assert(!HexagonMCInstrInfo::isBundle(HMB));
uint64_t Binary;
+ // Compound instructions are limited to using registers 0-7 and 16-23
+ // and here we make a map 16-23 to 8-15 so they can be correctly encoded.
+ static unsigned RegMap[8] = {Hexagon::R8, Hexagon::R9, Hexagon::R10,
+ Hexagon::R11, Hexagon::R12, Hexagon::R13,
+ Hexagon::R14, Hexagon::R15};
+
// Pseudo instructions don't get encoded and shouldn't be here
// in the first place!
assert(!HexagonMCInstrInfo::getDesc(MCII, HMB).isPseudo() &&
" `" << HexagonMCInstrInfo::getName(MCII, HMB) << "'"
"\n");
+ if (llvm::HexagonMCInstrInfo::getType(MCII, HMB) == HexagonII::TypeCOMPOUND) {
+ for (unsigned i = 0; i < HMB.getNumOperands(); ++i)
+ if (HMB.getOperand(i).isReg()) {
+ unsigned Reg =
+ MCT.getRegisterInfo()->getEncodingValue(HMB.getOperand(i).getReg());
+ if ((Reg <= 23) && (Reg >= 16))
+ HMB.getOperand(i).setReg(RegMap[Reg - 16]);
+ }
+ }
+
if (HexagonMCInstrInfo::isNewValue(MCII, HMB)) {
// Calculate the new value distance to the associated producer
MCOperand &MCO =
SrcReg = MI.getOperand(1).getReg();
if ((Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
HexagonMCInstrInfo::isIntRegForSubInst(SrcReg) &&
- MI.getOperand(2).isImm() && ((isUInt<5>(MI.getOperand(2).getImm())) ||
- (MI.getOperand(2).getImm() == -1)))
+ (HexagonMCInstrInfo::inRange<5>(MI, 2) ||
+ HexagonMCInstrInfo::minConstant(MI, 2) == -1))
return HexagonII::HCG_A;
break;
case Hexagon::A2_tfr:
return false;
// Rd = #u6
DstReg = MI.getOperand(0).getReg();
- if (MI.getOperand(1).isImm() && MI.getOperand(1).getImm() <= 63 &&
- MI.getOperand(1).getImm() >= 0 &&
+ if (HexagonMCInstrInfo::minConstant(MI, 1) <= 63 &&
+ HexagonMCInstrInfo::minConstant(MI, 1) >= 0 &&
HexagonMCInstrInfo::isIntRegForSubInst(DstReg))
return HexagonII::HCG_A;
break;
DstReg = MI.getOperand(0).getReg();
Src1Reg = MI.getOperand(1).getReg();
if ((Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
- MI.getOperand(2).isImm() &&
HexagonMCInstrInfo::isIntRegForSubInst(Src1Reg) &&
- (MI.getOperand(2).getImm() == 0))
+ HexagonMCInstrInfo::minConstant(MI, 2) == 0)
return HexagonII::HCG_A;
break;
// The fact that .new form is used pretty much guarantees
MCInst *CompoundInsn = 0;
unsigned compoundOpcode;
MCOperand Rs, Rt;
+ int64_t Value;
+ bool Success;
switch (L.getOpcode()) {
default:
case Hexagon::C2_cmpeqi:
DEBUG(dbgs() << "CX: C2_cmpeqi\n");
- if (L.getOperand(2).getImm() == -1)
+ Success = L.getOperand(2).getExpr()->evaluateAsAbsolute(Value);
+ (void)Success;
+ assert(Success);
+ if (Value == -1)
compoundOpcode = cmpeqn1BitOpcode[getCompoundOp(R)];
else
compoundOpcode = cmpeqiBitOpcode[getCompoundOp(R)];
CompoundInsn = new (Context) MCInst;
CompoundInsn->setOpcode(compoundOpcode);
CompoundInsn->addOperand(Rs);
- if (L.getOperand(2).getImm() != -1)
+ if (Value != -1)
CompoundInsn->addOperand(L.getOperand(2));
CompoundInsn->addOperand(R.getOperand(1));
break;
case Hexagon::C2_cmpgti:
DEBUG(dbgs() << "CX: C2_cmpgti\n");
- if (L.getOperand(2).getImm() == -1)
+ Success = L.getOperand(2).getExpr()->evaluateAsAbsolute(Value);
+ (void)Success;
+ assert(Success);
+ if (Value == -1)
compoundOpcode = cmpgtn1BitOpcode[getCompoundOp(R)];
else
compoundOpcode = cmpgtiBitOpcode[getCompoundOp(R)];
CompoundInsn = new (Context) MCInst;
CompoundInsn->setOpcode(compoundOpcode);
CompoundInsn->addOperand(Rs);
- if (L.getOperand(2).getImm() != -1)
+ if (Value != -1)
CompoundInsn->addOperand(L.getOperand(2));
CompoundInsn->addOperand(R.getOperand(1));
break;