if (CE->getOpcode() == Instruction::Cast ||
CE->getOpcode() == Instruction::GetElementPtr)
return getUnderlyingObject(CE->getOperand(0));
- } else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V)) {
- return CPR->getValue();
+ } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ return GV;
}
return 0;
}
V = cast<User>(V)->getOperand(0);
while (const User *G = isGEP(V)) {
- if (!isa<Constant>(GEPOps[0]) ||
+ if (!isa<Constant>(GEPOps[0]) || isa<GlobalValue>(GEPOps[0]) ||
!cast<Constant>(GEPOps[0])->isNullValue())
break; // Don't handle folding arbitrary pointer offsets yet...
GEPOps.erase(GEPOps.begin()); // Drop the zero index
//
AliasAnalysis::ModRefResult
BasicAliasAnalysis::getModRefInfo(CallSite CS, Value *P, unsigned Size) {
- if (!isa<Constant>(P) && !isa<GlobalValue>(P))
+ if (!isa<Constant>(P))
if (const AllocationInst *AI =
dyn_cast_or_null<AllocationInst>(getUnderlyingObject(P))) {
// Okay, the pointer is to a stack allocated object. If we can prove that
if (CE->getOpcode() == Instruction::Cast)
V2 = CE->getOperand(0);
- // Strip off constant pointer refs if they exist
- if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V1))
- V1 = CPR->getValue();
- if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V2))
- V2 = CPR->getValue();
-
// Are we checking for alias of the same value?
if (V1 == V2) return MustAlias;
// the arguments provided, except substitute 0's for any variable
// indexes we find...
for (unsigned i = 0; i != GEPOperands.size(); ++i)
- if (!isa<Constant>(GEPOperands[i]) ||
+ if (!isa<Constant>(GEPOperands[i]) || isa<GlobalValue>(GEPOperands[i]) ||
isa<ConstantExpr>(GEPOperands[i]))
GEPOperands[i] =Constant::getNullValue(GEPOperands[i]->getType());
int64_t Offset = getTargetData().getIndexedOffset(BasePtr->getType(),
bool AllAreZeros = true;
for (unsigned i = UnequalOper; i != MaxOperands; ++i)
- if (!isa<Constant>(GEP1Ops[i]) ||
+ if (!isa<Constant>(GEP1Ops[i]) ||
!cast<Constant>(GEP1Ops[i])->isNullValue()) {
AllAreZeros = false;
break;
DSNode *DSGraphStats::getNodeForValue(Value *V) {
const DSGraph *G = TDGraph;
- if (isa<GlobalValue>(V) || isa<Constant>(V))
+ if (isa<Constant>(V))
G = TDGraph->getGlobalsGraph();
const DSGraph::ScalarMapTy &ScalarMap = G->getScalarMap();
// Otherwise we need to create a new node to point to.
// Check first for constant expressions that must be traversed to
// extract the actual value.
- if (Constant *C = dyn_cast<Constant>(V))
- if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
- return NH = getValueDest(*CPR->getValue());
- } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+ DSNode* N;
+ if (GlobalValue* GV = dyn_cast<GlobalValue>(V)) {
+ // Create a new global node for this global variable...
+ N = createNode(GV->getType()->getElementType());
+ N->addGlobal(GV);
+ } else if (Constant *C = dyn_cast<Constant>(V)) {
+ if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
if (CE->getOpcode() == Instruction::Cast)
NH = getValueDest(*CE->getOperand(0));
else if (CE->getOpcode() == Instruction::GetElementPtr) {
} else {
assert(0 && "Unknown constant type!");
}
-
- // Otherwise we need to create a new node to point to...
- DSNode *N;
- if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
- // Create a new global node for this global variable...
- N = createNode(GV->getType()->getElementType());
- N->addGlobal(GV);
+ N = createNode(); // just create a shadow node
} else {
// Otherwise just create a shadow node
N = createNode();
void GraphBuilder::visitCallSite(CallSite CS) {
Value *Callee = CS.getCalledValue();
- if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Callee))
- Callee = CPR->getValue();
// Special case handling of certain libc allocation functions here.
if (Function *F = dyn_cast<Function>(Callee))
// Add scalar nodes to the graph...
const DSGraph::ScalarMapTy &VM = G->getScalarMap();
for (DSGraph::ScalarMapTy::const_iterator I = VM.begin(); I != VM.end();++I)
- if (!isa<GlobalValue>(I->first) && !isa<ConstantPointerRef>(I->first)) {
+ if (!isa<GlobalValue>(I->first)) {
std::stringstream OS;
WriteAsOperand(OS, I->first, false, true, CurMod);
GW.emitSimpleNode(I->first, "", OS.str());
if (isa<ConstantPointerNull>(C))
return &GraphNodes[NullPtr];
- else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C))
- return getNode(CPR->getValue());
+ else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
+ return getNode(GV);
else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
switch (CE->getOpcode()) {
case Instruction::GetElementPtr:
if (isa<ConstantPointerNull>(C))
return &GraphNodes[NullObject];
- else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C))
- return getObject(CPR->getValue());
+ else if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
+ return getObject(GV);
else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
switch (CE->getOpcode()) {
case Instruction::GetElementPtr:
getNodeFor(Inst->getParent()->getParent())->addCalledFunction(Node);
else
isUsedExternally = true;
- } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(*I)) {
- // THIS IS A DISGUSTING HACK. Brought to you by the power of
- // ConstantPointerRefs!
- for (Value::use_iterator I = CPR->use_begin(), E = CPR->use_end();
+ } else if (GlobalValue *GV = dyn_cast<GlobalValue>(*I)) {
+ for (Value::use_iterator I = GV->use_begin(), E = GV->use_end();
I != E; ++I)
if (Instruction *Inst = dyn_cast<Instruction>(*I)) {
if (isOnlyADirectCall(F, CallSite::get(Inst)))
// If this is a constant, it could be using other types...
if (const Constant *C = dyn_cast<Constant>(V)) {
- for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
- OI != OE; ++OI)
- IncorporateValue(*OI);
+ if (!isa<GlobalValue>(C))
+ for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
+ OI != OE; ++OI)
+ IncorporateValue(*OI);
}
}
} else {
return true;
}
- } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(*UI)) {
- if (AnalyzeUsesOfGlobal(CPR, Readers, Writers)) return true;
+ } else if (GlobalValue *GV = dyn_cast<GlobalValue>(*UI)) {
+ if (AnalyzeUsesOfGlobal(GV, Readers, Writers)) return true;
} else {
return true;
}
if (CE->getOpcode() == Instruction::Cast ||
CE->getOpcode() == Instruction::GetElementPtr)
return getUnderlyingObject(CE->getOperand(0));
- } else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V)) {
- return CPR->getValue();
}
return 0;
}
case Instruction::Select:
return ConstantExpr::getSelect(Operands[0], Operands[1], Operands[2]);
case Instruction::Call:
- if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Operands[0])) {
+ if (Function *GV = dyn_cast<Function>(Operands[0])) {
Operands.erase(Operands.begin());
- return ConstantFoldCall(cast<Function>(CPR->getValue()), Operands);
+ return ConstantFoldCall(cast<Function>(GV), Operands);
}
return 0;
/// reason, return null.
static Constant *EvaluateExpression(Value *V, Constant *PHIVal) {
if (isa<PHINode>(V)) return PHIVal;
- if (Constant *C = dyn_cast<Constant>(V)) return C;
if (GlobalValue *GV = dyn_cast<GlobalValue>(V))
- return ConstantPointerRef::get(GV);
+ return GV;
+ if (Constant *C = dyn_cast<Constant>(V)) return C;
Instruction *I = cast<Instruction>(V);
std::vector<Constant*> Operands;
Value *Op = I->getOperand(i);
if (Constant *C = dyn_cast<Constant>(Op)) {
Operands.push_back(C);
- } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Op)) {
- Operands.push_back(ConstantPointerRef::get(GV));
} else {
SCEVHandle OpV = getSCEVAtScope(getSCEV(Op), L);
if (SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV))
unsigned SlotCalculator::getGlobalSlot(const Value *V) const {
assert(!CompactionTable.empty() &&
"This method can only be used when compaction is enabled!");
- if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V))
- V = CPR->getValue();
std::map<const Value*, unsigned>::const_iterator I = NodeMap.find(V);
assert(I != NodeMap.end() && "Didn't find global slot entry!");
return I->second;
}
}
- // If we are emitting a bytecode file, scan all of the functions for their
- // constants, which allows us to emit more compact modules. This is optional,
- // and is just used to compactify the constants used by different functions
- // together.
- //
- // This functionality is completely optional for the bytecode writer, but
- // tends to produce smaller bytecode files. This should not be used in the
- // future by clients that want to, for example, build and emit functions on
- // the fly. For now, however, it is unconditionally enabled when building
- // bytecode information.
+ // Scan all of the functions for their constants, which allows us to emit
+ // more compact modules. This is optional, and is just used to compactify
+ // the constants used by different functions together.
//
+ // This functionality tends to produce smaller bytecode files. This should
+ // not be used in the future by clients that want to, for example, build and
+ // emit functions on the fly. For now, however, it is unconditionally
+ // enabled.
ModuleContainsAllFunctionConstants = true;
SC_DEBUG("Inserting function constants:\n");
F != E; ++F) {
for (const_inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I){
for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
- if (isa<Constant>(I->getOperand(op)))
+ if (isa<Constant>(I->getOperand(op)) &&
+ !isa<GlobalValue>(I->getOperand(op)))
getOrCreateSlot(I->getOperand(op));
getOrCreateSlot(I->getType());
if (const VANextInst *VAN = dyn_cast<VANextInst>(&*I))
PE = ST->plane_end(); PI != PE; ++PI)
for (SymbolTable::value_const_iterator VI = PI->second.begin(),
VE = PI->second.end(); VI != VE; ++VI)
- if (isa<Constant>(VI->second))
+ if (isa<Constant>(VI->second) &&
+ !isa<GlobalValue>(VI->second))
getOrCreateSlot(VI->second);
}
/// getOrCreateCompactionTableSlot - This method is used to build up the initial
/// approximation of the compaction table.
unsigned SlotCalculator::getOrCreateCompactionTableSlot(const Value *V) {
- if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V))
- V = CPR->getValue();
std::map<const Value*, unsigned>::iterator I =
CompactionNodeMap.lower_bound(V);
if (I != CompactionNodeMap.end() && I->first == V)
for (const_inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
getOrCreateCompactionTableSlot(I->getType());
for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
- if (isa<Constant>(I->getOperand(op)) ||
- isa<GlobalValue>(I->getOperand(op)))
+ if (isa<Constant>(I->getOperand(op)))
getOrCreateCompactionTableSlot(I->getOperand(op));
if (const VANextInst *VAN = dyn_cast<VANextInst>(&*I))
getOrCreateCompactionTableSlot(VAN->getArgType());
PE = ST.plane_end(); PI != PE; ++PI)
for (SymbolTable::value_const_iterator VI = PI->second.begin(),
VE = PI->second.end(); VI != VE; ++VI)
- if (isa<Constant>(VI->second) || isa<GlobalValue>(VI->second))
+ if (isa<Constant>(VI->second) && !isa<GlobalValue>(VI->second))
getOrCreateCompactionTableSlot(VI->second);
// Now that we have all of the values in the table, and know what types are
if (I != NodeMap.end())
return (int)I->second;
- // Do not number ConstantPointerRef's at all. They are an abomination.
- if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V))
- return getSlot(CPR->getValue());
-
return -1;
}
int SlotNo = getSlot(V); // Check to see if it's already in!
if (SlotNo != -1) return SlotNo;
- // Do not number ConstantPointerRef's at all. They are an abomination.
- if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V))
- return getOrCreateSlot(CPR->getValue());
-
if (!isa<GlobalValue>(V)) // Initializers for globals are handled explicitly
if (const Constant *C = dyn_cast<Constant>(V)) {
assert(CompactionNodeMap.empty() &&
// insert the value into the compaction map, not into the global map.
if (!CompactionNodeMap.empty()) {
if (D->getType() == Type::VoidTy) return -1; // Do not insert void values
- assert(!isa<Constant>(D) && !isa<GlobalValue>(D) &&
- "Types, constants, and globals should be in global SymTab!");
+ assert(!isa<Constant>(D) &&
+ "Types, constants, and globals should be in global table!");
int Plane = getSlot(D->getType());
assert(Plane != -1 && CompactionTable.size() > (unsigned)Plane &&
if (getSlot(SubTy) == -1) {
SC_DEBUG(" Inserting subtype: " << SubTy->getDescription() << "\n");
doInsertType(SubTy);
- SC_DEBUG(" Inserted subtype: " << SubTy->getDescription());
+ SC_DEBUG(" Inserted subtype: " << SubTy->getDescription() << "\n");
}
}
}