cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
cl::init(false));
-/// Value type used for condition codes.
-static const MVT MVT_CC = MVT::i32;
-
AArch64TargetLowering::AArch64TargetLowering(const TargetMachine &TM,
const AArch64Subtarget &STI)
: TargetLowering(TM), Subtarget(&STI) {
case AArch64ISD::ADCS: return "AArch64ISD::ADCS";
case AArch64ISD::SBCS: return "AArch64ISD::SBCS";
case AArch64ISD::ANDS: return "AArch64ISD::ANDS";
- case AArch64ISD::CCMP: return "AArch64ISD::CCMP";
- case AArch64ISD::CCMN: return "AArch64ISD::CCMN";
- case AArch64ISD::FCCMP: return "AArch64ISD::FCCMP";
case AArch64ISD::FCMP: return "AArch64ISD::FCMP";
case AArch64ISD::FMIN: return "AArch64ISD::FMIN";
case AArch64ISD::FMAX: return "AArch64ISD::FMAX";
LHS = LHS.getOperand(0);
}
- return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT_CC), LHS, RHS)
+ return DAG.getNode(Opcode, dl, DAG.getVTList(VT, MVT::i32), LHS, RHS)
.getValue(1);
}
-static SDValue emitConditionalComparison(SDValue LHS, SDValue RHS,
- ISD::CondCode CC, SDValue CCOp,
- SDValue Condition, unsigned NZCV,
- SDLoc DL, SelectionDAG &DAG) {
- unsigned Opcode = 0;
- if (LHS.getValueType().isFloatingPoint())
- Opcode = AArch64ISD::FCCMP;
- else if (RHS.getOpcode() == ISD::SUB) {
- SDValue SubOp0 = RHS.getOperand(0);
- if (const ConstantSDNode *SubOp0C = dyn_cast<ConstantSDNode>(SubOp0))
- if (SubOp0C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
- // See emitComparison() on why we can only do this for SETEQ and SETNE.
- Opcode = AArch64ISD::CCMN;
- RHS = RHS.getOperand(1);
- }
- }
- if (Opcode == 0)
- Opcode = AArch64ISD::CCMP;
-
- SDValue NZCVOp = DAG.getConstant(NZCV, DL, MVT::i32);
- return DAG.getNode(Opcode, DL, MVT_CC, LHS, RHS, NZCVOp, Condition, CCOp);
-}
-
-/// Returns true if @p Val is a tree of AND/OR/SETCC operations.
-static bool isConjunctionDisjunctionTree(const SDValue Val, unsigned Depth) {
- if (!Val.hasOneUse())
- return false;
- if (Val->getOpcode() == ISD::SETCC)
- return true;
- // Protect against stack overflow.
- if (Depth > 1000)
- return false;
- if (Val->getOpcode() == ISD::AND || Val->getOpcode() == ISD::OR) {
- SDValue O0 = Val->getOperand(0);
- SDValue O1 = Val->getOperand(1);
- return isConjunctionDisjunctionTree(O0, Depth+1) &&
- isConjunctionDisjunctionTree(O1, Depth+1);
- }
- return false;
-}
-
-/// Emit conjunction or disjunction tree with the CMP/FCMP followed by a chain
-/// of CCMP/CFCMP ops. For example (SETCC_0 & SETCC_1) with condition cond0 and
-/// cond1 can be transformed into "CMP; CCMP" with CCMP executing on cond_0
-/// and setting flags to inversed(cond_1) otherwise.
-/// This recursive function produces DAG nodes that produce condition flags
-/// suitable to determine the truth value of @p Val (which is AND/OR/SETCC)
-/// by testing the result for the condition set to @p OutCC. If @p Negate is
-/// set the opposite truth value is produced. If @p CCOp and @p Condition are
-/// given then conditional comparison are created so that false is reported
-/// when they are false.
-static SDValue emitConjunctionDisjunctionTree(
- SelectionDAG &DAG, SDValue Val, AArch64CC::CondCode &OutCC, bool Negate,
- SDValue CCOp = SDValue(), AArch64CC::CondCode Condition = AArch64CC::AL) {
- assert(isConjunctionDisjunctionTree(Val, 0));
- // We're at a tree leaf, produce a c?f?cmp.
- unsigned Opcode = Val->getOpcode();
- if (Opcode == ISD::SETCC) {
- SDValue LHS = Val->getOperand(0);
- SDValue RHS = Val->getOperand(1);
- ISD::CondCode CC = cast<CondCodeSDNode>(Val->getOperand(2))->get();
- bool isInteger = LHS.getValueType().isInteger();
- if (Negate)
- CC = getSetCCInverse(CC, isInteger);
- SDLoc DL(Val);
- // Determine OutCC and handle FP special case.
- if (isInteger) {
- OutCC = changeIntCCToAArch64CC(CC);
- } else {
- assert(LHS.getValueType().isFloatingPoint());
- AArch64CC::CondCode ExtraCC;
- changeFPCCToAArch64CC(CC, OutCC, ExtraCC);
- // Surpisingly some floating point conditions can't be tested with a
- // single condition code. Construct an additional comparison in this case.
- // See comment below on how we deal with OR conditions.
- if (ExtraCC != AArch64CC::AL) {
- SDValue ExtraCmp;
- if (!CCOp.getNode())
- ExtraCmp = emitComparison(LHS, RHS, CC, DL, DAG);
- else {
- SDValue ConditionOp = DAG.getConstant(Condition, DL, MVT_CC);
- // Note that we want the inverse of ExtraCC, so NZCV is not inversed.
- unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(ExtraCC);
- ExtraCmp = emitConditionalComparison(LHS, RHS, CC, CCOp, ConditionOp,
- NZCV, DL, DAG);
- }
- CCOp = ExtraCmp;
- Condition = AArch64CC::getInvertedCondCode(ExtraCC);
- OutCC = AArch64CC::getInvertedCondCode(OutCC);
- }
- }
-
- // Produce a normal comparison if we are first in the chain
- if (!CCOp.getNode())
- return emitComparison(LHS, RHS, CC, DL, DAG);
- // Otherwise produce a ccmp.
- SDValue ConditionOp = DAG.getConstant(Condition, DL, MVT_CC);
- AArch64CC::CondCode InvOutCC = AArch64CC::getInvertedCondCode(OutCC);
- unsigned NZCV = AArch64CC::getNZCVToSatisfyCondCode(InvOutCC);
- return emitConditionalComparison(LHS, RHS, CC, CCOp, ConditionOp, NZCV, DL,
- DAG);
- }
-
- // Construct comparison sequence for the left hand side.
- SDValue LHS = Val->getOperand(0);
- SDValue RHS = Val->getOperand(1);
-
- // We can only implement AND-like behaviour here, but negation is free. So we
- // use (not (and (not x) (not y))) to implement (or x y).
- bool isOr = Val->getOpcode() == ISD::OR;
- assert((isOr || Val->getOpcode() == ISD::AND) && "Should have AND or OR.");
- Negate ^= isOr;
-
- AArch64CC::CondCode RHSCC;
- SDValue CmpR =
- emitConjunctionDisjunctionTree(DAG, RHS, RHSCC, isOr, CCOp, Condition);
- SDValue CmpL =
- emitConjunctionDisjunctionTree(DAG, LHS, OutCC, isOr, CmpR, RHSCC);
- if (Negate)
- OutCC = AArch64CC::getInvertedCondCode(OutCC);
- return CmpL;
-}
-
static SDValue getAArch64Cmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
SDValue &AArch64cc, SelectionDAG &DAG, SDLoc dl) {
SDValue Cmp;
}
}
}
+ // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
+ // For the i8 operand, the largest immediate is 255, so this can be easily
+ // encoded in the compare instruction. For the i16 operand, however, the
+ // largest immediate cannot be encoded in the compare.
+ // Therefore, use a sign extending load and cmn to avoid materializing the -1
+ // constant. For example,
+ // movz w1, #65535
+ // ldrh w0, [x0, #0]
+ // cmp w0, w1
+ // >
+ // ldrsh w0, [x0, #0]
+ // cmn w0, #1
+ // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
+ // if and only if (sext LHS) == (sext RHS). The checks are in place to ensure
+ // both the LHS and RHS are truely zero extended and to make sure the
+ // transformation is profitable.
if ((CC == ISD::SETEQ || CC == ISD::SETNE) && isa<ConstantSDNode>(RHS)) {
- const ConstantSDNode *RHSC = cast<ConstantSDNode>(RHS);
-
- // The imm operand of ADDS is an unsigned immediate, in the range 0 to 4095.
- // For the i8 operand, the largest immediate is 255, so this can be easily
- // encoded in the compare instruction. For the i16 operand, however, the
- // largest immediate cannot be encoded in the compare.
- // Therefore, use a sign extending load and cmn to avoid materializing the
- // -1 constant. For example,
- // movz w1, #65535
- // ldrh w0, [x0, #0]
- // cmp w0, w1
- // >
- // ldrsh w0, [x0, #0]
- // cmn w0, #1
- // Fundamental, we're relying on the property that (zext LHS) == (zext RHS)
- // if and only if (sext LHS) == (sext RHS). The checks are in place to
- // ensure both the LHS and RHS are truely zero extended and to make sure the
- // transformation is profitable.
- if ((RHSC->getZExtValue() >> 16 == 0) && isa<LoadSDNode>(LHS) &&
- cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
- cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
- LHS.getNode()->hasNUsesOfValue(1, 0)) {
- int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
- if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
- SDValue SExt =
- DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
- DAG.getValueType(MVT::i16));
- Cmp = emitComparison(SExt, DAG.getConstant(ValueofRHS, dl,
- RHS.getValueType()),
- CC, dl, DAG);
- AArch64CC = changeIntCCToAArch64CC(CC);
- goto CreateCCNode;
+ if ((cast<ConstantSDNode>(RHS)->getZExtValue() >> 16 == 0) &&
+ isa<LoadSDNode>(LHS)) {
+ if (cast<LoadSDNode>(LHS)->getExtensionType() == ISD::ZEXTLOAD &&
+ cast<LoadSDNode>(LHS)->getMemoryVT() == MVT::i16 &&
+ LHS.getNode()->hasNUsesOfValue(1, 0)) {
+ int16_t ValueofRHS = cast<ConstantSDNode>(RHS)->getZExtValue();
+ if (ValueofRHS < 0 && isLegalArithImmed(-ValueofRHS)) {
+ SDValue SExt =
+ DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, LHS.getValueType(), LHS,
+ DAG.getValueType(MVT::i16));
+ Cmp = emitComparison(SExt,
+ DAG.getConstant(ValueofRHS, dl,
+ RHS.getValueType()),
+ CC, dl, DAG);
+ AArch64CC = changeIntCCToAArch64CC(CC);
+ AArch64cc = DAG.getConstant(AArch64CC, dl, MVT::i32);
+ return Cmp;
+ }
}
}
-
- if ((RHSC->isNullValue() || RHSC->isOne()) &&
- isConjunctionDisjunctionTree(LHS, 0)) {
- bool Negate = (CC == ISD::SETNE) ^ RHSC->isNullValue();
- Cmp = emitConjunctionDisjunctionTree(DAG, LHS, AArch64CC, Negate);
- goto CreateCCNode;
- }
}
-
Cmp = emitComparison(LHS, RHS, CC, dl, DAG);
AArch64CC = changeIntCCToAArch64CC(CC);
-
-CreateCCNode:
- AArch64cc = DAG.getConstant(AArch64CC, dl, MVT_CC);
+ AArch64cc = DAG.getConstant(AArch64CC, dl, MVT::i32);
return Cmp;
}
Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
return Ty->isArrayTy();
}
-
-bool AArch64TargetLowering::shouldNormalizeToSelectSequence(LLVMContext &,
- EVT) const {
- return false;
-}
SBCS,
ANDS,
- // Conditional compares. Operands: left,right,falsecc,cc,flags
- CCMP,
- CCMN,
- FCCMP,
-
// Floating point comparison
FCMP,
bool functionArgumentNeedsConsecutiveRegisters(Type *Ty,
CallingConv::ID CallConv,
bool isVarArg) const override;
-
- bool shouldNormalizeToSelectSequence(LLVMContext &, EVT) const override;
};
namespace AArch64 {
let ParserMatchClass = Imm0_31Operand;
}
-// True if the 32-bit immediate is in the range [0,31]
-def imm32_0_31 : Operand<i32>, ImmLeaf<i32, [{
- return ((uint64_t)Imm) < 32;
-}]> {
- let ParserMatchClass = Imm0_31Operand;
-}
-
// imm0_15 predicate - True if the immediate is in the range [0,15]
def imm0_15 : Operand<i64>, ImmLeaf<i64, [{
return ((uint64_t)Imm) < 16;
// imm32_0_15 predicate - True if the 32-bit immediate is in the range [0,15]
def imm32_0_15 : Operand<i32>, ImmLeaf<i32, [{
return ((uint32_t)Imm) < 16;
-}]> {
- let ParserMatchClass = Imm0_15Operand;
-}
+}]>;
// An arithmetic shifter operand:
// {7-6} - shift type: 00 = lsl, 01 = lsr, 10 = asr
//---
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
-class BaseCondComparisonImm<bit op, RegisterClass regtype, ImmLeaf immtype,
- string mnemonic, SDNode OpNode>
- : I<(outs), (ins regtype:$Rn, immtype:$imm, imm32_0_15:$nzcv, ccode:$cond),
- mnemonic, "\t$Rn, $imm, $nzcv, $cond", "",
- [(set NZCV, (OpNode regtype:$Rn, immtype:$imm, (i32 imm:$nzcv),
- (i32 imm:$cond), NZCV))]>,
+class BaseCondSetFlagsImm<bit op, RegisterClass regtype, string asm>
+ : I<(outs), (ins regtype:$Rn, imm0_31:$imm, imm0_15:$nzcv, ccode:$cond),
+ asm, "\t$Rn, $imm, $nzcv, $cond", "", []>,
Sched<[WriteI, ReadI]> {
let Uses = [NZCV];
let Defs = [NZCV];
let Inst{3-0} = nzcv;
}
+multiclass CondSetFlagsImm<bit op, string asm> {
+ def Wi : BaseCondSetFlagsImm<op, GPR32, asm> {
+ let Inst{31} = 0;
+ }
+ def Xi : BaseCondSetFlagsImm<op, GPR64, asm> {
+ let Inst{31} = 1;
+ }
+}
+
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
-class BaseCondComparisonReg<bit op, RegisterClass regtype, string mnemonic,
- SDNode OpNode>
- : I<(outs), (ins regtype:$Rn, regtype:$Rm, imm32_0_15:$nzcv, ccode:$cond),
- mnemonic, "\t$Rn, $Rm, $nzcv, $cond", "",
- [(set NZCV, (OpNode regtype:$Rn, regtype:$Rm, (i32 imm:$nzcv),
- (i32 imm:$cond), NZCV))]>,
+class BaseCondSetFlagsReg<bit op, RegisterClass regtype, string asm>
+ : I<(outs), (ins regtype:$Rn, regtype:$Rm, imm0_15:$nzcv, ccode:$cond),
+ asm, "\t$Rn, $Rm, $nzcv, $cond", "", []>,
Sched<[WriteI, ReadI, ReadI]> {
let Uses = [NZCV];
let Defs = [NZCV];
let Inst{3-0} = nzcv;
}
-multiclass CondComparison<bit op, string mnemonic, SDNode OpNode> {
- // immediate operand variants
- def Wi : BaseCondComparisonImm<op, GPR32, imm32_0_31, mnemonic, OpNode> {
+multiclass CondSetFlagsReg<bit op, string asm> {
+ def Wr : BaseCondSetFlagsReg<op, GPR32, asm> {
let Inst{31} = 0;
}
- def Xi : BaseCondComparisonImm<op, GPR64, imm0_31, mnemonic, OpNode> {
- let Inst{31} = 1;
- }
- // register operand variants
- def Wr : BaseCondComparisonReg<op, GPR32, mnemonic, OpNode> {
- let Inst{31} = 0;
- }
- def Xr : BaseCondComparisonReg<op, GPR64, mnemonic, OpNode> {
+ def Xr : BaseCondSetFlagsReg<op, GPR64, asm> {
let Inst{31} = 1;
}
}
//---
let mayLoad = 0, mayStore = 0, hasSideEffects = 0 in
-class BaseFPCondComparison<bit signalAllNans, RegisterClass regtype,
- string mnemonic, list<dag> pat>
- : I<(outs), (ins regtype:$Rn, regtype:$Rm, imm32_0_15:$nzcv, ccode:$cond),
- mnemonic, "\t$Rn, $Rm, $nzcv, $cond", "", pat>,
+class BaseFPCondComparison<bit signalAllNans,
+ RegisterClass regtype, string asm>
+ : I<(outs), (ins regtype:$Rn, regtype:$Rm, imm0_15:$nzcv, ccode:$cond),
+ asm, "\t$Rn, $Rm, $nzcv, $cond", "", []>,
Sched<[WriteFCmp]> {
- let Uses = [NZCV];
- let Defs = [NZCV];
-
bits<5> Rn;
bits<5> Rm;
bits<4> nzcv;
let Inst{3-0} = nzcv;
}
-multiclass FPCondComparison<bit signalAllNans, string mnemonic,
- SDPatternOperator OpNode = null_frag> {
- def Srr : BaseFPCondComparison<signalAllNans, FPR32, mnemonic,
- [(set NZCV, (OpNode (f32 FPR32:$Rn), (f32 FPR32:$Rm), (i32 imm:$nzcv),
- (i32 imm:$cond), NZCV))]> {
+multiclass FPCondComparison<bit signalAllNans, string asm> {
+ let Defs = [NZCV], Uses = [NZCV] in {
+ def Srr : BaseFPCondComparison<signalAllNans, FPR32, asm> {
let Inst{22} = 0;
}
- def Drr : BaseFPCondComparison<signalAllNans, FPR64, mnemonic,
- [(set NZCV, (OpNode (f64 FPR64:$Rn), (f64 FPR64:$Rm), (i32 imm:$nzcv),
- (i32 imm:$cond), NZCV))]> {
+
+ def Drr : BaseFPCondComparison<signalAllNans, FPR64, asm> {
let Inst{22} = 1;
}
+ } // Defs = [NZCV], Uses = [NZCV]
}
//---
SDTCisSameAs<0, 2>,
SDTCisInt<3>,
SDTCisVT<4, i32>]>;
-def SDT_AArch64CCMP : SDTypeProfile<1, 5,
- [SDTCisVT<0, i32>,
- SDTCisInt<1>,
- SDTCisSameAs<1, 2>,
- SDTCisInt<3>,
- SDTCisInt<4>,
- SDTCisVT<5, i32>]>;
-def SDT_AArch64FCCMP : SDTypeProfile<1, 5,
- [SDTCisVT<0, i32>,
- SDTCisFP<1>,
- SDTCisSameAs<1, 2>,
- SDTCisInt<3>,
- SDTCisInt<4>,
- SDTCisVT<5, i32>]>;
def SDT_AArch64FCmp : SDTypeProfile<0, 2,
[SDTCisFP<0>,
SDTCisSameAs<0, 1>]>;
def AArch64adc_flag : SDNode<"AArch64ISD::ADCS", SDTBinaryArithWithFlagsInOut>;
def AArch64sbc_flag : SDNode<"AArch64ISD::SBCS", SDTBinaryArithWithFlagsInOut>;
-def AArch64ccmp : SDNode<"AArch64ISD::CCMP", SDT_AArch64CCMP>;
-def AArch64ccmn : SDNode<"AArch64ISD::CCMN", SDT_AArch64CCMP>;
-def AArch64fccmp : SDNode<"AArch64ISD::FCCMP", SDT_AArch64FCCMP>;
-
def AArch64threadpointer : SDNode<"AArch64ISD::THREAD_POINTER", SDTPtrLeaf>;
def AArch64fcmp : SDNode<"AArch64ISD::FCMP", SDT_AArch64FCmp>;
def : InstAlias<"uxtw $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;
//===----------------------------------------------------------------------===//
-// Conditional comparison instructions.
+// Conditionally set flags instructions.
//===----------------------------------------------------------------------===//
-defm CCMN : CondComparison<0, "ccmn", AArch64ccmn>;
-defm CCMP : CondComparison<1, "ccmp", AArch64ccmp>;
+defm CCMN : CondSetFlagsImm<0, "ccmn">;
+defm CCMP : CondSetFlagsImm<1, "ccmp">;
+
+defm CCMN : CondSetFlagsReg<0, "ccmn">;
+defm CCMP : CondSetFlagsReg<1, "ccmp">;
//===----------------------------------------------------------------------===//
// Conditional select instructions.
//===----------------------------------------------------------------------===//
defm FCCMPE : FPCondComparison<1, "fccmpe">;
-defm FCCMP : FPCondComparison<0, "fccmp", AArch64fccmp>;
+defm FCCMP : FPCondComparison<0, "fccmp">;
//===----------------------------------------------------------------------===//
// Floating point conditional select instruction.
%code1.i.i.phi.trans.insert = getelementptr inbounds %str1, %str1* %0, i64 0, i32 0, i32 0, i64 16
br label %sw.bb.i.i
}
-
-; CHECK-LABEL: select_and
-define i64 @select_and(i32 %v1, i32 %v2, i64 %a, i64 %b) {
-; CHECK: cmp
-; CHECK: ccmp{{.*}}, #0, ne
-; CHECK: csel{{.*}}, lt
- %1 = icmp slt i32 %v1, %v2
- %2 = icmp ne i32 5, %v2
- %3 = and i1 %1, %2
- %sel = select i1 %3, i64 %a, i64 %b
- ret i64 %sel
-}
-
-; CHECK-LABEL: select_or
-define i64 @select_or(i32 %v1, i32 %v2, i64 %a, i64 %b) {
-; CHECK: cmp
-; CHECK: ccmp{{.*}}, #8, eq
-; CHECK: csel{{.*}}, lt
- %1 = icmp slt i32 %v1, %v2
- %2 = icmp ne i32 5, %v2
- %3 = or i1 %1, %2
- %sel = select i1 %3, i64 %a, i64 %b
- ret i64 %sel
-}
-
-; CHECK-LABEL: select_complicated
-define i16 @select_complicated(double %v1, double %v2, i16 %a, i16 %b) {
-; CHECK: fcmp
-; CHECK: fccmp{{.*}}, #4, ne
-; CHECK: fccmp{{.*}}, #1, ne
-; CHECK: fccmp{{.*}}, #4, vc
-; CEHCK: csel{{.*}}, eq
- %1 = fcmp one double %v1, %v2
- %2 = fcmp oeq double %v2, 13.0
- %3 = fcmp oeq double %v1, 42.0
- %or0 = or i1 %2, %3
- %or1 = or i1 %1, %or0
- %sel = select i1 %or1, i16 %a, i16 %b
- ret i16 %sel
-}