}
}
+unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
+ CaseClusterIt First,
+ CaseClusterIt Last) {
+ return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
+ if (X.Weight != CC.Weight)
+ return X.Weight > CC.Weight;
+
+ // Ties are broken by comparing the case value.
+ return X.Low->getValue().slt(CC.Low->getValue());
+ });
+}
+
void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
const SwitchWorkListItem &W,
Value *Cond,
RightWeight += (--FirstRight)->Weight;
I++;
}
+
+ for (;;) {
+ // Our binary search tree differs from a typical BST in that ours can have up
+ // to three values in each leaf. The pivot selection above doesn't take that
+ // into account, which means the tree might require more nodes and be less
+ // efficient. We compensate for this here.
+
+ unsigned NumLeft = LastLeft - W.FirstCluster + 1;
+ unsigned NumRight = W.LastCluster - FirstRight + 1;
+
+ if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
+ // If one side has less than 3 clusters, and the other has more than 3,
+ // consider taking a cluster from the other side.
+
+ if (NumLeft < NumRight) {
+ // Consider moving the first cluster on the right to the left side.
+ CaseCluster &CC = *FirstRight;
+ unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
+ unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
+ if (LeftSideRank <= RightSideRank) {
+ // Moving the cluster to the left does not demote it.
+ ++LastLeft;
+ ++FirstRight;
+ continue;
+ }
+ } else {
+ assert(NumRight < NumLeft);
+ // Consider moving the last element on the left to the right side.
+ CaseCluster &CC = *LastLeft;
+ unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
+ unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
+ if (RightSideRank <= LeftSideRank) {
+ // Moving the cluster to the right does not demot it.
+ --LastLeft;
+ --FirstRight;
+ continue;
+ }
+ }
+ }
+ break;
+ }
+
assert(LastLeft + 1 == FirstRight);
assert(LastLeft >= W.FirstCluster);
assert(FirstRight <= W.LastCluster);
i32 30, label %bb3
i32 40, label %bb4
i32 50, label %bb5
+ i32 60, label %bb6
+ i32 70, label %bb6
], !prof !4
bb0: tail call void @g(i32 0) br label %return
bb1: tail call void @g(i32 1) br label %return
bb3: tail call void @g(i32 3) br label %return
bb4: tail call void @g(i32 4) br label %return
bb5: tail call void @g(i32 5) br label %return
+bb6: tail call void @g(i32 6) br label %return
+bb7: tail call void @g(i32 7) br label %return
return: ret void
-; To balance the tree by weight, the pivot is shifted to the right, moving hot
-; cases closer to the root.
+; Without branch probabilities, the pivot would be 40, since that would yield
+; equal-sized sub-trees. When taking weights into account, case 70 becomes the
+; pivot. Since there is room for 3 cases in a leaf, cases 50 and 60 are also
+; included in the right-hand side because that doesn't reduce their rank.
+
; CHECK-LABEL: left_leaning_weight_balanced_tree
; CHECK-NOT: cmpl
-; CHECK: cmpl $39
+; CHECK: cmpl $49
+}
+
+!4 = !{!"branch_weights", i32 1, i32 10, i32 1, i32 1, i32 1, i32 1, i32 1, i32 1, i32 1000}
+
+
+define void @left_leaning_weight_balanced_tree2(i32 %x) {
+entry:
+ switch i32 %x, label %return [
+ i32 0, label %bb0
+ i32 10, label %bb1
+ i32 20, label %bb2
+ i32 30, label %bb3
+ i32 40, label %bb4
+ i32 50, label %bb5
+ i32 60, label %bb6
+ i32 70, label %bb6
+ ], !prof !5
+bb0: tail call void @g(i32 0) br label %return
+bb1: tail call void @g(i32 1) br label %return
+bb2: tail call void @g(i32 2) br label %return
+bb3: tail call void @g(i32 3) br label %return
+bb4: tail call void @g(i32 4) br label %return
+bb5: tail call void @g(i32 5) br label %return
+bb6: tail call void @g(i32 6) br label %return
+bb7: tail call void @g(i32 7) br label %return
+return: ret void
+
+; Same as the previous test, except case 50 has higher rank to the left than it
+; would have on the right. Case 60 would have the same rank on both sides, so is
+; moved into the leaf.
+
+; CHECK-LABEL: left_leaning_weight_balanced_tree2
+; CHECK-NOT: cmpl
+; CHECK: cmpl $59
+}
+
+!5 = !{!"branch_weights", i32 1, i32 10, i32 1, i32 1, i32 1, i32 1, i32 90, i32 70, i32 1000}
+
+
+define void @right_leaning_weight_balanced_tree(i32 %x) {
+entry:
+ switch i32 %x, label %return [
+ i32 0, label %bb0
+ i32 10, label %bb1
+ i32 20, label %bb2
+ i32 30, label %bb3
+ i32 40, label %bb4
+ i32 50, label %bb5
+ i32 60, label %bb6
+ i32 70, label %bb6
+ ], !prof !6
+bb0: tail call void @g(i32 0) br label %return
+bb1: tail call void @g(i32 1) br label %return
+bb2: tail call void @g(i32 2) br label %return
+bb3: tail call void @g(i32 3) br label %return
+bb4: tail call void @g(i32 4) br label %return
+bb5: tail call void @g(i32 5) br label %return
+bb6: tail call void @g(i32 6) br label %return
+bb7: tail call void @g(i32 7) br label %return
+return: ret void
+
+; Analogous to left_leaning_weight_balanced_tree.
+
+; CHECK-LABEL: right_leaning_weight_balanced_tree
+; CHECK-NOT: cmpl
+; CHECK: cmpl $19
}
-!4 = !{!"branch_weights", i32 1, i32 10, i32 1, i32 1, i32 1, i32 10, i32 10}
+!6 = !{!"branch_weights", i32 1, i32 1000, i32 1, i32 1, i32 1, i32 1, i32 1, i32 1, i32 10}
define void @jump_table_affects_balance(i32 %x) {