the vectorized instructions while the old loop will continue to run the
scalar remainder.
- [ ] <-- Back-edge taken count overflow check.
+ [ ] <-- loop iteration number check.
/ |
/ v
| [ ] <-- vector loop bypass (may consist of multiple blocks).
// Notice that the pre-header does not change, only the loop body.
SCEVExpander Exp(*SE, DL, "induction");
- // We need to test whether the backedge-taken count is uint##_max. Adding one
- // to it will cause overflow and an incorrect loop trip count in the vector
- // body. In case of overflow we want to directly jump to the scalar remainder
- // loop.
- Value *BackedgeCount =
- Exp.expandCodeFor(BackedgeTakeCount, BackedgeTakeCount->getType(),
- VectorPH->getTerminator());
- if (BackedgeCount->getType()->isPointerTy())
- BackedgeCount = CastInst::CreatePointerCast(BackedgeCount, IdxTy,
- "backedge.ptrcnt.to.int",
- VectorPH->getTerminator());
- Instruction *CheckBCOverflow =
- CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, BackedgeCount,
- Constant::getAllOnesValue(BackedgeCount->getType()),
- "backedge.overflow", VectorPH->getTerminator());
+ // The loop minimum iterations check below is to ensure the loop has enough
+ // trip count so the generated vector loop will likely be executed and the
+ // preparation and rounding-off costs will likely be worthy.
+ //
+ // The minimum iteration check also covers case where the backedge-taken
+ // count is uint##_max. Adding one to it will cause overflow and an
+ // incorrect loop trip count being generated in the vector body. In this
+ // case we also want to directly jump to the scalar remainder loop.
+ Value *ExitCountValue = Exp.expandCodeFor(ExitCount, ExitCount->getType(),
+ VectorPH->getTerminator());
+ if (ExitCountValue->getType()->isPointerTy())
+ ExitCountValue = CastInst::CreatePointerCast(ExitCountValue, IdxTy,
+ "exitcount.ptrcnt.to.int",
+ VectorPH->getTerminator());
+
+ Instruction *CheckMinIters =
+ CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_ULT, ExitCountValue,
+ ConstantInt::get(ExitCountValue->getType(), VF * UF),
+ "min.iters.check", VectorPH->getTerminator());
// The loop index does not have to start at Zero. Find the original start
// value from the induction PHI node. If we don't have an induction variable
// times the unroll factor (num of SIMD instructions).
Constant *Step = ConstantInt::get(IdxTy, VF * UF);
- // Generate code to check that the loop's trip count that we computed by
- // adding one to the backedge-taken count will not overflow.
+ // Generate code to check that the loop's trip count is not less than the
+ // minimum loop iteration number threshold.
BasicBlock *NewVectorPH =
- VectorPH->splitBasicBlock(VectorPH->getTerminator(), "overflow.checked");
+ VectorPH->splitBasicBlock(VectorPH->getTerminator(), "min.iters.checked");
if (ParentLoop)
ParentLoop->addBasicBlockToLoop(NewVectorPH, *LI);
- ReplaceInstWithInst(
- VectorPH->getTerminator(),
- BranchInst::Create(ScalarPH, NewVectorPH, CheckBCOverflow));
+ ReplaceInstWithInst(VectorPH->getTerminator(),
+ BranchInst::Create(ScalarPH, NewVectorPH, CheckMinIters));
VectorPH = NewVectorPH;
// This is the IR builder that we use to add all of the logic for bypassing
--- /dev/null
+; RUN: opt %s -loop-vectorize -force-vector-interleave=1 -force-vector-width=4 -S | FileCheck %s
+; RUN: opt %s -loop-vectorize -force-vector-interleave=2 -force-vector-width=4 -S | FileCheck %s -check-prefix=UNROLL
+
+target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
+target triple = "x86_64-unknown-linux-gnu"
+
+@b = common global [1000 x i32] zeroinitializer, align 16
+@c = common global [1000 x i32] zeroinitializer, align 16
+@a = common global [1000 x i32] zeroinitializer, align 16
+
+; Generate min.iters.check to skip the vector loop and jump to scalar.ph directly when loop iteration number is less than VF * UF.
+; CHECK-LABEL: foo(
+; CHECK: %min.iters.check = icmp ult i64 %N, 4
+; CHECK: br i1 %min.iters.check, label %scalar.ph, label %min.iters.checked
+; UNROLL-LABEL: foo(
+; UNROLL: %min.iters.check = icmp ult i64 %N, 8
+; UNROLL: br i1 %min.iters.check, label %scalar.ph, label %min.iters.checked
+
+define void @foo(i64 %N) {
+entry:
+ %cmp.8 = icmp sgt i64 %N, 0
+ br i1 %cmp.8, label %for.body.preheader, label %for.end
+
+for.body.preheader: ; preds = %entry
+ br label %for.body
+
+for.body: ; preds = %for.body, %for.body.preheader
+ %i.09 = phi i64 [ %inc, %for.body ], [ 0, %for.body.preheader ]
+ %arrayidx = getelementptr inbounds [1000 x i32], [1000 x i32]* @b, i64 0, i64 %i.09
+ %tmp = load i32, i32* %arrayidx, align 4
+ %arrayidx1 = getelementptr inbounds [1000 x i32], [1000 x i32]* @c, i64 0, i64 %i.09
+ %tmp1 = load i32, i32* %arrayidx1, align 4
+ %add = add nsw i32 %tmp1, %tmp
+ %arrayidx2 = getelementptr inbounds [1000 x i32], [1000 x i32]* @a, i64 0, i64 %i.09
+ store i32 %add, i32* %arrayidx2, align 4
+ %inc = add nuw nsw i64 %i.09, 1
+ %exitcond = icmp eq i64 %inc, %N
+ br i1 %exitcond, label %for.end.loopexit, label %for.body
+
+for.end.loopexit: ; preds = %for.body
+ br label %for.end
+
+for.end: ; preds = %for.end.loopexit, %entry
+ ret void
+}