const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
assert(AR && "Invalid addrec expression");
const SCEV *Ex = SE->getBackedgeTakenCount(Lp);
+
+ const SCEV *ScStart = AR->getStart();
const SCEV *ScEnd = AR->evaluateAtIteration(Ex, *SE);
- Pointers.emplace_back(Ptr, AR->getStart(), ScEnd, WritePtr, DepSetId, ASId,
- Sc);
+ const SCEV *Step = AR->getStepRecurrence(*SE);
+
+ // For expressions with negative step, the upper bound is ScStart and the
+ // lower bound is ScEnd.
+ if (const SCEVConstant *CStep = dyn_cast<const SCEVConstant>(Step)) {
+ if (CStep->getValue()->isNegative())
+ std::swap(ScStart, ScEnd);
+ } else {
+ // Fallback case: the step is not constant, but the we can still
+ // get the upper and lower bounds of the interval by using min/max
+ // expressions.
+ ScStart = SE->getUMinExpr(ScStart, ScEnd);
+ ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
+ }
+
+ Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, Sc);
}
bool RuntimePointerChecking::needsChecking(
--- /dev/null
+; RUN: opt -loop-accesses -analyze < %s | FileCheck %s
+
+; The runtime memory check code and the access grouping
+; algorithm both assume that the start and end values
+; for an access range are ordered (start <= stop).
+; When generating checks for accesses with negative stride
+; we need to take this into account and swap the interval
+; ends.
+;
+; for (i = 0; i < 10000; i++) {
+; B[i] = A[15000 - i] * 3;
+; }
+
+target datalayout = "e-m:e-i64:64-i128:128-n32:64-S128"
+target triple = "aarch64--linux-gnueabi"
+
+; CHECK: function 'f':
+; CHECK: (Low: (20000 + %a) High: (60000 + %a))
+
+@B = common global i32* null, align 8
+@A = common global i32* null, align 8
+
+define void @f() {
+entry:
+ %a = load i32*, i32** @A, align 8
+ %b = load i32*, i32** @B, align 8
+ br label %for.body
+
+for.body: ; preds = %for.body, %entry
+ %idx = phi i64 [ 0, %entry ], [ %add, %for.body ]
+ %negidx = sub i64 15000, %idx
+
+ %arrayidxA0 = getelementptr inbounds i32, i32* %a, i64 %negidx
+ %loadA0 = load i32, i32* %arrayidxA0, align 2
+
+ %res = mul i32 %loadA0, 3
+
+ %add = add nuw nsw i64 %idx, 1
+
+ %arrayidxB = getelementptr inbounds i32, i32* %b, i64 %idx
+ store i32 %res, i32* %arrayidxB, align 2
+
+ %exitcond = icmp eq i64 %idx, 10000
+ br i1 %exitcond, label %for.end, label %for.body
+
+for.end: ; preds = %for.body
+ ret void
+}
+
+; CHECK: function 'g':
+; When the stride is not constant, we are forced to do umin/umax to get
+; the interval limits.
+
+; for (i = 0; i < 10000; i++) {
+; B[i] = A[15000 - step * i] * 3;
+; }
+
+; Here it is not obvious what the limits are, since 'step' could be negative.
+
+; CHECK: Low: (-1 + (-1 * ((-60001 + (-1 * %a)) umax (-60001 + (40000 * %step) + (-1 * %a)))))
+; CHECK: High: ((60000 + %a) umax (60000 + (-40000 * %step) + %a))
+
+define void @g(i64 %step) {
+entry:
+ %a = load i32*, i32** @A, align 8
+ %b = load i32*, i32** @B, align 8
+ br label %for.body
+
+for.body: ; preds = %for.body, %entry
+ %idx = phi i64 [ 0, %entry ], [ %add, %for.body ]
+ %idx_mul = mul i64 %idx, %step
+ %negidx = sub i64 15000, %idx_mul
+
+ %arrayidxA0 = getelementptr inbounds i32, i32* %a, i64 %negidx
+ %loadA0 = load i32, i32* %arrayidxA0, align 2
+
+ %res = mul i32 %loadA0, 3
+
+ %add = add nuw nsw i64 %idx, 1
+
+ %arrayidxB = getelementptr inbounds i32, i32* %b, i64 %idx
+ store i32 %res, i32* %arrayidxB, align 2
+
+ %exitcond = icmp eq i64 %idx, 10000
+ br i1 %exitcond, label %for.end, label %for.body
+
+for.end: ; preds = %for.body
+ ret void
+}