unsigned selector)
{
struct pwm_regulator_data *drvdata = rdev_get_drvdata(rdev);
- unsigned int pwm_reg_period;
+ struct pwm_args pargs;
int dutycycle;
int ret;
- pwm_reg_period = pwm_get_period(drvdata->pwm);
+ pwm_get_args(drvdata->pwm, &pargs);
- dutycycle = (pwm_reg_period *
+ dutycycle = (pargs.period *
drvdata->duty_cycle_table[selector].dutycycle) / 100;
- ret = pwm_config(drvdata->pwm, dutycycle, pwm_reg_period);
+ ret = pwm_config(drvdata->pwm, dutycycle, pargs.period);
if (ret) {
dev_err(&rdev->dev, "Failed to configure PWM: %d\n", ret);
return ret;
{
struct pwm_regulator_data *drvdata = rdev_get_drvdata(rdev);
unsigned int ramp_delay = rdev->constraints->ramp_delay;
- unsigned int period = pwm_get_period(drvdata->pwm);
+ struct pwm_args pargs;
unsigned int req_diff = min_uV - rdev->constraints->min_uV;
unsigned int diff;
unsigned int duty_pulse;
u32 rem;
int ret;
+ pwm_get_args(drvdata->pwm, &pargs);
diff = rdev->constraints->max_uV - rdev->constraints->min_uV;
/* First try to find out if we get the iduty cycle time which is
* to get output voltage nearer to requested value as there is no
* calculation loss.
*/
- req_period = req_diff * period;
+ req_period = req_diff * pargs.period;
div_u64_rem(req_period, diff, &rem);
if (!rem) {
do_div(req_period, diff);
duty_pulse = (unsigned int)req_period;
} else {
- duty_pulse = (period / 100) * ((req_diff * 100) / diff);
+ duty_pulse = (pargs.period / 100) * ((req_diff * 100) / diff);
}
- ret = pwm_config(drvdata->pwm, duty_pulse, period);
+ ret = pwm_config(drvdata->pwm, duty_pulse, pargs.period);
if (ret) {
dev_err(&rdev->dev, "Failed to configure PWM: %d\n", ret);
return ret;
return ret;
}
+ /*
+ * FIXME: pwm_apply_args() should be removed when switching to the
+ * atomic PWM API.
+ */
+ pwm_apply_args(drvdata->pwm);
+
regulator = devm_regulator_register(&pdev->dev,
&drvdata->desc, &config);
if (IS_ERR(regulator)) {