--- /dev/null
+//$$CDS-header$$
+
+#ifndef __CDS_CONTAINER_IMPL_LAZY_KVLIST_H
+#define __CDS_CONTAINER_IMPL_LAZY_KVLIST_H
+
+#include <memory>
+#include <cds/ref.h>
+#include <cds/details/functor_wrapper.h>
+#include <cds/container/details/guarded_ptr_cast.h>
+
+namespace cds { namespace container {
+
+ /// Lazy ordered list (key-value pair)
+ /** @ingroup cds_nonintrusive_list
+ \anchor cds_nonintrusive_LazyKVList_gc
+
+ This is key-value variation of non-intrusive LazyList.
+ Like standard container, this implementation split a value stored into two part -
+ constant key and alterable value.
+
+ Usually, ordered single-linked list is used as a building block for the hash table implementation.
+ The complexity of searching is <tt>O(N)</tt>.
+
+ Template arguments:
+ - \p GC - garbage collector used
+ - \p Key - key type of an item stored in the list. It should be copy-constructible
+ - \p Value - value type stored in the list
+ - \p Traits - type traits, default is lazy_list::type_traits
+
+ It is possible to declare option-based list with cds::container::lazy_list::make_traits metafunction istead of \p Traits template
+ argument. For example, the following traits-based declaration of gc::HP lazy list
+ \code
+ #include <cds/container/lazy_kvlist_hp.h>
+ // Declare comparator for the item
+ struct my_compare {
+ int operator ()( int i1, int i2 )
+ {
+ return i1 - i2;
+ }
+ };
+
+ // Declare type_traits
+ struct my_traits: public cds::container::lazy_list::type_traits
+ {
+ typedef my_compare compare;
+ };
+
+ // Declare traits-based list
+ typedef cds::container::LazyKVList< cds::gc::HP, int, int, my_traits > traits_based_list;
+ \endcode
+
+ is equivalent for the following option-based list
+ \code
+ #include <cds/container/lazy_kvlist_hp.h>
+
+ // my_compare is the same
+
+ // Declare option-based list
+ typedef cds::container::LazyKVList< cds::gc::HP, int, int,
+ typename cds::container::lazy_list::make_traits<
+ cds::container::opt::compare< my_compare > // item comparator option
+ >::type
+ > option_based_list;
+ \endcode
+
+ Template argument list \p Options of cds::container::lazy_list::make_traits metafunction are:
+ - opt::compare - key comparison functor. No default functor is provided.
+ If the option is not specified, the opt::less is used.
+ - opt::less - specifies binary predicate used for key comparison. Default is \p std::less<T>.
+ - opt::back_off - back-off strategy used. If the option is not specified, the cds::backoff::empty is used.
+ - opt::item_counter - the type of item counting feature. Default is \ref atomicity::empty_item_counter that is no item counting.
+ - opt::allocator - the allocator used for creating and freeing list's item. Default is \ref CDS_DEFAULT_ALLOCATOR macro.
+ - opt::memory_model - C++ memory ordering model. Can be opt::v::relaxed_ordering (relaxed memory model, the default)
+ or opt::v::sequential_consistent (sequentially consisnent memory model).
+
+ \par Usage
+ There are different specializations of this template for each garbage collecting schema used.
+ You should include appropriate .h-file depending on GC you are using:
+ - for gc::HP: \code #include <cds/container/lazy_kvlist_hp.h> \endcode
+ - for gc::PTB: \code #include <cds/container/lazy_kvlist_ptb.h> \endcode
+ - for gc::HRC: \code #include <cds/container/lazy_kvlist_hrc.h> \endcode
+ - for \ref cds_urcu_desc "RCU": \code #include <cds/container/lazy_kvlist_rcu.h> \endcode
+ - for gc::nogc: \code #include <cds/container/lazy_kvlist_nogc.h> \endcode
+ */
+ template <
+ typename GC,
+ typename Key,
+ typename Value,
+#ifdef CDS_DOXYGEN_INVOKED
+ typename Traits = lazy_list::type_traits
+#else
+ typename Traits
+#endif
+ >
+ class LazyKVList:
+#ifdef CDS_DOXYGEN_INVOKED
+ protected intrusive::LazyList< GC, implementation_defined, Traits >
+#else
+ protected details::make_lazy_kvlist< GC, Key, Value, Traits >::type
+#endif
+ {
+ //@cond
+ typedef details::make_lazy_kvlist< GC, Key, Value, Traits > options;
+ typedef typename options::type base_class;
+ //@endcond
+
+ public:
+#ifdef CDS_DOXYGEN_INVOKED
+ typedef Key key_type ; ///< Key type
+ typedef Value mapped_type ; ///< Type of value stored in the list
+ typedef std::pair<key_type const, mapped_type> value_type ; ///< key/value pair stored in the list
+#else
+ typedef typename options::key_type key_type;
+ typedef typename options::value_type mapped_type;
+ typedef typename options::pair_type value_type;
+#endif
+
+ typedef typename base_class::gc gc ; ///< Garbage collector used
+ typedef typename base_class::back_off back_off ; ///< Back-off strategy used
+ typedef typename options::allocator_type allocator_type ; ///< Allocator type used for allocate/deallocate the nodes
+ typedef typename base_class::item_counter item_counter ; ///< Item counting policy used
+ typedef typename options::key_comparator key_comparator ; ///< key comparison functor
+ typedef typename base_class::memory_model memory_model ; ///< Memory ordering. See cds::opt::memory_model option
+
+ protected:
+ //@cond
+ typedef typename base_class::value_type node_type;
+ typedef typename options::cxx_allocator cxx_allocator;
+ typedef typename options::node_deallocator node_deallocator;
+ typedef typename options::type_traits::compare intrusive_key_comparator;
+
+ typedef typename base_class::node_type head_type;
+ //@endcond
+
+ public:
+ /// Guarded pointer
+ typedef cds::gc::guarded_ptr< gc, node_type, value_type, details::guarded_ptr_cast_map<node_type, value_type> > guarded_ptr;
+
+ protected:
+ //@cond
+ template <typename K>
+ static node_type * alloc_node(const K& key)
+ {
+ return cxx_allocator().New( key );
+ }
+
+ template <typename K, typename V>
+ static node_type * alloc_node( const K& key, const V& val )
+ {
+ return cxx_allocator().New( key, val );
+ }
+
+ template <typename... Args>
+ static node_type * alloc_node( Args&&... args )
+ {
+ return cxx_allocator().MoveNew( std::forward<Args>(args)... );
+ }
+
+ static void free_node( node_type * pNode )
+ {
+ cxx_allocator().Delete( pNode );
+ }
+
+ struct node_disposer {
+ void operator()( node_type * pNode )
+ {
+ free_node( pNode );
+ }
+ };
+ typedef std::unique_ptr< node_type, node_disposer > scoped_node_ptr;
+
+ head_type& head()
+ {
+ return *base_class::head();
+ }
+
+ head_type const& head() const
+ {
+ return *base_class::head();
+ }
+
+ head_type& tail()
+ {
+ return *base_class::tail();
+ }
+
+ head_type const& tail() const
+ {
+ return *base_class::tail();
+ }
+
+ //@endcond
+
+ protected:
+ //@cond
+ template <bool IsConst>
+ class iterator_type: protected base_class::template iterator_type<IsConst>
+ {
+ typedef typename base_class::template iterator_type<IsConst> iterator_base;
+
+ iterator_type( head_type const& pNode )
+ : iterator_base( const_cast<head_type *>(&pNode) )
+ {}
+ iterator_type( head_type const * pNode )
+ : iterator_base( const_cast<head_type *>(pNode) )
+ {}
+
+ friend class LazyKVList;
+
+ public:
+ typedef typename cds::details::make_const_type<mapped_type, IsConst>::reference value_ref;
+ typedef typename cds::details::make_const_type<mapped_type, IsConst>::pointer value_ptr;
+
+ typedef typename cds::details::make_const_type<value_type, IsConst>::reference pair_ref;
+ typedef typename cds::details::make_const_type<value_type, IsConst>::pointer pair_ptr;
+
+ iterator_type()
+ {}
+
+ iterator_type( iterator_type const& src )
+ : iterator_base( src )
+ {}
+
+ key_type const& key() const
+ {
+ typename iterator_base::value_ptr p = iterator_base::operator ->();
+ assert( p != nullptr );
+ return p->m_Data.first;
+ }
+
+ value_ref val() const
+ {
+ typename iterator_base::value_ptr p = iterator_base::operator ->();
+ assert( p != nullptr );
+ return p->m_Data.second;
+ }
+
+ pair_ptr operator ->() const
+ {
+ typename iterator_base::value_ptr p = iterator_base::operator ->();
+ return p ? &(p->m_Data) : nullptr;
+ }
+
+ pair_ref operator *() const
+ {
+ typename iterator_base::value_ref p = iterator_base::operator *();
+ return p.m_Data;
+ }
+
+ /// Pre-increment
+ iterator_type& operator ++()
+ {
+ iterator_base::operator ++();
+ return *this;
+ }
+
+ template <bool C>
+ bool operator ==(iterator_type<C> const& i ) const
+ {
+ return iterator_base::operator ==(i);
+ }
+ template <bool C>
+ bool operator !=(iterator_type<C> const& i ) const
+ {
+ return iterator_base::operator !=(i);
+ }
+ };
+ //@endcond
+
+ public:
+ /// Forward iterator
+ /**
+ The forward iterator for lazy list has some features:
+ - it has no post-increment operator
+ - to protect the value, the iterator contains a GC-specific guard + another guard is required locally for increment operator.
+ For some GC (gc::HP, gc::HRC), a guard is limited resource per thread, so an exception (or assertion) "no free guard"
+ may be thrown if a limit of guard count per thread is exceeded.
+ - The iterator cannot be moved across thread boundary since it contains GC's guard that is thread-private GC data.
+ - Iterator ensures thread-safety even if you delete the item that iterator points to. However, in case of concurrent
+ deleting operations it is no guarantee that you iterate all item in the list.
+
+ Therefore, the use of iterators in concurrent environment is not good idea. Use the iterator on the concurrent container
+ for debug purpose only.
+
+ The iterator interface to access item data:
+ - <tt> operator -> </tt> - returns a pointer to \ref value_type for iterator
+ - <tt> operator *</tt> - returns a reference (a const reference for \p const_iterator) to \ref value_type for iterator
+ - <tt> const key_type& key() </tt> - returns a key reference for iterator
+ - <tt> mapped_type& val() </tt> - retuns a value reference for iterator (const reference for \p const_iterator)
+
+ For both functions the iterator should not be equal to <tt> end() </tt>
+ */
+ typedef iterator_type<false> iterator;
+
+ /// Const forward iterator
+ /**
+ For iterator's features and requirements see \ref iterator
+ */
+ typedef iterator_type<true> const_iterator;
+
+ /// Returns a forward iterator addressing the first element in a list
+ /**
+ For empty list \code begin() == end() \endcode
+ */
+ iterator begin()
+ {
+ iterator it( head() );
+ ++it ; // skip dummy head
+ return it;
+ }
+
+ /// Returns an iterator that addresses the location succeeding the last element in a list
+ /**
+ Do not use the value returned by <tt>end</tt> function to access any item.
+ Internally, <tt>end</tt> returning value equals to \p nullptr.
+
+ The returned value can be used only to control reaching the end of the list.
+ For empty list \code begin() == end() \endcode
+ */
+ iterator end()
+ {
+ return iterator( tail() );
+ }
+
+ /// Returns a forward const iterator addressing the first element in a list
+ //@{
+ const_iterator begin() const
+ {
+ const_iterator it( head() );
+ ++it; // skip dummy head
+ return it;
+ }
+ const_iterator cbegin()
+ {
+ const_iterator it( head() );
+ ++it; // skip dummy head
+ return it;
+ }
+ //@}
+
+ /// Returns an const iterator that addresses the location succeeding the last element in a list
+ //@{
+ const_iterator end() const
+ {
+ return const_iterator( tail());
+ }
+ const_iterator cend()
+ {
+ return const_iterator( tail());
+ }
+ //@}
+
+ public:
+ /// Default constructor
+ /**
+ Initializes empty list
+ */
+ LazyKVList()
+ {}
+
+ /// List destructor
+ /**
+ Clears the list
+ */
+ ~LazyKVList()
+ {
+ clear();
+ }
+
+ /// Inserts new node with key and default value
+ /**
+ The function creates a node with \p key and default value, and then inserts the node created into the list.
+
+ Preconditions:
+ - The \ref key_type should be constructible from value of type \p K.
+ In trivial case, \p K is equal to \ref key_type.
+ - The \ref mapped_type should be default-constructible.
+
+ Returns \p true if inserting successful, \p false otherwise.
+ */
+ template <typename K>
+ bool insert( const K& key )
+ {
+ return insert_at( head(), key );
+ }
+
+ /// Inserts new node with a key and a value
+ /**
+ The function creates a node with \p key and value \p val, and then inserts the node created into the list.
+
+ Preconditions:
+ - The \ref key_type should be constructible from \p key of type \p K.
+ - The \ref mapped_type should be constructible from \p val of type \p V.
+
+ Returns \p true if inserting successful, \p false otherwise.
+ */
+ template <typename K, typename V>
+ bool insert( const K& key, const V& val )
+ {
+ // We cannot use insert with functor here
+ // because we cannot lock inserted node for updating
+ // Therefore, we use separate function
+ return insert_at( head(), key, val );
+ }
+
+ /// Inserts new node and initializes it by a functor
+ /**
+ This function inserts new node with key \p key and if inserting is successful then it calls
+ \p func functor with signature
+ \code
+ struct functor {
+ void operator()( value_type& item );
+ };
+ \endcode
+
+ The argument \p item of user-defined functor \p func is the reference
+ to the list's item inserted. <tt>item.second</tt> is a reference to item's value that may be changed.
+ User-defined functor \p func should guarantee that during changing item's value no any other changes
+ could be made on this list's item by concurrent threads.
+ The user-defined functor can be passed by reference using <tt>boost::ref</tt>
+ and it is called only if inserting is successful.
+
+ The key_type should be constructible from value of type \p K.
+
+ The function allows to split creating of new item into two part:
+ - create item from \p key;
+ - insert new item into the list;
+ - if inserting is successful, initialize the value of item by calling \p func functor
+
+ This can be useful if complete initialization of object of \p mapped_type is heavyweight and
+ it is preferable that the initialization should be completed only if inserting is successful.
+ */
+ template <typename K, typename Func>
+ bool insert_key( const K& key, Func func )
+ {
+ return insert_key_at( head(), key, func );
+ }
+
+ /// Inserts data of type \ref mapped_type constructed with <tt>std::forward<Args>(args)...</tt>
+ /**
+ Returns \p true if inserting successful, \p false otherwise.
+ */
+ template <typename... Args>
+ bool emplace( Args&&... args )
+ {
+ return emplace_at( head(), std::forward<Args>(args)... );
+ }
+
+ /// Ensures that the \p key exists in the list
+ /**
+ The operation performs inserting or changing data with lock-free manner.
+
+ If the \p key not found in the list, then the new item created from \p key
+ is inserted into the list (note that in this case the \ref key_type should be
+ copy-constructible from type \p K).
+ Otherwise, the functor \p func is called with item found.
+ The functor \p Func may be a function with signature:
+ \code
+ void func( bool bNew, value_type& item );
+ \endcode
+ or a functor:
+ \code
+ struct my_functor {
+ void operator()( bool bNew, value_type& item );
+ };
+ \endcode
+
+ with arguments:
+ - \p bNew - \p true if the item has been inserted, \p false otherwise
+ - \p item - item of the list
+
+ The functor may change any fields of the \p item.second that is \ref mapped_type;
+ however, \p func must guarantee that during changing no any other modifications
+ could be made on this item by concurrent threads.
+
+ You may pass \p func argument by reference using <tt>boost::ref</tt>.
+
+ Returns <tt> std::pair<bool, bool> </tt> where \p first is true if operation is successfull,
+ \p second is true if new item has been added or \p false if the item with \p key
+ already is in the list.
+ */
+ template <typename K, typename Func>
+ std::pair<bool, bool> ensure( const K& key, Func f )
+ {
+ return ensure_at( head(), key, f );
+ }
+
+ /// Deletes \p key from the list
+ /** \anchor cds_nonintrusive_LazyKVList_hp_erase_val
+
+ Returns \p true if \p key is found and has been deleted, \p false otherwise
+ */
+ template <typename K>
+ bool erase( K const& key )
+ {
+ return erase_at( head(), key, intrusive_key_comparator() );
+ }
+
+ /// Deletes the item from the list using \p pred predicate for searching
+ /**
+ The function is an analog of \ref cds_nonintrusive_LazyKVList_hp_erase_val "erase(K const&)"
+ but \p pred is used for key comparing.
+ \p Less functor has the interface like \p std::less.
+ \p pred must imply the same element order as the comparator used for building the list.
+ */
+ template <typename K, typename Less>
+ bool erase_with( K const& key, Less pred )
+ {
+ return erase_at( head(), key, typename options::template less_wrapper<Less>::type() );
+ }
+
+ /// Deletes \p key from the list
+ /** \anchor cds_nonintrusive_LazyKVList_hp_erase_func
+ The function searches an item with key \p key, calls \p f functor with item found
+ and deletes it. If \p key is not found, the functor is not called.
+
+ The functor \p Func interface:
+ \code
+ struct extractor {
+ void operator()(value_type& val) { ... }
+ };
+ \endcode
+ The functor may be passed by reference with <tt>boost:ref</tt>
+
+ Returns \p true if key is found and deleted, \p false otherwise
+ */
+ template <typename K, typename Func>
+ bool erase( K const& key, Func f )
+ {
+ return erase_at( head(), key, intrusive_key_comparator(), f );
+ }
+
+ /// Deletes the item from the list using \p pred predicate for searching
+ /**
+ The function is an analog of \ref cds_nonintrusive_LazyKVList_hp_erase_func "erase(K const&, Func)"
+ but \p pred is used for key comparing.
+ \p Less functor has the interface like \p std::less.
+ \p pred must imply the same element order as the comparator used for building the list.
+ */
+ template <typename K, typename Less, typename Func>
+ bool erase_with( K const& key, Less pred, Func f )
+ {
+ return erase_at( head(), key, typename options::template less_wrapper<Less>::type(), f );
+ }
+
+ /// Extracts the item from the list with specified \p key
+ /** \anchor cds_nonintrusive_LazyKVList_hp_extract
+ The function searches an item with key equal to \p key,
+ unlinks it from the list, and returns it in \p dest parameter.
+ If the item with key equal to \p key is not found the function returns \p false.
+
+ Note the compare functor should accept a parameter of type \p K that can be not the same as \p key_type.
+
+ @note Each \p guarded_ptr object uses the GC's guard that can be limited resource.
+
+ Usage:
+ \code
+ typedef cds::container::LazyKVList< cds::gc::HP, int, foo, my_traits > ord_list;
+ ord_list theList;
+ // ...
+ {
+ ord_list::guarded_ptr gp;
+ theList.extract( gp, 5 );
+ // Deal with gp
+ // ...
+
+ // Destructor of gp releases internal HP guard and frees the item
+ }
+ \endcode
+ */
+ template <typename K>
+ bool extract( guarded_ptr& dest, K const& key )
+ {
+ return extract_at( head(), dest.guard(), key, intrusive_key_comparator() );
+ }
+
+ /// Extracts the item from the list with comparing functor \p pred
+ /**
+ The function is an analog of \ref cds_nonintrusive_LazyKVList_hp_extract "extract(guarded_ptr&, K const&)"
+ but \p pred predicate is used for key comparing.
+
+ \p Less functor has the semantics like \p std::less but should take arguments of type \ref key_type and \p K
+ in any order.
+ \p pred must imply the same element order as the comparator used for building the list.
+ */
+ template <typename K, typename Less>
+ bool extract_with( guarded_ptr& dest, K const& key, Less pred )
+ {
+ return extract_at( head(), dest.guard(), key, typename options::template less_wrapper<Less>::type() );
+ }
+
+ /// Finds the key \p key
+ /** \anchor cds_nonintrusive_LazyKVList_hp_find_val
+ The function searches the item with key equal to \p key
+ and returns \p true if it is found, and \p false otherwise
+ */
+ template <typename Q>
+ bool find( Q const& key )
+ {
+ return find_at( head(), key, intrusive_key_comparator() );
+ }
+
+ /// Finds the key \p val using \p pred predicate for searching
+ /**
+ The function is an analog of \ref cds_nonintrusive_LazyKVList_hp_find_val "find(Q const&)"
+ but \p pred is used for key comparing.
+ \p Less functor has the interface like \p std::less.
+ \p pred must imply the same element order as the comparator used for building the list.
+ */
+ template <typename Q, typename Less>
+ bool find_with( Q const& key, Less pred )
+ {
+ return find_at( head(), key, typename options::template less_wrapper<Less>::type() );
+ }
+
+ /// Finds the key \p key and performs an action with it
+ /** \anchor cds_nonintrusive_LazyKVList_hp_find_func
+ The function searches an item with key equal to \p key and calls the functor \p f for the item found.
+ The interface of \p Func functor is:
+ \code
+ struct functor {
+ void operator()( value_type& item );
+ };
+ \endcode
+ where \p item is the item found.
+
+ You may pass \p f argument by reference using <tt>boost::ref</tt> or cds::ref.
+
+ The functor may change <tt>item.second</tt> that is reference to value of node.
+ Note that the function is only guarantee that \p item cannot be deleted during functor is executing.
+ The function does not serialize simultaneous access to the list \p item. If such access is
+ possible you must provide your own synchronization schema to exclude unsafe item modifications.
+
+ The function returns \p true if \p key is found, \p false otherwise.
+ */
+ template <typename Q, typename Func>
+ bool find( Q const& key, Func f )
+ {
+ return find_at( head(), key, intrusive_key_comparator(), f );
+ }
+
+ /// Finds the key \p val using \p pred predicate for searching
+ /**
+ The function is an analog of \ref cds_nonintrusive_LazyKVList_hp_find_func "find(Q&, Func)"
+ but \p pred is used for key comparing.
+ \p Less functor has the interface like \p std::less.
+ \p pred must imply the same element order as the comparator used for building the list.
+ */
+ template <typename Q, typename Less, typename Func>
+ bool find_with( Q const& key, Less pred, Func f )
+ {
+ return find_at( head(), key, typename options::template less_wrapper<Less>::type(), f );
+ }
+
+ /// Finds \p key and return the item found
+ /** \anchor cds_nonintrusive_LazyKVList_hp_get
+ The function searches the item with key equal to \p key
+ and assigns the item found to guarded pointer \p ptr.
+ The function returns \p true if \p key is found, and \p false otherwise.
+ If \p key is not found the \p ptr parameter is not changed.
+
+ @note Each \p guarded_ptr object uses one GC's guard which can be limited resource.
+
+ Usage:
+ \code
+ typedef cds::container::LazyKVList< cds::gc::HP, int, foo, my_traits > ord_list;
+ ord_list theList;
+ // ...
+ {
+ ord_list::guarded_ptr gp;
+ if ( theList.get( gp, 5 )) {
+ // Deal with gp
+ //...
+ }
+ // Destructor of guarded_ptr releases internal HP guard and frees the item
+ }
+ \endcode
+
+ Note the compare functor specified for class \p Traits template parameter
+ should accept a parameter of type \p K that can be not the same as \p key_type.
+ */
+ template <typename K>
+ bool get( guarded_ptr& ptr, K const& key )
+ {
+ return get_at( head(), ptr.guard(), key, intrusive_key_comparator() );
+ }
+
+ /// Finds the key \p val and return the item found
+ /**
+ The function is an analog of \ref cds_nonintrusive_LazyKVList_hp_get "get(guarded_ptr& ptr, K const&)"
+ but \p pred is used for comparing the keys.
+
+ \p Less functor has the semantics like \p std::less but should take arguments of type \ref key_type and \p K
+ in any order.
+ \p pred must imply the same element order as the comparator used for building the list.
+ */
+ template <typename K, typename Less>
+ bool get_with( guarded_ptr& ptr, K const& key, Less pred )
+ {
+ return get_at( head(), ptr.guard(), key, typename options::template less_wrapper<Less>::type() );
+ }
+
+ /// Checks if the list is empty
+ bool empty() const
+ {
+ return base_class::empty();
+ }
+
+ /// Returns list's item count
+ /**
+ The value returned depends on opt::item_counter option. For atomicity::empty_item_counter,
+ this function always returns 0.
+
+ <b>Warning</b>: even if you use real item counter and it returns 0, this fact is not mean that the list
+ is empty. To check list emptyness use \ref empty() method.
+ */
+ size_t size() const
+ {
+ return base_class::size();
+ }
+
+ /// Clears the list
+ /**
+ Post-condition: the list is empty
+ */
+ void clear()
+ {
+ base_class::clear();
+ }
+
+ protected:
+ //@cond
+ bool insert_node_at( head_type& refHead, node_type * pNode )
+ {
+ assert( pNode != nullptr );
+ scoped_node_ptr p( pNode );
+
+ if ( base_class::insert_at( &refHead, *p )) {
+ p.release();
+ return true;
+ }
+
+ return false;
+ }
+
+ template <typename K>
+ bool insert_at( head_type& refHead, const K& key )
+ {
+ return insert_node_at( refHead, alloc_node( key ));
+ }
+
+ template <typename K, typename V>
+ bool insert_at( head_type& refHead, const K& key, const V& val )
+ {
+ return insert_node_at( refHead, alloc_node( key, val ));
+ }
+
+ template <typename K, typename Func>
+ bool insert_key_at( head_type& refHead, const K& key, Func f )
+ {
+ scoped_node_ptr pNode( alloc_node( key ));
+
+ if ( base_class::insert_at( &refHead, *pNode, [&f](node_type& node){ cds::unref(f)( node.m_Data ); } )) {
+ pNode.release();
+ return true;
+ }
+ return false;
+ }
+
+ template <typename... Args>
+ bool emplace_at( head_type& refHead, Args&&... args )
+ {
+ return insert_node_at( refHead, alloc_node( std::forward<Args>(args)... ));
+ }
+
+ template <typename K, typename Compare>
+ bool erase_at( head_type& refHead, K const& key, Compare cmp )
+ {
+ return base_class::erase_at( &refHead, key, cmp );
+ }
+
+ template <typename K, typename Compare, typename Func>
+ bool erase_at( head_type& refHead, K const& key, Compare cmp, Func f )
+ {
+ return base_class::erase_at( &refHead, key, cmp, [&f](node_type const & node){cds::unref(f)( const_cast<value_type&>(node.m_Data)); });
+ }
+
+ template <typename K, typename Compare>
+ bool extract_at( head_type& refHead, typename gc::Guard& dest, K const& key, Compare cmp )
+ {
+ return base_class::extract_at( &refHead, dest, key, cmp );
+ }
+
+ template <typename K, typename Func>
+ std::pair<bool, bool> ensure_at( head_type& refHead, const K& key, Func f )
+ {
+ scoped_node_ptr pNode( alloc_node( key ));
+
+ std::pair<bool, bool> ret = base_class::ensure_at( &refHead, *pNode,
+ [&f]( bool bNew, node_type& node, node_type& ){ cds::unref(f)( bNew, node.m_Data ); });
+ if ( ret.first && ret.second )
+ pNode.release();
+
+ return ret;
+ }
+
+ template <typename K, typename Compare>
+ bool find_at( head_type& refHead, K const& key, Compare cmp )
+ {
+ return base_class::find_at( &refHead, key, cmp );
+ }
+
+ template <typename K, typename Compare, typename Func>
+ bool find_at( head_type& refHead, K& key, Compare cmp, Func f )
+ {
+ return base_class::find_at( &refHead, key, cmp, [&f]( node_type& node, K& ){ cds::unref(f)( node.m_Data ); });
+ }
+
+ template <typename K, typename Compare>
+ bool get_at( head_type& refHead, typename gc::Guard& guard, K const& key, Compare cmp )
+ {
+ return base_class::get_at( &refHead, guard, key, cmp );
+ }
+
+ //@endcond
+ };
+
+}} // namespace cds::container
+
+#endif // #ifndef __CDS_CONTAINER_IMPL_LAZY_KVLIST_H
#include <cds/container/lazy_list_base.h>
#include <cds/intrusive/lazy_list_hp.h>
#include <cds/container/details/make_lazy_kvlist.h>
-#include <cds/container/lazy_kvlist_impl.h>
+#include <cds/container/impl/lazy_kvlist.h>
#endif // #ifndef __CDS_CONTAINER_LAZY_KVLIST_HP_H
#include <cds/container/lazy_list_base.h>
#include <cds/intrusive/lazy_list_hrc.h>
#include <cds/container/details/make_lazy_kvlist.h>
-#include <cds/container/lazy_kvlist_impl.h>
+#include <cds/container/impl/lazy_kvlist.h>
#endif // #ifndef __CDS_CONTAINER_LAZY_KVLIST_HRC_H
+++ /dev/null
-//$$CDS-header$$
-
-#ifndef __CDS_CONTAINER_LAZY_KVLIST_IMPL_H
-#define __CDS_CONTAINER_LAZY_KVLIST_IMPL_H
-
-#include <memory>
-#include <cds/ref.h>
-#include <cds/details/functor_wrapper.h>
-#include <cds/container/details/guarded_ptr_cast.h>
-
-namespace cds { namespace container {
-
- /// Lazy ordered list (key-value pair)
- /** @ingroup cds_nonintrusive_list
- \anchor cds_nonintrusive_LazyKVList_gc
-
- This is key-value variation of non-intrusive LazyList.
- Like standard container, this implementation split a value stored into two part -
- constant key and alterable value.
-
- Usually, ordered single-linked list is used as a building block for the hash table implementation.
- The complexity of searching is <tt>O(N)</tt>.
-
- Template arguments:
- - \p GC - garbage collector used
- - \p Key - key type of an item stored in the list. It should be copy-constructible
- - \p Value - value type stored in the list
- - \p Traits - type traits, default is lazy_list::type_traits
-
- It is possible to declare option-based list with cds::container::lazy_list::make_traits metafunction istead of \p Traits template
- argument. For example, the following traits-based declaration of gc::HP lazy list
- \code
- #include <cds/container/lazy_kvlist_hp.h>
- // Declare comparator for the item
- struct my_compare {
- int operator ()( int i1, int i2 )
- {
- return i1 - i2;
- }
- };
-
- // Declare type_traits
- struct my_traits: public cds::container::lazy_list::type_traits
- {
- typedef my_compare compare;
- };
-
- // Declare traits-based list
- typedef cds::container::LazyKVList< cds::gc::HP, int, int, my_traits > traits_based_list;
- \endcode
-
- is equivalent for the following option-based list
- \code
- #include <cds/container/lazy_kvlist_hp.h>
-
- // my_compare is the same
-
- // Declare option-based list
- typedef cds::container::LazyKVList< cds::gc::HP, int, int,
- typename cds::container::lazy_list::make_traits<
- cds::container::opt::compare< my_compare > // item comparator option
- >::type
- > option_based_list;
- \endcode
-
- Template argument list \p Options of cds::container::lazy_list::make_traits metafunction are:
- - opt::compare - key comparison functor. No default functor is provided.
- If the option is not specified, the opt::less is used.
- - opt::less - specifies binary predicate used for key comparison. Default is \p std::less<T>.
- - opt::back_off - back-off strategy used. If the option is not specified, the cds::backoff::empty is used.
- - opt::item_counter - the type of item counting feature. Default is \ref atomicity::empty_item_counter that is no item counting.
- - opt::allocator - the allocator used for creating and freeing list's item. Default is \ref CDS_DEFAULT_ALLOCATOR macro.
- - opt::memory_model - C++ memory ordering model. Can be opt::v::relaxed_ordering (relaxed memory model, the default)
- or opt::v::sequential_consistent (sequentially consisnent memory model).
-
- \par Usage
- There are different specializations of this template for each garbage collecting schema used.
- You should include appropriate .h-file depending on GC you are using:
- - for gc::HP: \code #include <cds/container/lazy_kvlist_hp.h> \endcode
- - for gc::PTB: \code #include <cds/container/lazy_kvlist_ptb.h> \endcode
- - for gc::HRC: \code #include <cds/container/lazy_kvlist_hrc.h> \endcode
- - for \ref cds_urcu_desc "RCU": \code #include <cds/container/lazy_kvlist_rcu.h> \endcode
- - for gc::nogc: \code #include <cds/container/lazy_kvlist_nogc.h> \endcode
- */
- template <
- typename GC,
- typename Key,
- typename Value,
-#ifdef CDS_DOXYGEN_INVOKED
- typename Traits = lazy_list::type_traits
-#else
- typename Traits
-#endif
- >
- class LazyKVList:
-#ifdef CDS_DOXYGEN_INVOKED
- protected intrusive::LazyList< GC, implementation_defined, Traits >
-#else
- protected details::make_lazy_kvlist< GC, Key, Value, Traits >::type
-#endif
- {
- //@cond
- typedef details::make_lazy_kvlist< GC, Key, Value, Traits > options;
- typedef typename options::type base_class;
- //@endcond
-
- public:
-#ifdef CDS_DOXYGEN_INVOKED
- typedef Key key_type ; ///< Key type
- typedef Value mapped_type ; ///< Type of value stored in the list
- typedef std::pair<key_type const, mapped_type> value_type ; ///< key/value pair stored in the list
-#else
- typedef typename options::key_type key_type;
- typedef typename options::value_type mapped_type;
- typedef typename options::pair_type value_type;
-#endif
-
- typedef typename base_class::gc gc ; ///< Garbage collector used
- typedef typename base_class::back_off back_off ; ///< Back-off strategy used
- typedef typename options::allocator_type allocator_type ; ///< Allocator type used for allocate/deallocate the nodes
- typedef typename base_class::item_counter item_counter ; ///< Item counting policy used
- typedef typename options::key_comparator key_comparator ; ///< key comparison functor
- typedef typename base_class::memory_model memory_model ; ///< Memory ordering. See cds::opt::memory_model option
-
- protected:
- //@cond
- typedef typename base_class::value_type node_type;
- typedef typename options::cxx_allocator cxx_allocator;
- typedef typename options::node_deallocator node_deallocator;
- typedef typename options::type_traits::compare intrusive_key_comparator;
-
- typedef typename base_class::node_type head_type;
- //@endcond
-
- public:
- /// Guarded pointer
- typedef cds::gc::guarded_ptr< gc, node_type, value_type, details::guarded_ptr_cast_map<node_type, value_type> > guarded_ptr;
-
- protected:
- //@cond
- template <typename K>
- static node_type * alloc_node(const K& key)
- {
- return cxx_allocator().New( key );
- }
-
- template <typename K, typename V>
- static node_type * alloc_node( const K& key, const V& val )
- {
- return cxx_allocator().New( key, val );
- }
-
- template <typename... Args>
- static node_type * alloc_node( Args&&... args )
- {
- return cxx_allocator().MoveNew( std::forward<Args>(args)... );
- }
-
- static void free_node( node_type * pNode )
- {
- cxx_allocator().Delete( pNode );
- }
-
- struct node_disposer {
- void operator()( node_type * pNode )
- {
- free_node( pNode );
- }
- };
- typedef std::unique_ptr< node_type, node_disposer > scoped_node_ptr;
-
- head_type& head()
- {
- return *base_class::head();
- }
-
- head_type const& head() const
- {
- return *base_class::head();
- }
-
- head_type& tail()
- {
- return *base_class::tail();
- }
-
- head_type const& tail() const
- {
- return *base_class::tail();
- }
-
- //@endcond
-
- protected:
- //@cond
- template <bool IsConst>
- class iterator_type: protected base_class::template iterator_type<IsConst>
- {
- typedef typename base_class::template iterator_type<IsConst> iterator_base;
-
- iterator_type( head_type const& pNode )
- : iterator_base( const_cast<head_type *>(&pNode) )
- {}
- iterator_type( head_type const * pNode )
- : iterator_base( const_cast<head_type *>(pNode) )
- {}
-
- friend class LazyKVList;
-
- public:
- typedef typename cds::details::make_const_type<mapped_type, IsConst>::reference value_ref;
- typedef typename cds::details::make_const_type<mapped_type, IsConst>::pointer value_ptr;
-
- typedef typename cds::details::make_const_type<value_type, IsConst>::reference pair_ref;
- typedef typename cds::details::make_const_type<value_type, IsConst>::pointer pair_ptr;
-
- iterator_type()
- {}
-
- iterator_type( iterator_type const& src )
- : iterator_base( src )
- {}
-
- key_type const& key() const
- {
- typename iterator_base::value_ptr p = iterator_base::operator ->();
- assert( p != nullptr );
- return p->m_Data.first;
- }
-
- value_ref val() const
- {
- typename iterator_base::value_ptr p = iterator_base::operator ->();
- assert( p != nullptr );
- return p->m_Data.second;
- }
-
- pair_ptr operator ->() const
- {
- typename iterator_base::value_ptr p = iterator_base::operator ->();
- return p ? &(p->m_Data) : nullptr;
- }
-
- pair_ref operator *() const
- {
- typename iterator_base::value_ref p = iterator_base::operator *();
- return p.m_Data;
- }
-
- /// Pre-increment
- iterator_type& operator ++()
- {
- iterator_base::operator ++();
- return *this;
- }
-
- template <bool C>
- bool operator ==(iterator_type<C> const& i ) const
- {
- return iterator_base::operator ==(i);
- }
- template <bool C>
- bool operator !=(iterator_type<C> const& i ) const
- {
- return iterator_base::operator !=(i);
- }
- };
- //@endcond
-
- public:
- /// Forward iterator
- /**
- The forward iterator for lazy list has some features:
- - it has no post-increment operator
- - to protect the value, the iterator contains a GC-specific guard + another guard is required locally for increment operator.
- For some GC (gc::HP, gc::HRC), a guard is limited resource per thread, so an exception (or assertion) "no free guard"
- may be thrown if a limit of guard count per thread is exceeded.
- - The iterator cannot be moved across thread boundary since it contains GC's guard that is thread-private GC data.
- - Iterator ensures thread-safety even if you delete the item that iterator points to. However, in case of concurrent
- deleting operations it is no guarantee that you iterate all item in the list.
-
- Therefore, the use of iterators in concurrent environment is not good idea. Use the iterator on the concurrent container
- for debug purpose only.
-
- The iterator interface to access item data:
- - <tt> operator -> </tt> - returns a pointer to \ref value_type for iterator
- - <tt> operator *</tt> - returns a reference (a const reference for \p const_iterator) to \ref value_type for iterator
- - <tt> const key_type& key() </tt> - returns a key reference for iterator
- - <tt> mapped_type& val() </tt> - retuns a value reference for iterator (const reference for \p const_iterator)
-
- For both functions the iterator should not be equal to <tt> end() </tt>
- */
- typedef iterator_type<false> iterator;
-
- /// Const forward iterator
- /**
- For iterator's features and requirements see \ref iterator
- */
- typedef iterator_type<true> const_iterator;
-
- /// Returns a forward iterator addressing the first element in a list
- /**
- For empty list \code begin() == end() \endcode
- */
- iterator begin()
- {
- iterator it( head() );
- ++it ; // skip dummy head
- return it;
- }
-
- /// Returns an iterator that addresses the location succeeding the last element in a list
- /**
- Do not use the value returned by <tt>end</tt> function to access any item.
- Internally, <tt>end</tt> returning value equals to \p nullptr.
-
- The returned value can be used only to control reaching the end of the list.
- For empty list \code begin() == end() \endcode
- */
- iterator end()
- {
- return iterator( tail() );
- }
-
- /// Returns a forward const iterator addressing the first element in a list
- //@{
- const_iterator begin() const
- {
- const_iterator it( head() );
- ++it; // skip dummy head
- return it;
- }
- const_iterator cbegin()
- {
- const_iterator it( head() );
- ++it; // skip dummy head
- return it;
- }
- //@}
-
- /// Returns an const iterator that addresses the location succeeding the last element in a list
- //@{
- const_iterator end() const
- {
- return const_iterator( tail());
- }
- const_iterator cend()
- {
- return const_iterator( tail());
- }
- //@}
-
- public:
- /// Default constructor
- /**
- Initializes empty list
- */
- LazyKVList()
- {}
-
- /// List destructor
- /**
- Clears the list
- */
- ~LazyKVList()
- {
- clear();
- }
-
- /// Inserts new node with key and default value
- /**
- The function creates a node with \p key and default value, and then inserts the node created into the list.
-
- Preconditions:
- - The \ref key_type should be constructible from value of type \p K.
- In trivial case, \p K is equal to \ref key_type.
- - The \ref mapped_type should be default-constructible.
-
- Returns \p true if inserting successful, \p false otherwise.
- */
- template <typename K>
- bool insert( const K& key )
- {
- return insert_at( head(), key );
- }
-
- /// Inserts new node with a key and a value
- /**
- The function creates a node with \p key and value \p val, and then inserts the node created into the list.
-
- Preconditions:
- - The \ref key_type should be constructible from \p key of type \p K.
- - The \ref mapped_type should be constructible from \p val of type \p V.
-
- Returns \p true if inserting successful, \p false otherwise.
- */
- template <typename K, typename V>
- bool insert( const K& key, const V& val )
- {
- // We cannot use insert with functor here
- // because we cannot lock inserted node for updating
- // Therefore, we use separate function
- return insert_at( head(), key, val );
- }
-
- /// Inserts new node and initializes it by a functor
- /**
- This function inserts new node with key \p key and if inserting is successful then it calls
- \p func functor with signature
- \code
- struct functor {
- void operator()( value_type& item );
- };
- \endcode
-
- The argument \p item of user-defined functor \p func is the reference
- to the list's item inserted. <tt>item.second</tt> is a reference to item's value that may be changed.
- User-defined functor \p func should guarantee that during changing item's value no any other changes
- could be made on this list's item by concurrent threads.
- The user-defined functor can be passed by reference using <tt>boost::ref</tt>
- and it is called only if inserting is successful.
-
- The key_type should be constructible from value of type \p K.
-
- The function allows to split creating of new item into two part:
- - create item from \p key;
- - insert new item into the list;
- - if inserting is successful, initialize the value of item by calling \p func functor
-
- This can be useful if complete initialization of object of \p mapped_type is heavyweight and
- it is preferable that the initialization should be completed only if inserting is successful.
- */
- template <typename K, typename Func>
- bool insert_key( const K& key, Func func )
- {
- return insert_key_at( head(), key, func );
- }
-
- /// Inserts data of type \ref mapped_type constructed with <tt>std::forward<Args>(args)...</tt>
- /**
- Returns \p true if inserting successful, \p false otherwise.
- */
- template <typename... Args>
- bool emplace( Args&&... args )
- {
- return emplace_at( head(), std::forward<Args>(args)... );
- }
-
- /// Ensures that the \p key exists in the list
- /**
- The operation performs inserting or changing data with lock-free manner.
-
- If the \p key not found in the list, then the new item created from \p key
- is inserted into the list (note that in this case the \ref key_type should be
- copy-constructible from type \p K).
- Otherwise, the functor \p func is called with item found.
- The functor \p Func may be a function with signature:
- \code
- void func( bool bNew, value_type& item );
- \endcode
- or a functor:
- \code
- struct my_functor {
- void operator()( bool bNew, value_type& item );
- };
- \endcode
-
- with arguments:
- - \p bNew - \p true if the item has been inserted, \p false otherwise
- - \p item - item of the list
-
- The functor may change any fields of the \p item.second that is \ref mapped_type;
- however, \p func must guarantee that during changing no any other modifications
- could be made on this item by concurrent threads.
-
- You may pass \p func argument by reference using <tt>boost::ref</tt>.
-
- Returns <tt> std::pair<bool, bool> </tt> where \p first is true if operation is successfull,
- \p second is true if new item has been added or \p false if the item with \p key
- already is in the list.
- */
- template <typename K, typename Func>
- std::pair<bool, bool> ensure( const K& key, Func f )
- {
- return ensure_at( head(), key, f );
- }
-
- /// Deletes \p key from the list
- /** \anchor cds_nonintrusive_LazyKVList_hp_erase_val
-
- Returns \p true if \p key is found and has been deleted, \p false otherwise
- */
- template <typename K>
- bool erase( K const& key )
- {
- return erase_at( head(), key, intrusive_key_comparator() );
- }
-
- /// Deletes the item from the list using \p pred predicate for searching
- /**
- The function is an analog of \ref cds_nonintrusive_LazyKVList_hp_erase_val "erase(K const&)"
- but \p pred is used for key comparing.
- \p Less functor has the interface like \p std::less.
- \p pred must imply the same element order as the comparator used for building the list.
- */
- template <typename K, typename Less>
- bool erase_with( K const& key, Less pred )
- {
- return erase_at( head(), key, typename options::template less_wrapper<Less>::type() );
- }
-
- /// Deletes \p key from the list
- /** \anchor cds_nonintrusive_LazyKVList_hp_erase_func
- The function searches an item with key \p key, calls \p f functor with item found
- and deletes it. If \p key is not found, the functor is not called.
-
- The functor \p Func interface:
- \code
- struct extractor {
- void operator()(value_type& val) { ... }
- };
- \endcode
- The functor may be passed by reference with <tt>boost:ref</tt>
-
- Returns \p true if key is found and deleted, \p false otherwise
- */
- template <typename K, typename Func>
- bool erase( K const& key, Func f )
- {
- return erase_at( head(), key, intrusive_key_comparator(), f );
- }
-
- /// Deletes the item from the list using \p pred predicate for searching
- /**
- The function is an analog of \ref cds_nonintrusive_LazyKVList_hp_erase_func "erase(K const&, Func)"
- but \p pred is used for key comparing.
- \p Less functor has the interface like \p std::less.
- \p pred must imply the same element order as the comparator used for building the list.
- */
- template <typename K, typename Less, typename Func>
- bool erase_with( K const& key, Less pred, Func f )
- {
- return erase_at( head(), key, typename options::template less_wrapper<Less>::type(), f );
- }
-
- /// Extracts the item from the list with specified \p key
- /** \anchor cds_nonintrusive_LazyKVList_hp_extract
- The function searches an item with key equal to \p key,
- unlinks it from the list, and returns it in \p dest parameter.
- If the item with key equal to \p key is not found the function returns \p false.
-
- Note the compare functor should accept a parameter of type \p K that can be not the same as \p key_type.
-
- @note Each \p guarded_ptr object uses the GC's guard that can be limited resource.
-
- Usage:
- \code
- typedef cds::container::LazyKVList< cds::gc::HP, int, foo, my_traits > ord_list;
- ord_list theList;
- // ...
- {
- ord_list::guarded_ptr gp;
- theList.extract( gp, 5 );
- // Deal with gp
- // ...
-
- // Destructor of gp releases internal HP guard and frees the item
- }
- \endcode
- */
- template <typename K>
- bool extract( guarded_ptr& dest, K const& key )
- {
- return extract_at( head(), dest.guard(), key, intrusive_key_comparator() );
- }
-
- /// Extracts the item from the list with comparing functor \p pred
- /**
- The function is an analog of \ref cds_nonintrusive_LazyKVList_hp_extract "extract(guarded_ptr&, K const&)"
- but \p pred predicate is used for key comparing.
-
- \p Less functor has the semantics like \p std::less but should take arguments of type \ref key_type and \p K
- in any order.
- \p pred must imply the same element order as the comparator used for building the list.
- */
- template <typename K, typename Less>
- bool extract_with( guarded_ptr& dest, K const& key, Less pred )
- {
- return extract_at( head(), dest.guard(), key, typename options::template less_wrapper<Less>::type() );
- }
-
- /// Finds the key \p key
- /** \anchor cds_nonintrusive_LazyKVList_hp_find_val
- The function searches the item with key equal to \p key
- and returns \p true if it is found, and \p false otherwise
- */
- template <typename Q>
- bool find( Q const& key )
- {
- return find_at( head(), key, intrusive_key_comparator() );
- }
-
- /// Finds the key \p val using \p pred predicate for searching
- /**
- The function is an analog of \ref cds_nonintrusive_LazyKVList_hp_find_val "find(Q const&)"
- but \p pred is used for key comparing.
- \p Less functor has the interface like \p std::less.
- \p pred must imply the same element order as the comparator used for building the list.
- */
- template <typename Q, typename Less>
- bool find_with( Q const& key, Less pred )
- {
- return find_at( head(), key, typename options::template less_wrapper<Less>::type() );
- }
-
- /// Finds the key \p key and performs an action with it
- /** \anchor cds_nonintrusive_LazyKVList_hp_find_func
- The function searches an item with key equal to \p key and calls the functor \p f for the item found.
- The interface of \p Func functor is:
- \code
- struct functor {
- void operator()( value_type& item );
- };
- \endcode
- where \p item is the item found.
-
- You may pass \p f argument by reference using <tt>boost::ref</tt> or cds::ref.
-
- The functor may change <tt>item.second</tt> that is reference to value of node.
- Note that the function is only guarantee that \p item cannot be deleted during functor is executing.
- The function does not serialize simultaneous access to the list \p item. If such access is
- possible you must provide your own synchronization schema to exclude unsafe item modifications.
-
- The function returns \p true if \p key is found, \p false otherwise.
- */
- template <typename Q, typename Func>
- bool find( Q const& key, Func f )
- {
- return find_at( head(), key, intrusive_key_comparator(), f );
- }
-
- /// Finds the key \p val using \p pred predicate for searching
- /**
- The function is an analog of \ref cds_nonintrusive_LazyKVList_hp_find_func "find(Q&, Func)"
- but \p pred is used for key comparing.
- \p Less functor has the interface like \p std::less.
- \p pred must imply the same element order as the comparator used for building the list.
- */
- template <typename Q, typename Less, typename Func>
- bool find_with( Q const& key, Less pred, Func f )
- {
- return find_at( head(), key, typename options::template less_wrapper<Less>::type(), f );
- }
-
- /// Finds \p key and return the item found
- /** \anchor cds_nonintrusive_LazyKVList_hp_get
- The function searches the item with key equal to \p key
- and assigns the item found to guarded pointer \p ptr.
- The function returns \p true if \p key is found, and \p false otherwise.
- If \p key is not found the \p ptr parameter is not changed.
-
- @note Each \p guarded_ptr object uses one GC's guard which can be limited resource.
-
- Usage:
- \code
- typedef cds::container::LazyKVList< cds::gc::HP, int, foo, my_traits > ord_list;
- ord_list theList;
- // ...
- {
- ord_list::guarded_ptr gp;
- if ( theList.get( gp, 5 )) {
- // Deal with gp
- //...
- }
- // Destructor of guarded_ptr releases internal HP guard and frees the item
- }
- \endcode
-
- Note the compare functor specified for class \p Traits template parameter
- should accept a parameter of type \p K that can be not the same as \p key_type.
- */
- template <typename K>
- bool get( guarded_ptr& ptr, K const& key )
- {
- return get_at( head(), ptr.guard(), key, intrusive_key_comparator() );
- }
-
- /// Finds the key \p val and return the item found
- /**
- The function is an analog of \ref cds_nonintrusive_LazyKVList_hp_get "get(guarded_ptr& ptr, K const&)"
- but \p pred is used for comparing the keys.
-
- \p Less functor has the semantics like \p std::less but should take arguments of type \ref key_type and \p K
- in any order.
- \p pred must imply the same element order as the comparator used for building the list.
- */
- template <typename K, typename Less>
- bool get_with( guarded_ptr& ptr, K const& key, Less pred )
- {
- return get_at( head(), ptr.guard(), key, typename options::template less_wrapper<Less>::type() );
- }
-
- /// Checks if the list is empty
- bool empty() const
- {
- return base_class::empty();
- }
-
- /// Returns list's item count
- /**
- The value returned depends on opt::item_counter option. For atomicity::empty_item_counter,
- this function always returns 0.
-
- <b>Warning</b>: even if you use real item counter and it returns 0, this fact is not mean that the list
- is empty. To check list emptyness use \ref empty() method.
- */
- size_t size() const
- {
- return base_class::size();
- }
-
- /// Clears the list
- /**
- Post-condition: the list is empty
- */
- void clear()
- {
- base_class::clear();
- }
-
- protected:
- //@cond
- bool insert_node_at( head_type& refHead, node_type * pNode )
- {
- assert( pNode != nullptr );
- scoped_node_ptr p( pNode );
-
- if ( base_class::insert_at( &refHead, *p )) {
- p.release();
- return true;
- }
-
- return false;
- }
-
- template <typename K>
- bool insert_at( head_type& refHead, const K& key )
- {
- return insert_node_at( refHead, alloc_node( key ));
- }
-
- template <typename K, typename V>
- bool insert_at( head_type& refHead, const K& key, const V& val )
- {
- return insert_node_at( refHead, alloc_node( key, val ));
- }
-
- template <typename K, typename Func>
- bool insert_key_at( head_type& refHead, const K& key, Func f )
- {
- scoped_node_ptr pNode( alloc_node( key ));
-
- if ( base_class::insert_at( &refHead, *pNode, [&f](node_type& node){ cds::unref(f)( node.m_Data ); } )) {
- pNode.release();
- return true;
- }
- return false;
- }
-
- template <typename... Args>
- bool emplace_at( head_type& refHead, Args&&... args )
- {
- return insert_node_at( refHead, alloc_node( std::forward<Args>(args)... ));
- }
-
- template <typename K, typename Compare>
- bool erase_at( head_type& refHead, K const& key, Compare cmp )
- {
- return base_class::erase_at( &refHead, key, cmp );
- }
-
- template <typename K, typename Compare, typename Func>
- bool erase_at( head_type& refHead, K const& key, Compare cmp, Func f )
- {
- return base_class::erase_at( &refHead, key, cmp, [&f](node_type const & node){cds::unref(f)( const_cast<value_type&>(node.m_Data)); });
- }
-
- template <typename K, typename Compare>
- bool extract_at( head_type& refHead, typename gc::Guard& dest, K const& key, Compare cmp )
- {
- return base_class::extract_at( &refHead, dest, key, cmp );
- }
-
- template <typename K, typename Func>
- std::pair<bool, bool> ensure_at( head_type& refHead, const K& key, Func f )
- {
- scoped_node_ptr pNode( alloc_node( key ));
-
- std::pair<bool, bool> ret = base_class::ensure_at( &refHead, *pNode,
- [&f]( bool bNew, node_type& node, node_type& ){ cds::unref(f)( bNew, node.m_Data ); });
- if ( ret.first && ret.second )
- pNode.release();
-
- return ret;
- }
-
- template <typename K, typename Compare>
- bool find_at( head_type& refHead, K const& key, Compare cmp )
- {
- return base_class::find_at( &refHead, key, cmp );
- }
-
- template <typename K, typename Compare, typename Func>
- bool find_at( head_type& refHead, K& key, Compare cmp, Func f )
- {
- return base_class::find_at( &refHead, key, cmp, [&f]( node_type& node, K& ){ cds::unref(f)( node.m_Data ); });
- }
-
- template <typename K, typename Compare>
- bool get_at( head_type& refHead, typename gc::Guard& guard, K const& key, Compare cmp )
- {
- return base_class::get_at( &refHead, guard, key, cmp );
- }
-
- //@endcond
- };
-
-}} // namespace cds::container
-
-#endif // #ifndef __CDS_CONTAINER_LAZY_KVLIST_IMPL_H
#include <cds/container/lazy_list_base.h>
#include <cds/intrusive/lazy_list_ptb.h>
#include <cds/container/details/make_lazy_kvlist.h>
-#include <cds/container/lazy_kvlist_impl.h>
+#include <cds/container/impl/lazy_kvlist.h>
#endif // #ifndef __CDS_CONTAINER_LAZY_KVLIST_PTB_H
<ClInclude Include="..\..\..\cds\container\ellen_bintree_set_rcu.h" />\r
<ClInclude Include="..\..\..\cds\container\impl\ellen_bintree_map.h" />\r
<ClInclude Include="..\..\..\cds\container\impl\ellen_bintree_set.h" />\r
+ <ClInclude Include="..\..\..\cds\container\impl\lazy_kvlist.h" />\r
<ClInclude Include="..\..\..\cds\container\lazy_kvlist_rcu.h" />\r
<ClInclude Include="..\..\..\cds\container\lazy_list_rcu.h" />\r
<ClInclude Include="..\..\..\cds\container\michael_kvlist_rcu.h" />\r
<ClInclude Include="..\..\..\cds\container\fcstack.h" />\r
<ClInclude Include="..\..\..\cds\container\lazy_kvlist_hp.h" />\r
<ClInclude Include="..\..\..\cds\container\lazy_kvlist_hrc.h" />\r
- <ClInclude Include="..\..\..\cds\container\lazy_kvlist_impl.h" />\r
<ClInclude Include="..\..\..\cds\container\lazy_kvlist_nogc.h" />\r
<ClInclude Include="..\..\..\cds\container\lazy_kvlist_ptb.h" />\r
<ClInclude Include="..\..\..\cds\container\lazy_list_base.h" />\r
<ClInclude Include="..\..\..\cds\container\lazy_kvlist_hrc.h">\r
<Filter>Header Files\cds\container</Filter>\r
</ClInclude>\r
- <ClInclude Include="..\..\..\cds\container\lazy_kvlist_impl.h">\r
- <Filter>Header Files\cds\container</Filter>\r
- </ClInclude>\r
<ClInclude Include="..\..\..\cds\container\lazy_kvlist_nogc.h">\r
<Filter>Header Files\cds\container</Filter>\r
</ClInclude>\r
<ClInclude Include="..\..\..\cds\container\impl\ellen_bintree_set.h">\r
<Filter>Header Files\cds\container\impl</Filter>\r
</ClInclude>\r
+ <ClInclude Include="..\..\..\cds\container\impl\lazy_kvlist.h">\r
+ <Filter>Header Files\cds\container\impl</Filter>\r
+ </ClInclude>\r
</ItemGroup>\r
</Project>
\ No newline at end of file