--- /dev/null
+//===- LoopDistribute.cpp - Loop Distribution Pass ------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the Loop Distribution Pass. Its main focus is to
+// distribute loops that cannot be vectorized due to dependence cycles. It
+// tries to isolate the offending dependences into a new loop allowing
+// vectorization of the remaining parts.
+//
+// For dependence analysis, the pass uses the LoopVectorizer's
+// LoopAccessAnalysis. Because this analysis presumes no change in the order of
+// memory operations, special care is taken to preserve the lexical order of
+// these operations.
+//
+// Similarly to the Vectorizer, the pass also supports loop versioning to
+// run-time disambiguate potentially overlapping arrays.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/EquivalenceClasses.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/LoopAccessAnalysis.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include <list>
+
+#define LDIST_NAME "loop-distribute"
+#define DEBUG_TYPE LDIST_NAME
+
+using namespace llvm;
+
+static cl::opt<bool>
+ LDistVerify("loop-distribute-verify", cl::Hidden,
+ cl::desc("Turn on DominatorTree and LoopInfo verification "
+ "after Loop Distribution"),
+ cl::init(false));
+
+static cl::opt<bool> DistributeNonIfConvertible(
+ "loop-distribute-non-if-convertible", cl::Hidden,
+ cl::desc("Whether to distribute into a loop that may not be "
+ "if-convertible by the loop vectorizer"),
+ cl::init(false));
+
+STATISTIC(NumLoopsDistributed, "Number of loops distributed");
+
+namespace {
+/// \brief Remaps instructions in a loop including the preheader.
+void remapInstructionsInLoop(const SmallVectorImpl<BasicBlock *> &Blocks,
+ ValueToValueMapTy &VMap) {
+ // Rewrite the code to refer to itself.
+ for (auto *BB : Blocks)
+ for (auto &Inst : *BB)
+ RemapInstruction(&Inst, VMap,
+ RF_NoModuleLevelChanges | RF_IgnoreMissingEntries);
+}
+
+/// \brief Clones a loop \p OrigLoop. Returns the loop and the blocks in \p
+/// Blocks.
+///
+/// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
+/// \p LoopDomBB. Insert the new blocks before block specified in \p Before.
+static Loop *cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
+ Loop *OrigLoop, ValueToValueMapTy &VMap,
+ const Twine &NameSuffix, LoopInfo *LI,
+ DominatorTree *DT,
+ SmallVectorImpl<BasicBlock *> &Blocks) {
+ Function *F = OrigLoop->getHeader()->getParent();
+ Loop *ParentLoop = OrigLoop->getParentLoop();
+
+ Loop *NewLoop = new Loop();
+ if (ParentLoop)
+ ParentLoop->addChildLoop(NewLoop);
+ else
+ LI->addTopLevelLoop(NewLoop);
+
+ BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
+ BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
+ // To rename the loop PHIs.
+ VMap[OrigPH] = NewPH;
+ Blocks.push_back(NewPH);
+
+ // Update LoopInfo.
+ if (ParentLoop)
+ ParentLoop->addBasicBlockToLoop(NewPH, *LI);
+
+ // Update DominatorTree.
+ DT->addNewBlock(NewPH, LoopDomBB);
+
+ for (BasicBlock *BB : OrigLoop->getBlocks()) {
+ BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
+ VMap[BB] = NewBB;
+
+ // Update LoopInfo.
+ NewLoop->addBasicBlockToLoop(NewBB, *LI);
+
+ // Update DominatorTree.
+ BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
+ DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
+
+ Blocks.push_back(NewBB);
+ }
+
+ // Move them physically from the end of the block list.
+ F->getBasicBlockList().splice(Before, F->getBasicBlockList(), NewPH);
+ F->getBasicBlockList().splice(Before, F->getBasicBlockList(),
+ NewLoop->getHeader(), F->end());
+
+ return NewLoop;
+}
+
+/// \brief Maintains the set of instructions of the loop for a partition before
+/// cloning. After cloning, it hosts the new loop.
+class InstPartition {
+ typedef SmallPtrSet<Instruction *, 8> InstructionSet;
+
+public:
+ InstPartition(Instruction *I, Loop *L, bool DepCycle = false)
+ : DepCycle(DepCycle), OrigLoop(L), ClonedLoop(nullptr) {
+ Set.insert(I);
+ }
+
+ /// \brief Returns whether this partition contains a dependence cycle.
+ bool hasDepCycle() const { return DepCycle; }
+
+ /// \brief Adds an instruction to this partition.
+ void add(Instruction *I) { Set.insert(I); }
+
+ /// \brief Collection accessors.
+ InstructionSet::iterator begin() { return Set.begin(); }
+ InstructionSet::iterator end() { return Set.end(); }
+ InstructionSet::const_iterator begin() const { return Set.begin(); }
+ InstructionSet::const_iterator end() const { return Set.end(); }
+ bool empty() const { return Set.empty(); }
+
+ /// \brief Moves this partition into \p Other. This partition becomes empty
+ /// after this.
+ void moveTo(InstPartition &Other) {
+ Other.Set.insert(Set.begin(), Set.end());
+ Set.clear();
+ Other.DepCycle |= DepCycle;
+ }
+
+ /// \brief Populates the partition with a transitive closure of all the
+ /// instructions that the seeded instructions dependent on.
+ void populateUsedSet() {
+ // FIXME: We currently don't use control-dependence but simply include all
+ // blocks (possibly empty at the end) and let simplifycfg mostly clean this
+ // up.
+ for (auto *B : OrigLoop->getBlocks())
+ Set.insert(B->getTerminator());
+
+ // Follow the use-def chains to form a transitive closure of all the
+ // instructions that the originally seeded instructions depend on.
+ SmallVector<Instruction *, 8> Worklist(Set.begin(), Set.end());
+ while (!Worklist.empty()) {
+ Instruction *I = Worklist.pop_back_val();
+ // Insert instructions from the loop that we depend on.
+ for (Value *V : I->operand_values()) {
+ auto *I = dyn_cast<Instruction>(V);
+ if (I && OrigLoop->contains(I->getParent()) && Set.insert(I).second)
+ Worklist.push_back(I);
+ }
+ }
+ }
+
+ /// \brief Clones the original loop.
+ ///
+ /// Updates LoopInfo and DominatorTree using the information that block \p
+ /// LoopDomBB dominates the loop.
+ Loop *cloneLoopWithPreheader(BasicBlock *InsertBefore, BasicBlock *LoopDomBB,
+ unsigned Index, LoopInfo *LI,
+ DominatorTree *DT) {
+ ClonedLoop = ::cloneLoopWithPreheader(InsertBefore, LoopDomBB, OrigLoop,
+ VMap, Twine(".ldist") + Twine(Index),
+ LI, DT, ClonedLoopBlocks);
+ return ClonedLoop;
+ }
+
+ /// \brief The cloned loop. If this partition is mapped to the original loop,
+ /// this is null.
+ const Loop *getClonedLoop() const { return ClonedLoop; }
+
+ /// \brief Returns the loop where this partition ends up after distribution.
+ /// If this partition is mapped to the original loop then use the block from
+ /// the loop.
+ const Loop *getDistributedLoop() const {
+ return ClonedLoop ? ClonedLoop : OrigLoop;
+ }
+
+ /// \brief The VMap that is populated by cloning and then used in
+ /// remapinstruction to remap the cloned instructions.
+ ValueToValueMapTy &getVMap() { return VMap; }
+
+ /// \brief Remaps the cloned instructions using VMap.
+ void remapInstructions() { remapInstructionsInLoop(ClonedLoopBlocks, VMap); }
+
+ /// \brief Based on the set of instructions selected for this partition,
+ /// removes the unnecessary ones.
+ void removeUnusedInsts() {
+ SmallVector<Instruction *, 8> Unused;
+
+ for (auto *Block : OrigLoop->getBlocks())
+ for (auto &Inst : *Block)
+ if (!Set.count(&Inst)) {
+ Instruction *NewInst = &Inst;
+ if (!VMap.empty())
+ NewInst = cast<Instruction>(VMap[NewInst]);
+
+ assert(!isa<BranchInst>(NewInst) &&
+ "Branches are marked used early on");
+ Unused.push_back(NewInst);
+ }
+
+ // Delete the instructions backwards, as it has a reduced likelihood of
+ // having to update as many def-use and use-def chains.
+ for (auto I = Unused.rbegin(), E = Unused.rend(); I != E; ++I) {
+ auto *Inst = *I;
+
+ if (!Inst->use_empty())
+ Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
+ Inst->eraseFromParent();
+ }
+ }
+
+ void print() {
+ if (DepCycle)
+ dbgs() << " (cycle)\n";
+ for (auto *I : Set)
+ // Prefix with the block name.
+ dbgs() << " " << I->getParent()->getName() << ":" << *I << "\n";
+ }
+
+ void printBlocks() const {
+ for (auto *BB : getDistributedLoop()->getBlocks())
+ dbgs() << *BB;
+ }
+
+private:
+ /// \brief Instructions from OrigLoop selected for this partition.
+ InstructionSet Set;
+
+ /// \brief Whether this partition contains a dependence cycle.
+ bool DepCycle;
+
+ /// \brief The original loop.
+ Loop *OrigLoop;
+
+ /// \brief The cloned loop. If this partition is mapped to the original loop,
+ /// this is null.
+ Loop *ClonedLoop;
+
+ /// \brief The blocks of ClonedLoop including the preheader. If this
+ /// partition is mapped to the original loop, this is empty.
+ SmallVector<BasicBlock *, 8> ClonedLoopBlocks;
+
+ /// \brief These gets populated once the set of instructions have been
+ /// finalized. If this partition is mapped to the original loop, these are not
+ /// set.
+ ValueToValueMapTy VMap;
+};
+
+/// \brief Holds the set of Partitions. It populates them, merges them and then
+/// clones the loops.
+class InstPartitionContainer {
+ typedef DenseMap<Instruction *, int> InstToPartitionIdT;
+
+public:
+ InstPartitionContainer(Loop *L, LoopInfo *LI, DominatorTree *DT)
+ : L(L), LI(LI), DT(DT) {}
+
+ /// \brief Returns the number of partitions.
+ unsigned getSize() const { return PartitionContainer.size(); }
+
+ /// \brief Adds \p Inst into the current partition if that is marked to
+ /// contain cycles. Otherwise start a new partition for it.
+ void addToCyclicPartition(Instruction *Inst) {
+ // If the current partition is non-cyclic. Start a new one.
+ if (PartitionContainer.empty() || !PartitionContainer.back()->hasDepCycle())
+ PartitionContainer.push_back(
+ llvm::make_unique<InstPartition>(Inst, L, true));
+ else
+ PartitionContainer.back()->add(Inst);
+ }
+
+ /// \brief Adds \p Inst into a partition that is not marked to contain
+ /// dependence cycles.
+ ///
+ // Initially we isolate memory instructions into as many partitions as
+ // possible, then later we may merge them back together.
+ void addToNewNonCyclicPartition(Instruction *Inst) {
+ PartitionContainer.push_back(llvm::make_unique<InstPartition>(Inst, L));
+ }
+
+ /// \brief Merges adjacent non-cyclic partitions.
+ ///
+ /// The idea is that we currently only want to isolate the non-vectorizable
+ /// partition. We could later allow more distribution among these partition
+ /// too.
+ void mergeAdjacentNonCyclic() {
+ mergeAdjacentPartitionsIf(
+ [](const InstPartition *P) { return !P->hasDepCycle(); });
+ }
+
+ /// \brief If a partition contains only conditional stores, we won't vectorize
+ /// it. Try to merge it with a previous cyclic partition.
+ void mergeNonIfConvertible() {
+ mergeAdjacentPartitionsIf([&](const InstPartition *Partition) {
+ if (Partition->hasDepCycle())
+ return true;
+
+ // Now, check if all stores are conditional in this partition.
+ bool seenStore = false;
+
+ for (auto *Inst : *Partition)
+ if (isa<StoreInst>(Inst)) {
+ seenStore = true;
+ if (!LoopAccessInfo::blockNeedsPredication(Inst->getParent(), L, DT))
+ return false;
+ }
+ return seenStore;
+ });
+ }
+
+ /// \brief Merges the partitions according to various heuristics.
+ void mergeBeforePopulating() {
+ mergeAdjacentNonCyclic();
+ if (!DistributeNonIfConvertible)
+ mergeNonIfConvertible();
+ }
+
+ /// \brief Merges partitions in order to ensure that no loads are duplicated.
+ ///
+ /// We can't duplicate loads because that could potentially reorder them.
+ /// LoopAccessAnalysis provides dependency information with the context that
+ /// the order of memory operation is preserved.
+ ///
+ /// Return if any partitions were merged.
+ bool mergeToAvoidDuplicatedLoads() {
+ typedef DenseMap<Instruction *, InstPartition *> LoadToPartitionT;
+ typedef EquivalenceClasses<InstPartition *> ToBeMergedT;
+
+ LoadToPartitionT LoadToPartition;
+ ToBeMergedT ToBeMerged;
+
+ // Step through the partitions and create equivalence between partitions
+ // that contain the same load. Also put partitions in between them in the
+ // same equivalence class to avoid reordering of memory operations.
+ for (PartitionContainerT::iterator I = PartitionContainer.begin(),
+ E = PartitionContainer.end();
+ I != E; ++I) {
+ auto *PartI = I->get();
+
+ // If a load occurs in two partitions PartI and PartJ, merge all
+ // partitions (PartI, PartJ] into PartI.
+ for (Instruction *Inst : *PartI)
+ if (isa<LoadInst>(Inst)) {
+ bool NewElt;
+ LoadToPartitionT::iterator LoadToPart;
+
+ std::tie(LoadToPart, NewElt) =
+ LoadToPartition.insert(std::make_pair(Inst, PartI));
+ if (!NewElt) {
+ DEBUG(dbgs() << "Merging partitions due to this load in multiple "
+ << "partitions: " << PartI << ", "
+ << LoadToPart->second << "\n" << *Inst << "\n");
+
+ auto PartJ = I;
+ do {
+ --PartJ;
+ ToBeMerged.unionSets(PartI, PartJ->get());
+ } while (PartJ->get() != LoadToPart->second);
+ }
+ }
+ }
+ if (ToBeMerged.empty())
+ return false;
+
+ // Merge the member of an equivalence class into its class leader. This
+ // makes the members empty.
+ for (ToBeMergedT::iterator I = ToBeMerged.begin(), E = ToBeMerged.end();
+ I != E; ++I) {
+ if (!I->isLeader())
+ continue;
+
+ auto PartI = I->getData();
+ for (auto PartJ : make_range(std::next(ToBeMerged.member_begin(I)),
+ ToBeMerged.member_end())) {
+ PartJ->moveTo(*PartI);
+ }
+ }
+
+ // Remove the empty partitions.
+ for (PartitionContainerT::iterator PartI = PartitionContainer.begin(),
+ E = PartitionContainer.end();
+ PartI != E;)
+ if ((*PartI)->empty())
+ PartI = PartitionContainer.erase(PartI);
+ else
+ ++PartI;
+
+ return true;
+ }
+
+ /// \brief Sets up the mapping between instructions to partitions. If the
+ /// instruction is duplicated across multiple partitions, set the entry to -1.
+ void setupPartitionIdOnInstructions() {
+ int PartitionID = 0;
+ for (auto &PartitionPtr : PartitionContainer) {
+ for (Instruction *Inst : *PartitionPtr) {
+ bool NewElt;
+ InstToPartitionIdT::iterator Iter;
+
+ std::tie(Iter, NewElt) =
+ InstToPartitionId.insert(std::make_pair(Inst, PartitionID));
+ if (!NewElt)
+ Iter->second = -1;
+ }
+ ++PartitionID;
+ }
+ }
+
+ /// \brief Populates the partition with everything that the seeding
+ /// instructions require.
+ void populateUsedSet() {
+ for (auto &P : PartitionContainer)
+ P->populateUsedSet();
+ }
+
+ /// \brief This performs the main chunk of the work of cloning the loops for
+ /// the partitions.
+ void cloneLoops(Pass *P) {
+ BasicBlock *OrigPH = L->getLoopPreheader();
+ // At this point the predecessor of the preheader is either the memcheck
+ // block or the top part of the original preheader.
+ BasicBlock *Pred = OrigPH->getSinglePredecessor();
+ assert(Pred && "Preheader does not have a single predecessor");
+ BasicBlock *ExitBlock = L->getExitBlock();
+ assert(ExitBlock && "No single exit block");
+ Loop *NewLoop;
+
+ assert(!PartitionContainer.empty() && "at least two partitions expected");
+ // We're cloning the preheader along with the loop so we already made sure
+ // it was empty.
+ assert(&*OrigPH->begin() == OrigPH->getTerminator() &&
+ "preheader not empty");
+
+ // Create a loop for each partition except the last. Clone the original
+ // loop before PH along with adding a preheader for the cloned loop. Then
+ // update PH to point to the newly added preheader.
+ BasicBlock *TopPH = OrigPH;
+ unsigned Index = getSize() - 1;
+ for (auto I = std::next(PartitionContainer.crbegin()),
+ E = PartitionContainer.crend();
+ I != E; ++I, --Index, TopPH = NewLoop->getLoopPreheader()) {
+ auto &Part = *I;
+
+ NewLoop = Part->cloneLoopWithPreheader(TopPH, Pred, Index, LI, DT);
+
+ Part->getVMap()[ExitBlock] = TopPH;
+ Part->remapInstructions();
+ }
+ Pred->getTerminator()->replaceUsesOfWith(OrigPH, TopPH);
+
+ // Now go in forward order and update the immediate dominator for the
+ // preheaders with the exiting block of the previous loop. Dominance
+ // within the loop is updated in cloneLoopWithPreheader.
+ for (auto Curr = PartitionContainer.cbegin(),
+ Next = std::next(PartitionContainer.cbegin()),
+ E = PartitionContainer.cend();
+ Next != E; ++Curr, ++Next)
+ DT->changeImmediateDominator(
+ (*Next)->getDistributedLoop()->getLoopPreheader(),
+ (*Curr)->getDistributedLoop()->getExitingBlock());
+ }
+
+ /// \brief Removes the dead instructions from the cloned loops.
+ void removeUnusedInsts() {
+ for (auto &PartitionPtr : PartitionContainer)
+ PartitionPtr->removeUnusedInsts();
+ }
+
+ /// \brief For each memory pointer, it computes the partitionId the pointer is
+ /// used in.
+ ///
+ /// This returns an array of int where the I-th entry corresponds to I-th
+ /// entry in LAI.getRuntimePointerCheck(). If the pointer is used in multiple
+ /// partitions its entry is set to -1.
+ SmallVector<int, 8>
+ computePartitionSetForPointers(const LoopAccessInfo &LAI) {
+ const LoopAccessInfo::RuntimePointerCheck *RtPtrCheck =
+ LAI.getRuntimePointerCheck();
+
+ unsigned N = RtPtrCheck->Pointers.size();
+ SmallVector<int, 8> PtrToPartitions(N);
+ for (unsigned I = 0; I < N; ++I) {
+ Value *Ptr = RtPtrCheck->Pointers[I];
+ auto Instructions =
+ LAI.getInstructionsForAccess(Ptr, RtPtrCheck->IsWritePtr[I]);
+
+ int &Partition = PtrToPartitions[I];
+ // First set it to uninitialized.
+ Partition = -2;
+ for (Instruction *Inst : Instructions) {
+ // Note that this could be -1 if Inst is duplicated across multiple
+ // partitions.
+ int ThisPartition = this->InstToPartitionId[Inst];
+ if (Partition == -2)
+ Partition = ThisPartition;
+ // -1 means belonging to multiple partitions.
+ else if (Partition == -1)
+ break;
+ else if (Partition != (int)ThisPartition)
+ Partition = -1;
+ }
+ assert(Partition != -2 && "Pointer not belonging to any partition");
+ }
+
+ return PtrToPartitions;
+ }
+
+ void print(raw_ostream &OS) const {
+ unsigned Index = 0;
+ for (auto &P : PartitionContainer) {
+ OS << "Partition " << Index++ << " (" << P.get() << "):\n";
+ P->print();
+ }
+ }
+
+ void dump() const { print(dbgs()); }
+
+#ifndef NDEBUG
+ friend raw_ostream &operator<<(raw_ostream &OS,
+ const InstPartitionContainer &Partitions) {
+ Partitions.print(OS);
+ return OS;
+ }
+#endif
+
+ void printBlocks() const {
+ unsigned Index = 0;
+ for (auto &P : PartitionContainer) {
+ dbgs() << "\nPartition " << Index++ << " (" << P.get() << "):\n";
+ P->printBlocks();
+ }
+ }
+
+private:
+ typedef std::list<std::unique_ptr<InstPartition>> PartitionContainerT;
+
+ /// \brief List of partitions.
+ PartitionContainerT PartitionContainer;
+
+ /// \brief Mapping from Instruction to partition Id. If the instruction
+ /// belongs to multiple partitions the entry contains -1.
+ InstToPartitionIdT InstToPartitionId;
+
+ Loop *L;
+ LoopInfo *LI;
+ DominatorTree *DT;
+
+ /// \brief The control structure to merge adjacent partitions if both satisfy
+ /// the \p Predicate.
+ template <class UnaryPredicate>
+ void mergeAdjacentPartitionsIf(UnaryPredicate Predicate) {
+ InstPartition *PrevMatch = nullptr;
+ for (auto I = PartitionContainer.begin(); I != PartitionContainer.end();) {
+ auto DoesMatch = Predicate(I->get());
+ if (PrevMatch == nullptr && DoesMatch) {
+ PrevMatch = I->get();
+ ++I;
+ } else if (PrevMatch != nullptr && DoesMatch) {
+ (*I)->moveTo(*PrevMatch);
+ I = PartitionContainer.erase(I);
+ } else {
+ PrevMatch = nullptr;
+ ++I;
+ }
+ }
+ }
+};
+
+/// \brief For each memory instruction, this class maintains difference of the
+/// number of unsafe dependences that start out from this instruction minus
+/// those that end here.
+///
+/// By traversing the memory instructions in program order and accumulating this
+/// number, we know whether any unsafe dependence crosses over a program point.
+class MemoryInstructionDependences {
+ typedef MemoryDepChecker::Dependence Dependence;
+
+public:
+ struct Entry {
+ Instruction *Inst;
+ unsigned NumUnsafeDependencesStartOrEnd;
+
+ Entry(Instruction *Inst) : Inst(Inst), NumUnsafeDependencesStartOrEnd(0) {}
+ };
+
+ typedef SmallVector<Entry, 8> AccessesType;
+
+ AccessesType::const_iterator begin() const { return Accesses.begin(); }
+ AccessesType::const_iterator end() const { return Accesses.end(); }
+
+ MemoryInstructionDependences(
+ const SmallVectorImpl<Instruction *> &Instructions,
+ const SmallVectorImpl<Dependence> &InterestingDependences) {
+ std::transform(Instructions.begin(), Instructions.end(),
+ std::back_inserter(Accesses),
+ [](Instruction *Inst) { return Entry(Inst); });
+
+ DEBUG(dbgs() << "Backward dependences:\n");
+ for (auto &Dep : InterestingDependences)
+ if (Dep.isPossiblyBackward()) {
+ // Note that the designations source and destination follow the program
+ // order, i.e. source is always first. (The direction is given by the
+ // DepType.)
+ ++Accesses[Dep.Source].NumUnsafeDependencesStartOrEnd;
+ --Accesses[Dep.Destination].NumUnsafeDependencesStartOrEnd;
+
+ DEBUG(Dep.print(dbgs(), 2, Instructions));
+ }
+ }
+
+private:
+ AccessesType Accesses;
+};
+
+/// \brief Handles the loop versioning based on memchecks.
+class RuntimeCheckEmitter {
+public:
+ RuntimeCheckEmitter(const LoopAccessInfo &LAI, Loop *L, LoopInfo *LI,
+ DominatorTree *DT)
+ : OrigLoop(L), NonDistributedLoop(nullptr), LAI(LAI), LI(LI), DT(DT) {}
+
+ /// \brief Given the \p Partitions formed by Loop Distribution, it determines
+ /// in which partition each pointer is used.
+ void partitionPointers(InstPartitionContainer &Partitions) {
+ // Set up partition id in PtrRtChecks. Ptr -> Access -> Intruction ->
+ // Partition.
+ PtrToPartition = Partitions.computePartitionSetForPointers(LAI);
+
+ DEBUG(dbgs() << "\nPointers:\n");
+ DEBUG(LAI.getRuntimePointerCheck()->print(dbgs(), 0, &PtrToPartition));
+ }
+
+ /// \brief Returns true if we need memchecks to distribute the loop.
+ bool needsRuntimeChecks() const {
+ return LAI.getRuntimePointerCheck()->needsAnyChecking(&PtrToPartition);
+ }
+
+ /// \brief Performs the CFG manipulation part of versioning the loop including
+ /// the DominatorTree and LoopInfo updates.
+ void versionLoop(Pass *P) {
+ Instruction *FirstCheckInst;
+ Instruction *MemRuntimeCheck;
+ // Add the memcheck in the original preheader (this is empty initially).
+ BasicBlock *MemCheckBB = OrigLoop->getLoopPreheader();
+ std::tie(FirstCheckInst, MemRuntimeCheck) =
+ LAI.addRuntimeCheck(MemCheckBB->getTerminator(), &PtrToPartition);
+ assert(MemRuntimeCheck && "called even though needsAnyChecking = false");
+
+ // Rename the block to make the IR more readable.
+ MemCheckBB->setName(OrigLoop->getHeader()->getName() + ".ldist.memcheck");
+
+ // Create empty preheader for the loop (and after cloning for the
+ // original/nondist loop).
+ BasicBlock *PH =
+ SplitBlock(MemCheckBB, MemCheckBB->getTerminator(), DT, LI);
+ PH->setName(OrigLoop->getHeader()->getName() + ".ph");
+
+ // Clone the loop including the preheader.
+ //
+ // FIXME: This does not currently preserve SimplifyLoop because the exit
+ // block is a join between the two loops.
+ SmallVector<BasicBlock *, 8> NonDistributedLoopBlocks;
+ NonDistributedLoop =
+ cloneLoopWithPreheader(PH, MemCheckBB, OrigLoop, VMap, ".ldist.nondist",
+ LI, DT, NonDistributedLoopBlocks);
+ remapInstructionsInLoop(NonDistributedLoopBlocks, VMap);
+
+ // Insert the conditional branch based on the result of the memchecks.
+ Instruction *OrigTerm = MemCheckBB->getTerminator();
+ BranchInst::Create(NonDistributedLoop->getLoopPreheader(),
+ OrigLoop->getLoopPreheader(), MemRuntimeCheck, OrigTerm);
+ OrigTerm->eraseFromParent();
+
+ // The loops merge in the original exit block. This is now dominated by the
+ // memchecking block.
+ DT->changeImmediateDominator(OrigLoop->getExitBlock(), MemCheckBB);
+ }
+
+ /// \brief Adds the necessary PHI nodes for the versioned loops based on the
+ /// loop-defined values used outside of the loop.
+ void addPHINodes(const SmallVectorImpl<Instruction *> &DefsUsedOutside) {
+ BasicBlock *PHIBlock = OrigLoop->getExitBlock();
+ assert(PHIBlock && "No single successor to loop exit block");
+
+ for (auto *Inst : DefsUsedOutside) {
+ auto *NonDistInst = cast<Instruction>(VMap[Inst]);
+ PHINode *PN;
+ BasicBlock::iterator I;
+
+ // First see if we have a single-operand PHI with the value defined by the
+ // original loop.
+ for (I = PHIBlock->begin(); (PN = dyn_cast<PHINode>(I)); ++I) {
+ assert(PN->getNumOperands() == 1 &&
+ "Exit block should only have on predecessor");
+ if (PN->getIncomingValue(0) == Inst)
+ break;
+ }
+ // If not create it.
+ if (!PN) {
+ PN = PHINode::Create(Inst->getType(), 2, Inst->getName() + ".ldist",
+ PHIBlock->begin());
+ for (auto *User : Inst->users())
+ if (!OrigLoop->contains(cast<Instruction>(User)->getParent()))
+ User->replaceUsesOfWith(Inst, PN);
+ PN->addIncoming(Inst, OrigLoop->getExitingBlock());
+ }
+ // Add the new incoming value from the non-distributed loop.
+ PN->addIncoming(NonDistInst, NonDistributedLoop->getExitingBlock());
+ }
+ }
+
+private:
+ /// \brief The original loop. This becomes the "versioned" one, i.e. control
+ /// goes if the memchecks all pass.
+ Loop *OrigLoop;
+ /// \brief The fall-back loop, i.e. if any of the memchecks fail.
+ Loop *NonDistributedLoop;
+
+ /// \brief For each memory pointer it contains the partitionId it is used in.
+ ///
+ /// The I-th entry corresponds to I-th entry in LAI.getRuntimePointerCheck().
+ /// If the pointer is used in multiple partitions the entry is set to -1.
+ SmallVector<int, 8> PtrToPartition;
+
+ /// \brief This maps the instructions from OrigLoop to their counterpart in
+ /// NonDistributedLoop.
+ ValueToValueMapTy VMap;
+
+ /// \brief Analyses used.
+ const LoopAccessInfo &LAI;
+ LoopInfo *LI;
+ DominatorTree *DT;
+};
+
+/// \brief Returns the instructions that use values defined in the loop.
+static SmallVector<Instruction *, 8> findDefsUsedOutsideOfLoop(Loop *L) {
+ SmallVector<Instruction *, 8> UsedOutside;
+
+ for (auto *Block : L->getBlocks())
+ // FIXME: I believe that this could use copy_if if the Inst reference could
+ // be adapted into a pointer.
+ for (auto &Inst : *Block) {
+ auto Users = Inst.users();
+ if (std::any_of(Users.begin(), Users.end(), [&](User *U) {
+ auto *Use = cast<Instruction>(U);
+ return !L->contains(Use->getParent());
+ }))
+ UsedOutside.push_back(&Inst);
+ }
+
+ return UsedOutside;
+}
+
+/// \brief The pass class.
+class LoopDistribute : public FunctionPass {
+public:
+ LoopDistribute() : FunctionPass(ID) {
+ initializeLoopDistributePass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F) override {
+ LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ LAA = &getAnalysis<LoopAccessAnalysis>();
+ DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+
+ // Build up a worklist of inner-loops to vectorize. This is necessary as the
+ // act of distributing a loop creates new loops and can invalidate iterators
+ // across the loops.
+ SmallVector<Loop *, 8> Worklist;
+
+ for (Loop *TopLevelLoop : *LI)
+ for (Loop *L : depth_first(TopLevelLoop))
+ // We only handle inner-most loops.
+ if (L->empty())
+ Worklist.push_back(L);
+
+ // Now walk the identified inner loops.
+ bool Changed = false;
+ for (Loop *L : Worklist)
+ Changed |= processLoop(L);
+
+ // Process each loop nest in the function.
+ return Changed;
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<LoopInfoWrapperPass>();
+ AU.addPreserved<LoopInfoWrapperPass>();
+ AU.addRequired<LoopAccessAnalysis>();
+ AU.addRequired<DominatorTreeWrapperPass>();
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ }
+
+ static char ID;
+
+private:
+ /// \brief Try to distribute an inner-most loop.
+ bool processLoop(Loop *L) {
+ assert(L->empty() && "Only process inner loops.");
+
+ DEBUG(dbgs() << "\nLDist: In \"" << L->getHeader()->getParent()->getName()
+ << "\" checking " << *L << "\n");
+
+ BasicBlock *PH = L->getLoopPreheader();
+ if (!PH) {
+ DEBUG(dbgs() << "Skipping; no preheader");
+ return false;
+ }
+ if (!L->getExitBlock()) {
+ DEBUG(dbgs() << "Skipping; multiple exit blocks");
+ return false;
+ }
+ // LAA will check that we only have a single exiting block.
+
+ const LoopAccessInfo &LAI = LAA->getInfo(L, ValueToValueMap());
+
+ // Currently, we only distribute to isolate the part of the loop with
+ // dependence cycles to enable partial vectorization.
+ if (LAI.canVectorizeMemory()) {
+ DEBUG(dbgs() << "Skipping; memory operations are safe for vectorization");
+ return false;
+ }
+ auto *InterestingDependences =
+ LAI.getDepChecker().getInterestingDependences();
+ if (!InterestingDependences || InterestingDependences->empty()) {
+ DEBUG(dbgs() << "Skipping; No unsafe dependences to isolate");
+ return false;
+ }
+
+ InstPartitionContainer Partitions(L, LI, DT);
+
+ // First, go through each memory operation and assign them to consecutive
+ // partitions (the order of partitions follows program order). Put those
+ // with unsafe dependences into "cyclic" partition otherwise put each store
+ // in its own "non-cyclic" partition (we'll merge these later).
+ //
+ // Note that a memory operation (e.g. Load2 below) at a program point that
+ // has an unsafe dependence (Store3->Load1) spanning over it must be
+ // included in the same cyclic partition as the dependent operations. This
+ // is to preserve the original program order after distribution. E.g.:
+ //
+ // NumUnsafeDependencesStartOrEnd NumUnsafeDependencesActive
+ // Load1 -. 1 0->1
+ // Load2 | /Unsafe/ 0 1
+ // Store3 -' -1 1->0
+ // Load4 0 0
+ //
+ // NumUnsafeDependencesActive > 0 indicates this situation and in this case
+ // we just keep assigning to the same cyclic partition until
+ // NumUnsafeDependencesActive reaches 0.
+ const MemoryDepChecker &DepChecker = LAI.getDepChecker();
+ MemoryInstructionDependences MID(DepChecker.getMemoryInstructions(),
+ *InterestingDependences);
+
+ int NumUnsafeDependencesActive = 0;
+ for (auto &InstDep : MID) {
+ Instruction *I = InstDep.Inst;
+ // We update NumUnsafeDependencesActive post-instruction, catch the
+ // start of a dependence directly via NumUnsafeDependencesStartOrEnd.
+ if (NumUnsafeDependencesActive ||
+ InstDep.NumUnsafeDependencesStartOrEnd > 0)
+ Partitions.addToCyclicPartition(I);
+ else
+ Partitions.addToNewNonCyclicPartition(I);
+ NumUnsafeDependencesActive += InstDep.NumUnsafeDependencesStartOrEnd;
+ assert(NumUnsafeDependencesActive >= 0 &&
+ "Negative number of dependences active");
+ }
+
+ // Add partitions for values used outside. These partitions can be out of
+ // order from the original program order. This is OK because if the
+ // partition uses a load we will merge this partition with the original
+ // partition of the load that we set up in the previous loop (see
+ // mergeToAvoidDuplicatedLoads).
+ auto DefsUsedOutside = findDefsUsedOutsideOfLoop(L);
+ for (auto *Inst : DefsUsedOutside)
+ Partitions.addToNewNonCyclicPartition(Inst);
+
+ DEBUG(dbgs() << "Seeded partitions:\n" << Partitions);
+ if (Partitions.getSize() < 2)
+ return false;
+
+ // Run the merge heuristics: Merge non-cyclic adjacent partitions since we
+ // should be able to vectorize these together.
+ Partitions.mergeBeforePopulating();
+ DEBUG(dbgs() << "\nMerged partitions:\n" << Partitions);
+ if (Partitions.getSize() < 2)
+ return false;
+
+ // Now, populate the partitions with non-memory operations.
+ Partitions.populateUsedSet();
+ DEBUG(dbgs() << "\nPopulated partitions:\n" << Partitions);
+
+ // In order to preserve original lexical order for loads, keep them in the
+ // partition that we set up in the MemoryInstructionDependences loop.
+ if (Partitions.mergeToAvoidDuplicatedLoads()) {
+ DEBUG(dbgs() << "\nPartitions merged to ensure unique loads:\n"
+ << Partitions);
+ if (Partitions.getSize() < 2)
+ return false;
+ }
+
+ DEBUG(dbgs() << "\nDistributing loop: " << *L << "\n");
+ // We're done forming the partitions set up the reverse mapping from
+ // instructions to partitions.
+ Partitions.setupPartitionIdOnInstructions();
+
+ // To keep things simple have an empty preheader before we version or clone
+ // the loop. (Also split if this has no predecessor, i.e. entry, because we
+ // rely on PH having a predecessor.)
+ if (!PH->getSinglePredecessor() || &*PH->begin() != PH->getTerminator())
+ SplitBlock(PH, PH->getTerminator(), DT, LI);
+
+ // If we need run-time checks to disambiguate pointers are run-time, version
+ // the loop now.
+ RuntimeCheckEmitter RtCheckEmitter(LAI, L, LI, DT);
+ RtCheckEmitter.partitionPointers(Partitions);
+ if (RtCheckEmitter.needsRuntimeChecks()) {
+ RtCheckEmitter.versionLoop(this);
+ RtCheckEmitter.addPHINodes(DefsUsedOutside);
+ }
+
+ // Create identical copies of the original loop for each partition and hook
+ // them up sequentially.
+ Partitions.cloneLoops(this);
+
+ // Now, we remove the instruction from each loop that don't belong to that
+ // partition.
+ Partitions.removeUnusedInsts();
+ DEBUG(dbgs() << "\nAfter removing unused Instrs:\n");
+ DEBUG(Partitions.printBlocks());
+
+ if (LDistVerify) {
+ LI->verify();
+ DT->verifyDomTree();
+ }
+
+ ++NumLoopsDistributed;
+ return true;
+ }
+
+ // Analyses used.
+ LoopInfo *LI;
+ LoopAccessAnalysis *LAA;
+ DominatorTree *DT;
+};
+} // anonymous namespace
+
+char LoopDistribute::ID;
+static const char ldist_name[] = "Loop Distribition";
+
+INITIALIZE_PASS_BEGIN(LoopDistribute, LDIST_NAME, ldist_name, false, false)
+INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LoopAccessAnalysis)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_END(LoopDistribute, LDIST_NAME, ldist_name, false, false)
+
+namespace llvm {
+FunctionPass *createLoopDistributePass() { return new LoopDistribute(); }
+}