/*----------------------------------------------------------------*/
-static int find_highest_key(struct ro_spine *s, dm_block_t block,
- uint64_t *result_key, dm_block_t *next_block)
+static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest,
+ uint64_t *result_key, dm_block_t *next_block)
{
int i, r;
uint32_t flags;
else
i--;
- *result_key = le64_to_cpu(ro_node(s)->keys[i]);
+ if (find_highest)
+ *result_key = le64_to_cpu(ro_node(s)->keys[i]);
+ else
+ *result_key = le64_to_cpu(ro_node(s)->keys[0]);
+
if (next_block || flags & INTERNAL_NODE)
block = value64(ro_node(s), i);
return 0;
}
-int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
- uint64_t *result_keys)
+static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root,
+ bool find_highest, uint64_t *result_keys)
{
int r = 0, count = 0, level;
struct ro_spine spine;
init_ro_spine(&spine, info);
for (level = 0; level < info->levels; level++) {
- r = find_highest_key(&spine, root, result_keys + level,
- level == info->levels - 1 ? NULL : &root);
+ r = find_key(&spine, root, find_highest, result_keys + level,
+ level == info->levels - 1 ? NULL : &root);
if (r == -ENODATA) {
r = 0;
break;
return r ? r : count;
}
+
+int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *result_keys)
+{
+ return dm_btree_find_key(info, root, true, result_keys);
+}
EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
+int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *result_keys)
+{
+ return dm_btree_find_key(info, root, false, result_keys);
+}
+EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key);
+
+/*----------------------------------------------------------------*/
+
/*
* FIXME: We shouldn't use a recursive algorithm when we have limited stack
* space. Also this only works for single level trees.
int dm_btree_remove(struct dm_btree_info *info, dm_block_t root,
uint64_t *keys, dm_block_t *new_root);
+/*
+ * Returns < 0 on failure. Otherwise the number of key entries that have
+ * been filled out. Remember trees can have zero entries, and as such have
+ * no lowest key.
+ */
+int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root,
+ uint64_t *result_keys);
+
/*
* Returns < 0 on failure. Otherwise the number of key entries that have
* been filled out. Remember trees can have zero entries, and as such have