch: " << *mInst << "\n");
+           }
+         }
+         if(hasBranch) {
+           const BranchInst *branchVal = dyn_cast<BranchInst>(SB[j]->getBasicBlock()->getTerminator());
+           TerminatorInst *newBranch = new BranchInst((BasicBlock*)sideExits[SB[j]],
+                                                      llvm_epilogues[i][j+1],
+                                                      branchVal->getCondition(),
+                                                      llvm_epilogues[i][j]);
+         }
+         }*/
+
+       if(!hasBranch) {
+       
+         //Handle inner branches
+         if(j < epilogues[i].size()-1) {
+           BuildMI(epilogues[i][j], V9::BA, 1).addPCDisp(llvm_epilogues[i][j+1]);
+           TerminatorInst *newBranch = new BranchInst(llvm_epilogues[i][j+1],
+                                                      llvm_epilogues[i][j]);
+         }
+         else {
+           
+           //Check if this is the last epilogue
+           if(i != epilogues.size()-1) {
+             BuildMI(epilogues[i][j], V9::BA, 1).addPCDisp(llvm_epilogues[i+1][0]);
+             //Add unconditional branch to end of epilogue
+             TerminatorInst *newBranch = new BranchInst(llvm_epilogues[i+1][0],
+                                                        llvm_epilogues[i][j]);
+             
+           }
+           else {
+             BuildMI(epilogues[i][j], V9::BA, 1).addPCDisp(kernel_exit);
+             TerminatorInst *newBranch = new BranchInst(kernel_exit, llvm_epilogues[i][j]);
+           }
+         }
+         
+         //Add one more nop!
+         BuildMI(epilogues[i][j], V9::NOP, 0);
+         
+       }
+      }
+    }
+  }
+
+  //Find all llvm basic blocks that branch to the loop entry and
+  //change to our first prologue.
+  const BasicBlock *llvmBB = SB[0]->getBasicBlock();
+  
+  std::vector<const BasicBlock*>Preds (pred_begin(llvmBB), pred_end(llvmBB));
+  
+  for(std::vector<const BasicBlock*>::iterator P = Preds.begin(), 
+       PE = Preds.end(); P != PE; ++P) {
+    if(*P == SB[SB.size()-1]->getBasicBlock())
+       continue;
+     else {
+       DEBUG(std::cerr << "Found our entry BB\n");
+       DEBUG((*P)->print(std::cerr));
+       //Get the Terminator instruction for this basic block and print it out
+       //DEBUG(std::cerr << *((*P)->getTerminator()) << "\n");
+       
+       //Update the terminator
+       TerminatorInst *term = ((BasicBlock*)*P)->getTerminator();
+       for(unsigned i=0; i < term->getNumSuccessors(); ++i) {
+        if(term->getSuccessor(i) == llvmBB) {
+          DEBUG(std::cerr << "Replacing successor bb\n");
+          if(llvm_prologues.size() > 0) {
+            term->setSuccessor(i, llvm_prologues[0][0]);
+
+            DEBUG(std::cerr << "New Term" << *((*P)->getTerminator()) << "\n");
+
+            //Also update its corresponding machine instruction
+            MachineCodeForInstruction & tempMvec =
+              MachineCodeForInstruction::get(term);
+            for (unsigned j = 0; j < tempMvec.size(); j++) {
+              MachineInstr *temp = tempMvec[j];
+              MachineOpCode opc = temp->getOpcode();
+              if(TMI->isBranch(opc)) {
+                DEBUG(std::cerr << *temp << "\n");
+                //Update branch
+                for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) {
+                  MachineOperand &mOp = temp->getOperand(opNum);
+                  if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
+                    if(mOp.getVRegValue() == llvmBB)
+                      mOp.setValueReg(llvm_prologues[0][0]);
+                  }
+                }
+              }
+            }
+          }
+          else {
+            term->setSuccessor(i, llvmKernelBB[0]);
+
+            //Also update its corresponding machine instruction
+            MachineCodeForInstruction & tempMvec =
+              MachineCodeForInstruction::get(term);
+            for(unsigned j = 0; j < tempMvec.size(); j++) {
+              MachineInstr *temp = tempMvec[j];
+              MachineOpCode opc = temp->getOpcode();
+              if(TMI->isBranch(opc)) {
+                DEBUG(std::cerr << *temp << "\n");
+                //Update branch
+                for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) {
+                  MachineOperand &mOp = temp->getOperand(opNum);
+                  if(mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
+                    if(mOp.getVRegValue() == llvmBB)
+                      mOp.setValueReg(llvmKernelBB[0]);
+                  }
+                }
+              }
+            }
+          }
+        }
+       }
+       break;
+     }
+  }
+
+}
+
+
+void ModuloSchedulingSBPass::writePrologues(std::vector<std::vector<MachineBasicBlock *> > &prologues, std::vector<const MachineBasicBlock*> &origSB, std::vector<std::vector<BasicBlock*> > &llvm_prologues, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation) {
+
+  //Keep a map to easily know whats in the kernel
+  std::map<int, std::set<const MachineInstr*> > inKernel;
+  int maxStageCount = 0;
+
+  //Keep a map of new values we consumed in case they need to be added back
+  std::map<Value*, std::map<int, Value*> > consumedValues;
+
+  DEBUG(schedule.print(std::cerr));
+
+  for(MSScheduleSB::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
+    maxStageCount = std::max(maxStageCount, I->second);
+
+    //Put int the map so we know what instructions in each stage are in the kernel
+    DEBUG(std::cerr << "Inserting instruction " << *(I->first) << " into map at stage " << I->second << "\n");
+    inKernel[I->second].insert(I->first);
+  }
+
+  //Get target information to look at machine operands
+  const TargetInstrInfo *mii = target.getInstrInfo();
+
+ //Now write the prologues
+  for(int i = 0; i < maxStageCount; ++i) {
+    std::vector<MachineBasicBlock*> current_prologue;
+    std::vector<BasicBlock*> current_llvm_prologue;
+
+    for(std::vector<const MachineBasicBlock*>::iterator MB = origSB.begin(), 
+         MBE = origSB.end(); MB != MBE; ++MB) {
+      const MachineBasicBlock *MBB = *MB;
+      //Create new llvm and machine bb
+      BasicBlock *llvmBB = new BasicBlock("PROLOGUE", (Function*) (MBB->getBasicBlock()->getParent()));
+      MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB);
+
+      DEBUG(std::cerr << "i=" << i << "\n");
+
+      for(int j = i; j >= 0; --j) {
+       //iterate over instructions in original bb
+       for(MachineBasicBlock::const_iterator MI = MBB->begin(), 
+             ME = MBB->end(); ME != MI; ++MI) {
+         if(inKernel[j].count(&*MI)) {
+           MachineInstr *instClone = MI->clone();
+           machineBB->push_back(instClone);
+           
+           //If its a branch, insert a nop
+           if(mii->isBranch(instClone->getOpcode()))
+             BuildMI(machineBB, V9::NOP, 0);
+       
+           
+           DEBUG(std::cerr << "Cloning: " << *MI << "\n");
+           
+           //After cloning, we may need to save the value that this instruction defines
+           for(unsigned opNum=0; opNum < MI->getNumOperands(); ++opNum) {
+             Instruction *tmp;
+             
+             //get machine operand
+             MachineOperand &mOp = instClone->getOperand(opNum);
+             if(mOp.getType() == MachineOperand::MO_VirtualRegister 
+                && mOp.isDef()) {
+
+               //Check if this is a value we should save
+               if(valuesToSave.count(mOp.getVRegValue())) {
+                 //Save copy in tmpInstruction
+                 tmp = new TmpInstruction(mOp.getVRegValue());
+                 
+                 //Add TmpInstruction to safe LLVM Instruction MCFI
+                 MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
+                 tempMvec.addTemp((Value*) tmp);
+
+                 DEBUG(std::cerr << "Value: " << *(mOp.getVRegValue()) 
+                       << " New Value: " << *tmp << " Stage: " << i << "\n");
+               
+               newValues[mOp.getVRegValue()][i]= tmp;
+               newValLocation[tmp] = machineBB;
+
+               DEBUG(std::cerr << "Machine Instr Operands: " 
+                     << *(mOp.getVRegValue()) << ", 0, " << *tmp << "\n");
+               
+               //Create machine instruction and put int machineBB
+               MachineInstr *saveValue;
+               if(mOp.getVRegValue()->getType() == Type::FloatTy)
+                 saveValue = BuildMI(machineBB, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
+               else if(mOp.getVRegValue()->getType() == Type::DoubleTy)
+                 saveValue = BuildMI(machineBB, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
+               else
+                 saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
+       
+
+               DEBUG(std::cerr << "Created new machine instr: " << *saveValue << "\n");
+               }
+             }
+
+             //We may also need to update the value that we use if
+             //its from an earlier prologue
+             if(j != 0) {
+               if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
+                 if(newValues.count(mOp.getVRegValue())) {
+                   if(newValues[mOp.getVRegValue()].count(i-1)) {
+                     Value *oldV =  mOp.getVRegValue();
+                     DEBUG(std::cerr << "Replaced this value: " << mOp.getVRegValue() << " With:" << (newValues[mOp.getVRegValue()][i-1]) << "\n");
+                     //Update the operand with the right value
+                     mOp.setValueReg(newValues[mOp.getVRegValue()][i-1]);
+                     
+                     //Remove this value since we have consumed it
+                     //NOTE: Should this only be done if j != maxStage?
+                     consumedValues[oldV][i-1] = (newValues[oldV][i-1]);
+                     DEBUG(std::cerr << "Deleted value: " << consumedValues[oldV][i-1] << "\n");
+                     newValues[oldV].erase(i-1);
+                   }
+                 }
+                 else
+                   if(consumedValues.count(mOp.getVRegValue()))
+                     assert(!consumedValues[mOp.getVRegValue()].count(i-1) && "Found a case where we need the value");
+               }
+             }
+           }
+         }
+       }
+      }
+       (((MachineBasicBlock*)MBB)->getParent())->getBasicBlockList().push_back(machineBB);
+       current_prologue.push_back(machineBB);
+       current_llvm_prologue.push_back(llvmBB);
+    }
+    prologues.push_back(current_prologue);
+    llvm_prologues.push_back(current_llvm_prologue);
+
+  }
+}
+
+
+void ModuloSchedulingSBPass::writeEpilogues(std::vector<std::vector<MachineBasicBlock*> > &epilogues, std::vector<const MachineBasicBlock*> &origSB, std::vector<std::vector<BasicBlock*> > &llvm_epilogues, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues,std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs ) {
+
+  std::map<int, std::set<const MachineInstr*> > inKernel;
+   const TargetInstrInfo *MTI = target.getInstrInfo();
+
+  for(MSScheduleSB::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
+
+    //Put int the map so we know what instructions in each stage are in the kernel
+    inKernel[I->second].insert(I->first);
+  }
+
+  std::map<Value*, Value*> valPHIs;
+
+  //some debug stuff, will remove later
+  DEBUG(for(std::map<Value*, std::map<int, Value*> >::iterator V = newValues.begin(), E = newValues.end(); V !=E; ++V) {
+    std::cerr << "Old Value: " << *(V->first) << "\n";
+    for(std::map<int, Value*>::iterator I = V->second.begin(), IE = V->second.end(); I != IE; ++I)
+      std::cerr << "Stage: " << I->first << " Value: " << *(I->second) << "\n";
+  });
+
+
+  //Now write the epilogues
+  for(int i = schedule.getMaxStage()-1; i >= 0; --i) {
+    std::vector<MachineBasicBlock*> current_epilogue;
+    std::vector<BasicBlock*> current_llvm_epilogue;
+    
+    for(std::vector<const MachineBasicBlock*>::iterator MB = origSB.begin(), MBE = origSB.end(); MB != MBE; ++MB) {
+      const MachineBasicBlock *MBB = *MB;
+
+      BasicBlock *llvmBB = new BasicBlock("EPILOGUE", (Function*) (MBB->getBasicBlock()->getParent()));
+      MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB);
+      
+      DEBUG(std::cerr << " Epilogue #: " << i << "\n");
+      
+      std::map<Value*, int> inEpilogue;
+      
+      for(MachineBasicBlock::const_iterator MI = MBB->begin(), ME = MBB->end(); ME != MI; ++MI) {
+       for(int j=schedule.getMaxStage(); j > i; --j) {
+         if(inKernel[j].count(&*MI)) {
+           DEBUG(std::cerr << "Cloning instruction " << *MI << "\n");
+           MachineInstr *clone = MI->clone();
+           
+           //Update operands that need to use the result from the phi
+           for(unsigned opNum=0; opNum < clone->getNumOperands(); ++opNum) {
+             //get machine operand
+             const MachineOperand &mOp = clone->getOperand(opNum);
+             
+             if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse())) {
+               
+               DEBUG(std::cerr << "Writing PHI for " << (mOp.getVRegValue()) << "\n");
+               
+               //If this is the last instructions for the max iterations ago, don't update operands
+               if(inEpilogue.count(mOp.getVRegValue()))
+                 if(inEpilogue[mOp.getVRegValue()] == i)
+                   continue;
+               
+               //Quickly write appropriate phis for this operand
+               if(newValues.count(mOp.getVRegValue())) {
+                 if(newValues[mOp.getVRegValue()].count(i)) {
+                   Instruction *tmp = new TmpInstruction(newValues[mOp.getVRegValue()][i]);
+                   
+                   //Get machine code for this instruction
+                   MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
+                   tempMvec.addTemp((Value*) tmp);
+                   
+                   //assert of no kernelPHI for this value
+                   assert(kernelPHIs[mOp.getVRegValue()][i] !=0 && "Must have final kernel phi to construct epilogue phi");
+                   
+                   MachineInstr *saveValue = BuildMI(machineBB, V9::PHI, 3).addReg(newValues[mOp.getVRegValue()][i]).addReg(kernelPHIs[mOp.getVRegValue()][i]).addRegDef(tmp);
+                   DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
+                   valPHIs[mOp.getVRegValue()] = tmp;
+                 }
+               }
+               
+               if(valPHIs.count(mOp.getVRegValue())) {
+                 //Update the operand in the cloned instruction
+                 clone->getOperand(opNum).setValueReg(valPHIs[mOp.getVRegValue()]);
+               }
+             }
+             else if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef())) {
+               inEpilogue[mOp.getVRegValue()] = i;
+             }
+            
+           }
+           machineBB->push_back(clone);
+           //if(MTI->isBranch(clone->getOpcode()))
+           //BuildMI(machineBB, V9::NOP, 0);
+         }
+       }
+      }
+      (((MachineBasicBlock*)MBB)->getParent())->getBasicBlockList().push_back(machineBB);
+      current_epilogue.push_back(machineBB);
+      current_llvm_epilogue.push_back(llvmBB);
+    }
+     
+    DEBUG(std::cerr << "EPILOGUE #" << i << "\n");
+    DEBUG(for(std::vector<MachineBasicBlock*>::iterator B = current_epilogue.begin(), BE = current_epilogue.end(); B != BE; ++B) {
+           (*B)->print(std::cerr);});
+    
+    epilogues.push_back(current_epilogue);
+    llvm_epilogues.push_back(current_llvm_epilogue);
+  }
+}
+
+void ModuloSchedulingSBPass::writeKernel(std::vector<BasicBlock*> &llvmBB, std::vector<MachineBasicBlock*> &machineBB, std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs) {
+
+  //Keep track of operands that are read and saved from a previous iteration. The new clone
+  //instruction will use the result of the phi instead.
+  std::map<Value*, Value*> finalPHIValue;
+  std::map<Value*, Value*> kernelValue;
+
+  //Branches are a special case
+  std::vector<MachineInstr*> branches;
+
+  //Get target information to look at machine operands
+  const TargetInstrInfo *mii = target.getInstrInfo();
+  unsigned index = 0;
+  int numBr = 0;
+  bool seenBranch = false;
+
+  //Create TmpInstructions for the final phis
+  for(MSScheduleSB::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
+
+   DEBUG(std::cerr << "Stage: " << I->second << " Inst: " << *(I->first) << "\n";);
+
+   //Clone instruction
+   const MachineInstr *inst = I->first;
+   MachineInstr *instClone = inst->clone();
+
+   if(seenBranch && !mii->isBranch(instClone->getOpcode())) {
+     index++;
+     seenBranch = false;
+     numBr = 0;
+   }
+   else if(seenBranch && (numBr == 2)) {
+     index++;
+     numBr = 0;
+   }
+
+   //Insert into machine basic block
+   assert(index < machineBB.size() && "Must have a valid index into kernel MBBs");
+   machineBB[index]->push_back(instClone);
+
+   if(mii->isBranch(instClone->getOpcode())) {
+     BuildMI(machineBB[index], V9::NOP, 0);
+
+     seenBranch = true;
+     numBr++;
+   }
+   
+   DEBUG(std::cerr <<  "Cloned Inst: " << *instClone << "\n");
+
+   //Loop over Machine Operands
+   for(unsigned i=0; i < inst->getNumOperands(); ++i) {
+     //get machine operand
+     const MachineOperand &mOp = inst->getOperand(i);
+
+     if(I->second != 0) {
+       if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
+
+        //Check to see where this operand is defined if this instruction is from max stage
+        if(I->second == schedule.getMaxStage()) {
+          DEBUG(std::cerr << "VREG: " << *(mOp.getVRegValue()) << "\n");
+        }
+
+        //If its in the value saved, we need to create a temp instruction and use that instead
+        if(valuesToSave.count(mOp.getVRegValue())) {
+
+          //Check if we already have a final PHI value for this
+          if(!finalPHIValue.count(mOp.getVRegValue())) {
+            //Only create phi if the operand def is from a stage before this one
+            if(schedule.defPreviousStage(mOp.getVRegValue(), I->second)) {
+            TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue());
+       
+            //Get machine code for this instruction
+            MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
+            tempMvec.addTemp((Value*) tmp);
+       
+            //Update the operand in the cloned instruction
+            instClone->getOperand(i).setValueReg(tmp);
+       
+            //save this as our final phi
+            finalPHIValue[mOp.getVRegValue()] = tmp;
+            newValLocation[tmp] = machineBB[index];
+            }
+          }
+          else {
+            //Use the previous final phi value
+            instClone->getOperand(i).setValueReg(finalPHIValue[mOp.getVRegValue()]);
+          }
+        }
+       }
+     }
+     if(I->second != schedule.getMaxStage()) {
+       if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
+        if(valuesToSave.count(mOp.getVRegValue())) {
+       
+          TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue());
+       
+          //Get machine code for this instruction
+          MachineCodeForInstruction & tempVec = MachineCodeForInstruction::get(defaultInst);
+          tempVec.addTemp((Value*) tmp);
+
+          //Create new machine instr and put in MBB
+          MachineInstr *saveValue;
+          if(mOp.getVRegValue()->getType() == Type::FloatTy)
+            saveValue = BuildMI(machineBB[index], V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
+          else if(mOp.getVRegValue()->getType() == Type::DoubleTy)
+            saveValue = BuildMI(machineBB[index], V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
+          else
+            saveValue = BuildMI(machineBB[index], V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
+       
+       
+          //Save for future cleanup
+          kernelValue[mOp.getVRegValue()] = tmp;
+          newValLocation[tmp] = machineBB[index];
+          kernelPHIs[mOp.getVRegValue()][schedule.getMaxStage()-1] = tmp;
+        }
+       }
+     }
+   }
+
+ }
+
+  //Loop over each value we need to generate phis for
+ for(std::map<Value*, std::map<int, Value*> >::iterator V = newValues.begin(),
+       E = newValues.end(); V != E; ++V) {
+
+
+   DEBUG(std::cerr << "Writing phi for" << *(V->first));
+   DEBUG(std::cerr << "\nMap of Value* for this phi\n");
+   DEBUG(for(std::map<int, Value*>::iterator I = V->second.begin(),
+              IE = V->second.end(); I != IE; ++I) {
+     std::cerr << "Stage: " << I->first;
+     std::cerr << " Value: " << *(I->second) << "\n";
+   });
+
+   //If we only have one current iteration live, its safe to set
+   //lastPhi = to kernel value
+   if(V->second.size() == 1) {
+     assert(kernelValue[V->first] != 0 && "Kernel value* must exist to create phi");
+     MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(),V9::PHI, 3).addReg(V->second.begin()->second).addReg(kernelValue[V->first]).addRegDef(finalPHIValue[V->first]);
+     DEBUG(std::cerr << "Resulting PHI (one live): " << *saveValue << "\n");
+     kernelPHIs[V->first][V->second.begin()->first] = kernelValue[V->first];
+     DEBUG(std::cerr << "Put kernel phi in at stage: " << schedule.getMaxStage()-1 << " (map stage = " << V->second.begin()->first << ")\n");
+   }
+   else {
+
+     //Keep track of last phi created.
+     Instruction *lastPhi = 0;
+
+     unsigned count = 1;
+     //Loop over the the map backwards to generate phis
+     for(std::map<int, Value*>::reverse_iterator I = V->second.rbegin(), IE = V->second.rend();
+        I != IE; ++I) {
+
+       if(count < (V->second).size()) {
+        if(lastPhi == 0) {
+          lastPhi = new TmpInstruction(I->second);
+
+          //Get machine code for this instruction
+          MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
+          tempMvec.addTemp((Value*) lastPhi);
+
+          MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(), V9::PHI, 3).addReg(kernelValue[V->first]).addReg(I->second).addRegDef(lastPhi);
+          DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
+          newValLocation[lastPhi] = machineBB[0];
+        }
+        else {
+          Instruction *tmp = new TmpInstruction(I->second);
+
+          //Get machine code for this instruction
+          MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
+          tempMvec.addTemp((Value*) tmp);
+       
+
+          MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(tmp);
+          DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
+          lastPhi = tmp;
+          kernelPHIs[V->first][I->first] = lastPhi;
+          newValLocation[lastPhi] = machineBB[0];
+        }
+       }
+       //Final phi value
+       else {
+        //The resulting value must be the Value* we created earlier
+        assert(lastPhi != 0 && "Last phi is NULL!\n");
+        MachineInstr *saveValue = BuildMI(*machineBB[0], machineBB[0]->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(finalPHIValue[V->first]);
+        DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
+        kernelPHIs[V->first][I->first] = finalPHIValue[V->first];
+       }
+
+       ++count;
+     }
+
+   }
+ }
+}
+
+
+void ModuloSchedulingSBPass::removePHIs(std::vector<const MachineBasicBlock*> &SB, std::vector<std::vector<MachineBasicBlock*> > &prologues, std::vector<std::vector<MachineBasicBlock*> > &epilogues, std::vector<MachineBasicBlock*> &kernelBB, std::map<Value*, MachineBasicBlock*> &newValLocation) {
+
+  //Worklist to delete things
+  std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> > worklist;
+
+  //Worklist of TmpInstructions that need to be added to a MCFI
+  std::vector<Instruction*> addToMCFI;
+
+  //Worklist to add OR instructions to end of kernel so not to invalidate the iterator
+  //std::vector<std::pair<Instruction*, Value*> > newORs;
+
+  const TargetInstrInfo *TMI = target.getInstrInfo();
+
+  //Start with the kernel and for each phi insert a copy for the phi
+  //def and for each arg
+  //phis are only in the first BB in the kernel
+  for(MachineBasicBlock::iterator I = kernelBB[0]->begin(), E = kernelBB[0]->end(); 
+      I != E; ++I) {
+
+    DEBUG(std::cerr << "Looking at Instr: " << *I << "\n");
+    
+    //Get op code and check if its a phi
+    if(I->getOpcode() == V9::PHI) {
+
+      DEBUG(std::cerr << "Replacing PHI: " << *I << "\n");
+      Instruction *tmp = 0;
+
+      for(unsigned i = 0; i < I->getNumOperands(); ++i) {
+       
+       //Get Operand
+       const MachineOperand &mOp = I->getOperand(i);
+       assert(mOp.getType() == MachineOperand::MO_VirtualRegister 
+              && "Should be a Value*\n");
+       
+       if(!tmp) {
+         tmp = new TmpInstruction(mOp.getVRegValue());
+         addToMCFI.push_back(tmp);
+       }
+
+       //Now for all our arguments we read, OR to the new
+       //TmpInstruction that we created
+       if(mOp.isUse()) {
+         DEBUG(std::cerr << "Use: " << mOp << "\n");
+         //Place a copy at the end of its BB but before the branches
+         assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n");
+         //Reverse iterate to find the branches, we can safely assume no instructions have been
+         //put in the nop positions
+         for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) {
+           MachineOpCode opc = inst->getOpcode();
+           if(TMI->isBranch(opc) || TMI->isNop(opc))
+             continue;
+           else {
+             if(mOp.getVRegValue()->getType() == Type::FloatTy)
+               BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
+             else if(mOp.getVRegValue()->getType() == Type::DoubleTy)
+               BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
+             else
+               BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
+       
+             break;
+           }
+       
+         }
+
+       }
+       else {
+         //Remove the phi and replace it with an OR
+         DEBUG(std::cerr << "Def: " << mOp << "\n");
+         //newORs.push_back(std::make_pair(tmp, mOp.getVRegValue()));
+         if(tmp->getType() == Type::FloatTy)
+           BuildMI(*kernelBB[0], I, V9::FMOVS, 3).addReg(tmp).addRegDef(mOp.getVRegValue());
+         else if(tmp->getType() == Type::DoubleTy)
+           BuildMI(*kernelBB[0], I, V9::FMOVD, 3).addReg(tmp).addRegDef(mOp.getVRegValue());
+         else
+           BuildMI(*kernelBB[0], I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue());
+       
+       
+         worklist.push_back(std::make_pair(kernelBB[0], I));
+       }
+       
+      }
+
+    }
+
+
+  }
+
+  //Add TmpInstructions to some MCFI
+  if(addToMCFI.size() > 0) {
+    MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
+    for(unsigned x = 0; x < addToMCFI.size(); ++x) {
+      tempMvec.addTemp(addToMCFI[x]);
+    }
+    addToMCFI.clear();
+  }
+
+
+  //Remove phis from epilogue
+  for(std::vector<std::vector<MachineBasicBlock*> >::iterator MB = epilogues.begin(), 
+       ME = epilogues.end(); MB != ME; ++MB) {
+    
+    for(std::vector<MachineBasicBlock*>::iterator currentMBB = MB->begin(), currentME = MB->end(); currentMBB != currentME; ++currentMBB) {
+      
+      for(MachineBasicBlock::iterator I = (*currentMBB)->begin(), 
+           E = (*currentMBB)->end(); I != E; ++I) {
+
+       DEBUG(std::cerr << "Looking at Instr: " << *I << "\n");
+       //Get op code and check if its a phi
+       if(I->getOpcode() == V9::PHI) {
+         Instruction *tmp = 0;
+
+         for(unsigned i = 0; i < I->getNumOperands(); ++i) {
+           //Get Operand
+           const MachineOperand &mOp = I->getOperand(i);
+           assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n");
+       
+           if(!tmp) {
+             tmp = new TmpInstruction(mOp.getVRegValue());
+             addToMCFI.push_back(tmp);
+           }
+       
+           //Now for all our arguments we read, OR to the new TmpInstruction that we created
+           if(mOp.isUse()) {
+             DEBUG(std::cerr << "Use: " << mOp << "\n");
+             //Place a copy at the end of its BB but before the branches
+             assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n");
+             //Reverse iterate to find the branches, we can safely assume no instructions have been
+             //put in the nop positions
+             for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) {
+               MachineOpCode opc = inst->getOpcode();
+               if(TMI->isBranch(opc) || TMI->isNop(opc))
+                 continue;
+               else {
+                 if(mOp.getVRegValue()->getType() == Type::FloatTy)
+                   BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVS, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
+                 else if(mOp.getVRegValue()->getType() == Type::DoubleTy)
+                   BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::FMOVD, 3).addReg(mOp.getVRegValue()).addRegDef(tmp);
+                 else
+                   BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
+                 
+                 
+                 break;
+               }
+               
+             }
+             
+           }
+           else {
+             //Remove the phi and replace it with an OR
+             DEBUG(std::cerr << "Def: " << mOp << "\n");
+             if(tmp->getType() == Type::FloatTy)
+               BuildMI(**currentMBB, I, V9::FMOVS, 3).addReg(tmp).addRegDef(mOp.getVRegValue());
+             else if(tmp->getType() == Type::DoubleTy)
+               BuildMI(**currentMBB, I, V9::FMOVD, 3).addReg(tmp).addRegDef(mOp.getVRegValue());
+             else
+               BuildMI(**currentMBB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue());
+             
+             worklist.push_back(std::make_pair(*currentMBB,I));
+           }
+         }
+       }
+      }
+    }
+  }
+
+
+  if(addToMCFI.size() > 0) {
+    MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defaultInst);
+    for(unsigned x = 0; x < addToMCFI.size(); ++x) {
+      tempMvec.addTemp(addToMCFI[x]);
+    }
+    addToMCFI.clear();
+  }
+  
+    //Delete the phis
+  for(std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> >::iterator I =  worklist.begin(), E = worklist.end(); I != E; ++I) {
+    DEBUG(std::cerr << "Deleting PHI " << *I->second << "\n");
+    I->first->erase(I->second);
+               
+  }
+
+
+  assert((addToMCFI.size() == 0) && "We should have added all TmpInstructions to some MachineCodeForInstruction");
+}
+
+
+
+
+void ModuloSchedulingSBPass::writeSideExits(std::vector<std::vector<MachineBasicBlock *> > &prologues, std::vector<std::vector<BasicBlock*> > &llvm_prologues, std::vector<std::vector<MachineBasicBlock *> > &epilogues, std::vector<std::vector<BasicBlock*> > &llvm_epilogues, std::map<const MachineBasicBlock*, Value*> &sideExits, std::map<MachineBasicBlock*, std::vector<std::pair<MachineInstr*, int> > > &instrsMovedDown, std::vector<const MachineBasicBlock*> &SB, std::vector<MachineBasicBlock*> &kernelMBBs, std::map<MachineBasicBlock*, int> branchStage) {
+
+  const TargetInstrInfo *TMI = target.getInstrInfo();
+
+  //Repeat for each side exit
+  for(unsigned sideExitNum = 0; sideExitNum < SB.size()-1; ++sideExitNum) {
+
+    std::vector<std::vector<BasicBlock*> > side_llvm_epilogues;
+    std::vector<std::vector<MachineBasicBlock*> > side_epilogues;
+    MachineBasicBlock* sideMBB;
+    BasicBlock* sideBB;
+
+    //Create side exit blocks
+    //Get the LLVM basic block
+    BasicBlock *bb = (BasicBlock*) SB[sideExitNum]->getBasicBlock();
+    MachineBasicBlock *mbb = (MachineBasicBlock*) SB[sideExitNum];
+    
+    int stage = branchStage[mbb];
+
+    //Create new basic blocks for our side exit instructios that were moved below the branch
+    sideBB = new BasicBlock("SideExit", (Function*) bb->getParent());
+    sideMBB = new MachineBasicBlock(sideBB);
+    (((MachineBasicBlock*)SB[0])->getParent())->getBasicBlockList().push_back(sideMBB);
+
+    
+    if(instrsMovedDown.count(mbb)) {
+      for(std::vector<std::pair<MachineInstr*, int> >::iterator I = instrsMovedDown[mbb].begin(), E = instrsMovedDown[mbb].end(); I != E; ++I) {
+       if(branchStage[mbb] == I->second)
+         sideMBB->push_back((I->first)->clone());
+      }
+        
+      //Add unconditional branches to original exits
+      BuildMI(sideMBB, V9::BA, 1).addPCDisp(sideExits[mbb]);
+      BuildMI(sideMBB, V9::NOP, 0);
+      
+      //Add unconditioal branch to llvm BB
+      BasicBlock *extBB = dyn_cast<BasicBlock>(sideExits[mbb]);
+      assert(extBB && "Side exit basicblock can not be null");
+      TerminatorInst *newBranch = new BranchInst(extBB, sideBB);
+    }
+
+     //Clone epilogues and update their branches, one cloned epilogue set per side exit
+    //only clone epilogues that are from a greater stage!
+    for(unsigned i = 0; i < epilogues.size()-stage; ++i) {
+      std::vector<MachineBasicBlock*> MB = epilogues[i];
+      
+      std::vector<MachineBasicBlock*> newEp;
+      std::vector<BasicBlock*> newLLVMEp;
+    
+      for(std::vector<MachineBasicBlock*>::iterator currentMBB = MB.begin(), 
+           lastMBB = MB.end(); currentMBB != lastMBB; ++currentMBB) {
+       BasicBlock *tmpBB = new BasicBlock("SideEpilogue", (Function*) (*currentMBB)->getBasicBlock()->getParent());
+       MachineBasicBlock *tmp = new MachineBasicBlock(tmpBB);
+      
+       //Clone instructions and insert into new MBB
+       for(MachineBasicBlock::iterator I = (*currentMBB)->begin(), 
+             E = (*currentMBB)->end(); I != E; ++I) {
+       
+         MachineInstr *clone = I->clone();
+         if(clone->getOpcode() == V9::BA && (currentMBB+1 == lastMBB)) {
+           //update branch to side exit
+           for(unsigned i = 0; i < clone->getNumOperands(); ++i) {
+             MachineOperand &mOp = clone->getOperand(i);
+             if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
+               mOp.setValueReg(sideBB);
+             }
+           }
+         }
+       
+         tmp->push_back(clone);
+       
+       }
+      
+       //Add llvm branch
+       TerminatorInst *newBranch = new BranchInst(sideBB, tmpBB);
+      
+       newEp.push_back(tmp);
+       (((MachineBasicBlock*)SB[0])->getParent())->getBasicBlockList().push_back(tmp);
+
+       newLLVMEp.push_back(tmpBB);
+      
+      }
+      side_llvm_epilogues.push_back(newLLVMEp);
+      side_epilogues.push_back(newEp);
+    }
+  
+  //Now stich up all the branches
+  
+  //Loop over prologues, and if its an inner branch and branches to our original side exit
+  //then have it branch to the appropriate epilogue first (if it exists)
+    for(unsigned P = 0; P < prologues.size(); ++P) {
+
+      //Get BB side exit we are dealing with
+      MachineBasicBlock *currentMBB = prologues[P][sideExitNum];
+      if(P >= (unsigned) stage) {
+       //Iterate backwards of machine instructions to find the branch we need to update
+       for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) {
+         MachineOpCode OC = mInst->getOpcode();
+         
+         //If its a branch update its branchto
+         if(TMI->isBranch(OC)) {
+           for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) {
+             MachineOperand &mOp = mInst->getOperand(opNum);
+             if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
+               //Check if we branch to side exit
+               if(mOp.getVRegValue() == sideExits[mbb]) {
+                 mOp.setValueReg(side_llvm_epilogues[P][0]);
+               }
+             }
+           }
+           DEBUG(std::cerr << "New Prologue Branch: " << *mInst << "\n");
+         }
+       }
+       
+       //Update llvm branch
+       TerminatorInst *branchVal = ((BasicBlock*) currentMBB->getBasicBlock())->getTerminator();
+       DEBUG(std::cerr << *branchVal << "\n");
+        
+       for(unsigned i=0; i < branchVal->getNumSuccessors(); ++i) {
+         if(branchVal->getSuccessor(i) == sideExits[mbb]) {
+           DEBUG(std::cerr << "Replacing successor bb\n");
+           branchVal->setSuccessor(i, side_llvm_epilogues[P][0]);
+         }
+       }
+      }
+      else {
+       //must add BA branch because another prologue or kernel has the actual side exit branch
+        //Add unconditional branches to original exits
+       assert( (sideExitNum+1) < prologues[P].size() && "must have valid prologue to branch to");
+       BuildMI(prologues[P][sideExitNum], V9::BA, 1).addPCDisp((BasicBlock*)(prologues[P][sideExitNum+1])->getBasicBlock());
+       BuildMI(prologues[P][sideExitNum], V9::NOP, 0);
+
+       TerminatorInst *newBranch = new BranchInst((BasicBlock*) (prologues[P][sideExitNum+1])->getBasicBlock(), (BasicBlock*) (prologues[P][sideExitNum])->getBasicBlock());
+
+      }
+    }
+
+
+    //Update side exits in kernel
+    MachineBasicBlock *currentMBB = kernelMBBs[sideExitNum];
+    //Iterate backwards of machine instructions to find the branch we need to update
+    for(MachineBasicBlock::reverse_iterator mInst = currentMBB->rbegin(), mInstEnd = currentMBB->rend(); mInst != mInstEnd; ++mInst) {
+      MachineOpCode OC = mInst->getOpcode();
+      
+      //If its a branch update its branchto
+      if(TMI->isBranch(OC)) {
+       for(unsigned opNum = 0; opNum < mInst->getNumOperands(); ++opNum) {
+         MachineOperand &mOp = mInst->getOperand(opNum);
+         if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
+           //Check if we branch to side exit
+           if(mOp.getVRegValue() == sideExits[mbb]) {
+             if(side_llvm_epilogues.size() > 0)
+               mOp.setValueReg(side_llvm_epilogues[0][0]);
+             else
+               mOp.setValueReg(sideBB);
+           }
+         }
+       }
+       DEBUG(std::cerr << "New Prologue Branch: " << *mInst << "\n");
+      }
+    }
+
+    //Update llvm branch
+    //Update llvm branch
+    TerminatorInst *branchVal = ((BasicBlock*)currentMBB->getBasicBlock())->getTerminator();
+    DEBUG(std::cerr << *branchVal << "\n");
+    
+    for(unsigned i=0; i < branchVal->getNumSuccessors(); ++i) {
+      if(branchVal->getSuccessor(i) == sideExits[mbb]) {
+       DEBUG(std::cerr << "Replacing successor bb\n");
+       if(side_llvm_epilogues.size() > 0)
+         branchVal->setSuccessor(i, side_llvm_epilogues[0][0]);
+       else
+         branchVal->setSuccessor(i, sideBB);
+      }
+    }
+  }
+}
+
index 8d38784a240c268b0fe357b1605489b6aa8baaef..df9e302e9aa913cb24d69cf3317ad58a3010c158 100644 (file)
 #define LLVM_MODULOSCHEDULINGSB_H
 
 #include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/ScalarEvolution.h"
 #include "llvm/Function.h"
 #include "llvm/Pass.h"
 #include "llvm/CodeGen/MachineBasicBlock.h"
-#include "MSSchedule.h"
-#include "MSchedGraph.h"
+#include "MSScheduleSB.h"
+#include "MSchedGraphSB.h"
+
 
 namespace llvm {
 
   //Struct to contain ModuloScheduling Specific Information for each node
-  struct MSNodeAttributes {
+  struct MSNodeSBAttributes {
     int ASAP; //Earliest time at which the opreation can be scheduled
     int ALAP; //Latest time at which the operation can be scheduled.
     int MOB;
     int depth;
     int height;
-    MSNodeAttributes(int asap=-1, int alap=-1, int mob=-1,
+    MSNodeSBAttributes(int asap=-1, int alap=-1, int mob=-1,
                             int d=-1, int h=-1) : ASAP(asap), ALAP(alap),
                                                   MOB(mob), depth(d),
                                                   height(h) {}
@@ -55,22 +57,22 @@ namespace llvm {
     Instruction *defaultInst;
 
     //Map that holds node to node attribute information
-    std::map<MSchedGraphNode*, MSNodeAttributes> nodeToAttributesMap;
+    std::map<MSchedGraphSBNode*, MSNodeSBAttributes> nodeToAttributesMap;
 
     //Map to hold all reccurrences
-    std::set<std::pair<int, std::vector<MSchedGraphNode*> > > recurrenceList;
+    std::set<std::pair<int, std::vector<MSchedGraphSBNode*> > > recurrenceList;
 
     //Set of edges to ignore, stored as src node and index into vector of successors
-    std::set<std::pair<MSchedGraphNode*, unsigned> > edgesToIgnore;
+    std::set<std::pair<MSchedGraphSBNode*, unsigned> > edgesToIgnore;
 
     //Vector containing the partial order
-    std::vector<std::set<MSchedGraphNode*> > partialOrder;
+    std::vector<std::set<MSchedGraphSBNode*> > partialOrder;
 
     //Vector containing the final node order
-    std::vector<MSchedGraphNode*> FinalNodeOrder;
+    std::vector<MSchedGraphSBNode*> FinalNodeOrder;
 
     //Schedule table, key is the cycle number and the vector is resource, node pairs
-    MSSchedule schedule;
+    MSScheduleSB schedule;
 
     //Current initiation interval
     int II;
@@ -78,10 +80,99 @@ namespace llvm {
     //Internal Functions
     void FindSuperBlocks(Function &F, LoopInfo &LI, 
                         std::vector<std::vector<const MachineBasicBlock*> > &Worklist);
-    bool MachineBBisValid(const MachineBasicBlock *B);
+    bool MachineBBisValid(const MachineBasicBlock *B,
+                         std::map<const MachineInstr*, unsigned> &indexMap, 
+                         unsigned &offset);
     bool CreateDefMap(std::vector<const MachineBasicBlock*> &SB);
-
-  public:
+    bool getIndVar(std::vector<const MachineBasicBlock*> &superBlock, 
+                  std::map<BasicBlock*, MachineBasicBlock*> &bbMap,
+                  std::map<const MachineInstr*, unsigned> &indexMap);
+    bool assocIndVar(Instruction *I, std::set<Instruction*> &indVar,
+                    std::vector<Instruction*> &stack, 
+                    std::map<BasicBlock*, MachineBasicBlock*> &bbMap, 
+                    const BasicBlock *first,
+                    std::set<const BasicBlock*> &llvmSuperBlock);
+    int calculateResMII(std::vector<const MachineBasicBlock*> &superBlock);
+    int calculateRecMII(MSchedGraphSB *graph, int MII);
+    void findAllCircuits(MSchedGraphSB *g, int II);
+    void addRecc(std::vector<MSchedGraphSBNode*> &stack, 
+                std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> &newNodes);
+    bool circuit(MSchedGraphSBNode *v, std::vector<MSchedGraphSBNode*> &stack,
+                std::set<MSchedGraphSBNode*> &blocked, std::vector<MSchedGraphSBNode*> &SCC,
+                MSchedGraphSBNode *s, std::map<MSchedGraphSBNode*, 
+                std::set<MSchedGraphSBNode*> > &B,
+                int II, std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> &newNodes);
+    void unblock(MSchedGraphSBNode *u, std::set<MSchedGraphSBNode*> &blocked,
+                std::map<MSchedGraphSBNode*, std::set<MSchedGraphSBNode*> > &B);
+    void addSCC(std::vector<MSchedGraphSBNode*> &SCC, std::map<MSchedGraphSBNode*, MSchedGraphSBNode*> &newNodes);
+    void calculateNodeAttributes(MSchedGraphSB *graph, int MII);
+    bool ignoreEdge(MSchedGraphSBNode *srcNode, MSchedGraphSBNode *destNode);
+    int  calculateASAP(MSchedGraphSBNode *node, int MII, MSchedGraphSBNode *destNode);
+    int calculateALAP(MSchedGraphSBNode *node, int MII,
+                     int maxASAP, MSchedGraphSBNode *srcNode);
+    int findMaxASAP();
+    int calculateHeight(MSchedGraphSBNode *node,MSchedGraphSBNode *srcNode);
+    int calculateDepth(MSchedGraphSBNode *node, MSchedGraphSBNode *destNode);
+    void computePartialOrder();
+    void connectedComponentSet(MSchedGraphSBNode *node, std::set<MSchedGraphSBNode*> &ccSet, 
+                              std::set<MSchedGraphSBNode*> &lastNodes);
+    void searchPath(MSchedGraphSBNode *node,
+                   std::vector<MSchedGraphSBNode*> &path,
+                   std::set<MSchedGraphSBNode*> &nodesToAdd,
+                   std::set<MSchedGraphSBNode*> &new_reccurrence);
+    void orderNodes();
+    bool computeSchedule(std::vector<const MachineBasicBlock*> &BB, MSchedGraphSB *MSG);
+    bool scheduleNode(MSchedGraphSBNode *node, int start, int end);
+      void predIntersect(std::set<MSchedGraphSBNode*> &CurrentSet, std::set<MSchedGraphSBNode*> &IntersectResult);
+    void succIntersect(std::set<MSchedGraphSBNode*> &CurrentSet, std::set<MSchedGraphSBNode*> &IntersectResult);
+    void reconstructLoop(std::vector<const MachineBasicBlock*> &SB);
+    void fixBranches(std::vector<std::vector<MachineBasicBlock*> > &prologues, 
+                    std::vector<std::vector<BasicBlock*> > &llvm_prologues, 
+                    std::vector<MachineBasicBlock*> &machineKernelBB, 
+                    std::vector<BasicBlock*> &llvmKernelBB, 
+                    std::vector<std::vector<MachineBasicBlock*> > &epilogues, 
+                    std::vector<std::vector<BasicBlock*> > &llvm_epilogues, 
+                    std::vector<const MachineBasicBlock*> &SB,
+                    std::map<const MachineBasicBlock*, Value*> &sideExits);
+
+    void writePrologues(std::vector<std::vector<MachineBasicBlock *> > &prologues, 
+                       std::vector<const MachineBasicBlock*> &origBB, 
+                       std::vector<std::vector<BasicBlock*> > &llvm_prologues, 
+                       std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, 
+                       std::map<Value*, std::map<int, Value*> > &newValues, 
+                       std::map<Value*, MachineBasicBlock*> &newValLocation);
+
+    void writeKernel(std::vector<BasicBlock*> &llvmBB, std::vector<MachineBasicBlock*> &machineBB, 
+                    std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave, 
+                    std::map<Value*, std::map<int, Value*> > &newValues, 
+                    std::map<Value*, MachineBasicBlock*> &newValLocation, 
+                    std::map<Value*, std::map<int, Value*> > &kernelPHIs);
+
+    void removePHIs(std::vector<const MachineBasicBlock*> &SB, 
+                   std::vector<std::vector<MachineBasicBlock*> > &prologues, 
+                   std::vector<std::vector<MachineBasicBlock*> > &epilogues, 
+                   std::vector<MachineBasicBlock*> &kernelBB, 
+                   std::map<Value*, MachineBasicBlock*> &newValLocation);
+    
+    void writeEpilogues(std::vector<std::vector<MachineBasicBlock*> > &epilogues, 
+                       std::vector<const MachineBasicBlock*> &origSB, 
+                       std::vector<std::vector<BasicBlock*> > &llvm_epilogues, 
+                       std::map<const Value*, std::pair<const MachineInstr*, int> > &valuesToSave,
+                       std::map<Value*, std::map<int, Value*> > &newValues,
+                       std::map<Value*, MachineBasicBlock*> &newValLocation, 
+                       std::map<Value*, std::map<int, Value*> > &kernelPHIs);
+    
+    void writeSideExits(std::vector<std::vector<MachineBasicBlock *> > &prologues, 
+                       std::vector<std::vector<BasicBlock*> > &llvm_prologues, 
+                       std::vector<std::vector<MachineBasicBlock *> > &epilogues, 
+                       std::vector<std::vector<BasicBlock*> > &llvm_epilogues, 
+                       std::map<const MachineBasicBlock*, Value*> &sideExits, 
+                       std::map<MachineBasicBlock*, std::vector<std::pair<MachineInstr*, int> > > &instrsMovedDown,
+                       std::vector<const MachineBasicBlock*> &SB, 
+                       std::vector<MachineBasicBlock*> &kernelMBBs,
+                         std::map<MachineBasicBlock*, int> branchStage);
+
+ public:
     ModuloSchedulingSBPass(TargetMachine &targ) : target(targ) {}
       virtual bool runOnFunction(Function &F);
       virtual const char* getPassName() const { return "ModuloScheduling-SuperBlock"; }
@@ -89,7 +180,11 @@ namespace llvm {
       
       // getAnalysisUsage
       virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+       /// HACK: We don't actually need scev, but we have
+       /// to say we do so that the pass manager does not delete it
+       /// before we run.
        AU.addRequired<LoopInfo>();
+       AU.addRequired<ScalarEvolution>();
        AU.addRequired<DependenceAnalyzer>();
       }
   };