#include "llvm/Support/DataTypes.h"
namespace llvm {
- class Value;
- class Instruction;
class APInt;
- class DataLayout;
- class StringRef;
- class MDNode;
+ class AddOperator;
class AssumptionCache;
+ class DataLayout;
class DominatorTree;
- class TargetLibraryInfo;
- class LoopInfo;
+ class Instruction;
class Loop;
+ class LoopInfo;
+ class MDNode;
+ class StringRef;
+ class TargetLibraryInfo;
+ class Value;
/// Determine which bits of V are known to be either zero or one and return
/// them in the KnownZero/KnownOne bit sets.
const Instruction *CxtI = nullptr,
const DominatorTree *DT = nullptr);
+ /// Returns true if the give value is known to be non-negative.
+ bool isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth = 0,
+ AssumptionCache *AC = nullptr,
+ const Instruction *CxtI = nullptr,
+ const DominatorTree *DT = nullptr);
+
/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
/// this predicate to simplify operations downstream. Mask is known to be
/// zero for bits that V cannot have.
AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT);
+ OverflowResult computeOverflowForSignedAdd(Value *LHS, Value *RHS,
+ const DataLayout &DL,
+ AssumptionCache *AC = nullptr,
+ const Instruction *CxtI = nullptr,
+ const DominatorTree *DT = nullptr);
+ /// This version also leverages the sign bit of Add if known.
+ OverflowResult computeOverflowForSignedAdd(AddOperator *Add,
+ const DataLayout &DL,
+ AssumptionCache *AC = nullptr,
+ const Instruction *CxtI = nullptr,
+ const DominatorTree *DT = nullptr);
/// Return true if this function can prove that the instruction I will
/// always transfer execution to one of its successors (including the next
return ::isKnownNonZero(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT));
}
+bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
+ AssumptionCache *AC, const Instruction *CxtI,
+ const DominatorTree *DT) {
+ bool NonNegative, Negative;
+ ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
+ return NonNegative;
+}
+
static bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
unsigned Depth, const Query &Q);
return OverflowResult::MayOverflow;
}
+static OverflowResult computeOverflowForSignedAdd(
+ Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
+ AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
+ if (Add && Add->hasNoSignedWrap()) {
+ return OverflowResult::NeverOverflows;
+ }
+
+ bool LHSKnownNonNegative, LHSKnownNegative;
+ bool RHSKnownNonNegative, RHSKnownNegative;
+ ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
+ AC, CxtI, DT);
+ ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
+ AC, CxtI, DT);
+
+ if ((LHSKnownNonNegative && RHSKnownNegative) ||
+ (LHSKnownNegative && RHSKnownNonNegative)) {
+ // The sign bits are opposite: this CANNOT overflow.
+ return OverflowResult::NeverOverflows;
+ }
+
+ // The remaining code needs Add to be available. Early returns if not so.
+ if (!Add)
+ return OverflowResult::MayOverflow;
+
+ // If the sign of Add is the same as at least one of the operands, this add
+ // CANNOT overflow. This is particularly useful when the sum is
+ // @llvm.assume'ed non-negative rather than proved so from analyzing its
+ // operands.
+ bool LHSOrRHSKnownNonNegative =
+ (LHSKnownNonNegative || RHSKnownNonNegative);
+ bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
+ if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
+ bool AddKnownNonNegative, AddKnownNegative;
+ ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
+ /*Depth=*/0, AC, CxtI, DT);
+ if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
+ (AddKnownNegative && LHSOrRHSKnownNegative)) {
+ return OverflowResult::NeverOverflows;
+ }
+ }
+
+ return OverflowResult::MayOverflow;
+}
+
+OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
+ const DataLayout &DL,
+ AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
+ Add, DL, AC, CxtI, DT);
+}
+
+OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
+ const DataLayout &DL,
+ AssumptionCache *AC,
+ const Instruction *CxtI,
+ const DominatorTree *DT) {
+ return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
+}
+
bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
// FIXME: This conservative implementation can be relaxed. E.g. most
// atomic operations are guaranteed to terminate on most platforms
// GEP's pointer size, i.e., whether Index needs to be sign-extended in order
// to be an index of GEP.
bool requiresSignExtension(Value *Index, GetElementPtrInst *GEP);
- // Returns whether V is known to be non-negative at context \c Ctxt.
- bool isKnownNonNegative(Value *V, Instruction *Ctxt);
- // Returns whether AO may sign overflow at context \c Ctxt. It computes a
- // conservative result -- it answers true when not sure.
- bool maySignOverflow(AddOperator *AO, Instruction *Ctxt);
AssumptionCache *AC;
const DataLayout *DL;
return cast<IntegerType>(Index->getType())->getBitWidth() < PointerSizeInBits;
}
-bool NaryReassociate::isKnownNonNegative(Value *V, Instruction *Ctxt) {
- bool NonNegative, Negative;
- // TODO: ComputeSignBits is expensive. Consider caching the results.
- ComputeSignBit(V, NonNegative, Negative, *DL, 0, AC, Ctxt, DT);
- return NonNegative;
-}
-
-bool NaryReassociate::maySignOverflow(AddOperator *AO, Instruction *Ctxt) {
- if (AO->hasNoSignedWrap())
- return false;
-
- Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1);
- // If LHS or RHS has the same sign as the sum, AO doesn't sign overflow.
- // TODO: handle the negative case as well.
- if (isKnownNonNegative(AO, Ctxt) &&
- (isKnownNonNegative(LHS, Ctxt) || isKnownNonNegative(RHS, Ctxt)))
- return false;
-
- return true;
-}
-
GetElementPtrInst *
NaryReassociate::tryReassociateGEPAtIndex(GetElementPtrInst *GEP, unsigned I,
Type *IndexedType) {
IndexToSplit = SExt->getOperand(0);
} else if (ZExtInst *ZExt = dyn_cast<ZExtInst>(IndexToSplit)) {
// zext can be treated as sext if the source is non-negative.
- if (isKnownNonNegative(ZExt->getOperand(0), GEP))
+ if (isKnownNonNegative(ZExt->getOperand(0), *DL, 0, AC, GEP, DT))
IndexToSplit = ZExt->getOperand(0);
}
// If the I-th index needs sext and the underlying add is not equipped with
// nsw, we cannot split the add because
// sext(LHS + RHS) != sext(LHS) + sext(RHS).
- if (requiresSignExtension(IndexToSplit, GEP) && maySignOverflow(AO, GEP))
+ if (requiresSignExtension(IndexToSplit, GEP) &&
+ computeOverflowForSignedAdd(AO, *DL, AC, GEP, DT) !=
+ OverflowResult::NeverOverflows)
return nullptr;
+
Value *LHS = AO->getOperand(0), *RHS = AO->getOperand(1);
// IndexToSplit = LHS + RHS.
if (auto *NewGEP = tryReassociateGEPAtIndex(GEP, I, LHS, RHS, IndexedType))
IndexExprs.push_back(SE->getSCEV(*Index));
// Replace the I-th index with LHS.
IndexExprs[I] = SE->getSCEV(LHS);
- if (isKnownNonNegative(LHS, GEP) &&
+ if (isKnownNonNegative(LHS, *DL, 0, AC, GEP, DT) &&
DL->getTypeSizeInBits(LHS->getType()) <
DL->getTypeSizeInBits(GEP->getOperand(I)->getType())) {
// Zero-extend LHS if it is non-negative. InstCombine canonicalizes sext to