sse2_fp_unop_p<0x51, "sqrt", fsqrt, SSE_SQRTS>,
sse2_fp_unop_p_int<0x51, "sqrt", int_x86_sse2_sqrt_pd, SSE_SQRTS>;
+/// sse1_fp_unop_s_rw - SSE1 unops where vector form has a read-write operand.
+multiclass sse1_fp_unop_rw<bits<8> opc, string OpcodeStr, SDNode OpNode,
+ Intrinsic F32Int, OpndItins itins> {
+ def SSr : SSI<opc, MRMSrcReg, (outs FR32:$dst), (ins FR32:$src),
+ !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
+ [(set FR32:$dst, (OpNode FR32:$src))]>;
+ // For scalar unary operations, fold a load into the operation
+ // only in OptForSize mode. It eliminates an instruction, but it also
+ // eliminates a whole-register clobber (the load), so it introduces a
+ // partial register update condition.
+ def SSm : I<opc, MRMSrcMem, (outs FR32:$dst), (ins f32mem:$src),
+ !strconcat(OpcodeStr, "ss\t{$src, $dst|$dst, $src}"),
+ [(set FR32:$dst, (OpNode (load addr:$src)))], itins.rm>, XS,
+ Requires<[UseSSE1, OptForSize]>;
+ let Constraints = "$src1 = $dst" in {
+ def SSr_Int : SSI<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2),
+ !strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"),
+ [], itins.rr>;
+ def SSm_Int : SSI<opc, MRMSrcMem, (outs VR128:$dst),
+ (ins VR128:$src1, ssmem:$src2),
+ !strconcat(OpcodeStr, "ss\t{$src2, $dst|$dst, $src2}"),
+ [], itins.rm>;
+ }
+}
+
// Reciprocal approximations. Note that these typically require refinement
// in order to obtain suitable precision.
-defm RSQRT : sse1_fp_unop_s<0x52, "rsqrt", X86frsqrt, int_x86_sse_rsqrt_ss,
- SSE_SQRTS>,
+defm RSQRT : sse1_fp_unop_rw<0x52, "rsqrt", X86frsqrt, int_x86_sse_rsqrt_ss,
+ SSE_SQRTS>,
sse1_fp_unop_p<0x52, "rsqrt", X86frsqrt, SSE_SQRTS>,
sse1_fp_unop_p_int<0x52, "rsqrt", int_x86_sse_rsqrt_ps,
SSE_SQRTS>;
-defm RCP : sse1_fp_unop_s<0x53, "rcp", X86frcp, int_x86_sse_rcp_ss,
- SSE_RCPS>,
+let Predicates = [UseSSE1] in {
+ def : Pat<(int_x86_sse_rsqrt_ss VR128:$src),
+ (RSQRTSSr_Int VR128:$src, VR128:$src)>;
+}
+
+defm RCP : sse1_fp_unop_rw<0x53, "rcp", X86frcp, int_x86_sse_rcp_ss,
+ SSE_RCPS>,
sse1_fp_unop_p<0x53, "rcp", X86frcp, SSE_RCPS>,
sse1_fp_unop_p_int<0x53, "rcp", int_x86_sse_rcp_ps, SSE_RCPS>;
+let Predicates = [UseSSE1] in {
+ def : Pat<(int_x86_sse_rcp_ss VR128:$src),
+ (RCPSSr_Int VR128:$src, VR128:$src)>;
+}
// There is no f64 version of the reciprocal approximation instructions.
--- /dev/null
+; RUN: llc < %s -mtriple=x86_64-apple-macosx -mattr=+sse2 -mcpu=nehalem | FileCheck %s
+
+; rdar: 12558838
+; PR14221
+; There is a mismatch between the intrinsic and the actual instruction.
+; The actual instruction has a partial update of dest, while the intrinsic
+; passes through the upper FP values. Here, we make sure the source and
+; destination of rsqrtss are the same.
+define void @t1(<4 x float> %a) nounwind uwtable ssp {
+entry:
+; CHECK: t1:
+; CHECK: rsqrtss %xmm0, %xmm0
+ %0 = tail call <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float> %a) nounwind
+ %a.addr.0.extract = extractelement <4 x float> %0, i32 0
+ %conv = fpext float %a.addr.0.extract to double
+ %a.addr.4.extract = extractelement <4 x float> %0, i32 1
+ %conv3 = fpext float %a.addr.4.extract to double
+ tail call void @callee(double %conv, double %conv3) nounwind
+ ret void
+}
+declare void @callee(double, double)
+declare <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float>) nounwind readnone
+
+define void @t2(<4 x float> %a) nounwind uwtable ssp {
+entry:
+; CHECK: t2:
+; CHECK: rcpss %xmm0, %xmm0
+ %0 = tail call <4 x float> @llvm.x86.sse.rcp.ss(<4 x float> %a) nounwind
+ %a.addr.0.extract = extractelement <4 x float> %0, i32 0
+ %conv = fpext float %a.addr.0.extract to double
+ %a.addr.4.extract = extractelement <4 x float> %0, i32 1
+ %conv3 = fpext float %a.addr.4.extract to double
+ tail call void @callee(double %conv, double %conv3) nounwind
+ ret void
+}
+declare <4 x float> @llvm.x86.sse.rcp.ss(<4 x float>) nounwind readnone