bool DominatorTree::dominates(const BasicBlockEdge &BBE,
const BasicBlock *UseBB) const {
+ // Assert that we have a single edge. We could handle them by simply
+ // returning false, but since isSingleEdge is linear on the number of
+ // edges, the callers can normally handle them more efficiently.
+ assert(BBE.isSingleEdge());
+
// If the BB the edge ends in doesn't dominate the use BB, then the
// edge also doesn't.
const BasicBlock *Start = BBE.getStart();
bool DominatorTree::dominates(const BasicBlockEdge &BBE,
const Use &U) const {
+ // Assert that we have a single edge. We could handle them by simply
+ // returning false, but since isSingleEdge is linear on the number of
+ // edges, the callers can normally handle them more efficiently.
+ assert(BBE.isSingleEdge());
+
Instruction *UserInst = cast<Instruction>(U.getUser());
// A PHI in the end of the edge is dominated by it.
PHINode *PN = dyn_cast<PHINode>(UserInst);
void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
Instruction *Op = cast<Instruction>(I.getOperand(i));
+ // If the we have an invalid invoke, don't try to compute the dominance.
+ // We already reject it in the invoke specific checks and the dominance
+ // computation doesn't handle multiple edges.
+ if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
+ if (II->getNormalDest() == II->getUnwindDest())
+ return;
+ }
const Use &U = I.getOperandUse(i);
Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, U),
br label %L
L: ; preds = %L2, %L1, %L1
; CHECK: The unwind destination does not have a landingpad instruction
-; CHECK: Instruction does not dominate all uses
ret i32 %A
}