return false;
}
+/// \brief Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
+/// i.e. monotonically increasing/decreasing.
+static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
+ ScalarEvolution *SE, const Loop *L) {
+ // FIXME: This should probably only return true for NUW.
+ if (AR->getNoWrapFlags(SCEV::NoWrapMask))
+ return true;
+
+ // Scalar evolution does not propagate the non-wrapping flags to values that
+ // are derived from a non-wrapping induction variable because non-wrapping
+ // could be flow-sensitive.
+ //
+ // Look through the potentially overflowing instruction to try to prove
+ // non-wrapping for the *specific* value of Ptr.
+
+ // The arithmetic implied by an inbounds GEP can't overflow.
+ auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
+ if (!GEP || !GEP->isInBounds())
+ return false;
+
+ // Make sure there is only one non-const index and analyze that.
+ Value *NonConstIndex = nullptr;
+ for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
+ if (!isa<ConstantInt>(*Index)) {
+ if (NonConstIndex)
+ return false;
+ NonConstIndex = *Index;
+ }
+ if (!NonConstIndex)
+ // The recurrence is on the pointer, ignore for now.
+ return false;
+
+ // The index in GEP is signed. It is non-wrapping if it's derived from a NSW
+ // AddRec using a NSW operation.
+ if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
+ if (OBO->hasNoSignedWrap() &&
+ // Assume constant for other the operand so that the AddRec can be
+ // easily found.
+ isa<ConstantInt>(OBO->getOperand(1))) {
+ auto *OpScev = SE->getSCEV(OBO->getOperand(0));
+
+ if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
+ return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
+ }
+
+ return false;
+}
+
/// \brief Check whether the access through \p Ptr has a constant stride.
int llvm::isStridedPtr(ScalarEvolution *SE, Value *Ptr, const Loop *Lp,
const ValueToValueMap &StridesMap) {
// to access the pointer value "0" which is undefined behavior in address
// space 0, therefore we can also vectorize this case.
bool IsInBoundsGEP = isInBoundsGep(Ptr);
- bool IsNoWrapAddRec = AR->getNoWrapFlags(SCEV::NoWrapMask);
+ bool IsNoWrapAddRec = isNoWrapAddRec(Ptr, AR, SE, Lp);
bool IsInAddressSpaceZero = PtrTy->getAddressSpace() == 0;
if (!IsNoWrapAddRec && !IsInBoundsGEP && !IsInAddressSpaceZero) {
DEBUG(dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
--- /dev/null
+; RUN: opt -basicaa -loop-accesses -analyze < %s | FileCheck %s
+
+; For this loop:
+; for (int i = 0; i < n; i++)
+; A[2 * i] = A[2 * i] + B[i];
+;
+; , SCEV is unable to prove that A[2 * i] does not overflow. However,
+; analyzing the IR helps us to conclude it and in turn allow dependence
+; analysis.
+
+target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
+
+; CHECK: Memory dependences are safe{{$}}
+
+define void @f(i16* noalias %a,
+ i16* noalias %b, i64 %N) {
+entry:
+ br label %for.body
+
+for.body: ; preds = %for.body, %entry
+ %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
+
+ %mul = mul nuw nsw i64 %ind, 2
+
+ %arrayidxA = getelementptr inbounds i16, i16* %a, i64 %mul
+ %loadA = load i16, i16* %arrayidxA, align 2
+
+ %arrayidxB = getelementptr inbounds i16, i16* %b, i64 %ind
+ %loadB = load i16, i16* %arrayidxB, align 2
+
+ %add = mul i16 %loadA, %loadB
+
+ store i16 %add, i16* %arrayidxA, align 2
+
+ %inc = add nuw nsw i64 %ind, 1
+ %exitcond = icmp eq i64 %inc, %N
+ br i1 %exitcond, label %for.end, label %for.body
+
+for.end: ; preds = %for.body
+ ret void
+}