+++ /dev/null
-//===-- MSchedGraph.cpp - Scheduling Graph ----------------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// A graph class for dependencies
-//
-//===----------------------------------------------------------------------===//
-#define DEBUG_TYPE "ModuloSched"
-
-#include "MSchedGraph.h"
-#include "../../Target/SparcV9/SparcV9RegisterInfo.h"
-#include "llvm/CodeGen/MachineBasicBlock.h"
-#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Support/Debug.h"
-#include <cstdlib>
-#include <algorithm>
-using namespace llvm;
-
-MSchedGraphNode::MSchedGraphNode(const MachineInstr* inst,
- MSchedGraph *graph,
- unsigned late, bool isBranch)
- : Inst(inst), Parent(graph), latency(late), isBranchInstr(isBranch) {
-
- //Add to the graph
- graph->addNode(inst, this);
-}
-
-void MSchedGraphNode::print(std::ostream &os) const {
- os << "MSchedGraphNode: Inst=" << *Inst << ", latency= " << latency << "\n";
-}
-
-MSchedGraphEdge MSchedGraphNode::getInEdge(MSchedGraphNode *pred) {
- //Loop over all the successors of our predecessor
- //return the edge the corresponds to this in edge
- for (MSchedGraphNode::succ_iterator I = pred->succ_begin(),
- E = pred->succ_end(); I != E; ++I) {
- if (*I == this)
- return I.getEdge();
- }
- assert(0 && "Should have found edge between this node and its predecessor!");
- abort();
-}
-
-unsigned MSchedGraphNode::getInEdgeNum(MSchedGraphNode *pred) {
- //Loop over all the successors of our predecessor
- //return the edge the corresponds to this in edge
- int count = 0;
- for(MSchedGraphNode::succ_iterator I = pred->succ_begin(), E = pred->succ_end();
- I != E; ++I) {
- if(*I == this)
- return count;
- count++;
- }
- assert(0 && "Should have found edge between this node and its predecessor!");
- abort();
-}
-bool MSchedGraphNode::isSuccessor(MSchedGraphNode *succ) {
- for(succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
- if(*I == succ)
- return true;
- return false;
-}
-
-
-bool MSchedGraphNode::isPredecessor(MSchedGraphNode *pred) {
- if(std::find( Predecessors.begin(), Predecessors.end(), pred) != Predecessors.end())
- return true;
- else
- return false;
-}
-
-
-void MSchedGraph::addNode(const MachineInstr *MI,
- MSchedGraphNode *node) {
-
- //Make sure node does not already exist
- assert(GraphMap.find(MI) == GraphMap.end()
- && "New MSchedGraphNode already exists for this instruction");
-
- GraphMap[MI] = node;
-}
-
-MSchedGraph::MSchedGraph(const MachineBasicBlock *bb, const TargetMachine &targ)
- : BB(bb), Target(targ) {
-
- //Make sure BB is not null,
- assert(BB != NULL && "Basic Block is null");
-
- //DEBUG(std::cerr << "Constructing graph for " << bb << "\n");
-
- //Create nodes and edges for this BB
- buildNodesAndEdges();
-}
-
-MSchedGraph::~MSchedGraph () {
- for(MSchedGraph::iterator I = GraphMap.begin(), E = GraphMap.end(); I != E; ++I)
- delete I->second;
-}
-
-void MSchedGraph::buildNodesAndEdges() {
-
- //Get Machine target information for calculating latency
- const TargetInstrInfo *MTI = Target.getInstrInfo();
-
- std::vector<MSchedGraphNode*> memInstructions;
- std::map<int, std::vector<OpIndexNodePair> > regNumtoNodeMap;
- std::map<const Value*, std::vector<OpIndexNodePair> > valuetoNodeMap;
-
- //Save PHI instructions to deal with later
- std::vector<const MachineInstr*> phiInstrs;
-
- //Loop over instructions in MBB and add nodes and edges
- for (MachineBasicBlock::const_iterator MI = BB->begin(), e = BB->end(); MI != e; ++MI) {
- //Get each instruction of machine basic block, get the delay
- //using the op code, create a new node for it, and add to the
- //graph.
-
- MachineOpCode opCode = MI->getOpcode();
- int delay;
-
-#if 0 // FIXME: LOOK INTO THIS
- //Check if subsequent instructions can be issued before
- //the result is ready, if so use min delay.
- if(MTI->hasResultInterlock(MIopCode))
- delay = MTI->minLatency(MIopCode);
- else
-#endif
- //Get delay
- delay = MTI->maxLatency(opCode);
-
- //Create new node for this machine instruction and add to the graph.
- //Create only if not a nop
- if(MTI->isNop(opCode))
- continue;
-
- //Add PHI to phi instruction list to be processed later
- if (opCode == TargetInstrInfo::PHI)
- phiInstrs.push_back(MI);
-
- bool isBranch = false;
-
- //We want to flag the branch node to treat it special
- if(MTI->isBranch(opCode))
- isBranch = true;
-
- //Node is created and added to the graph automatically
- MSchedGraphNode *node = new MSchedGraphNode(MI, this, delay, isBranch);
-
- DEBUG(std::cerr << "Created Node: " << *node << "\n");
-
- //Check OpCode to keep track of memory operations to add memory dependencies later.
- if(MTI->isLoad(opCode) || MTI->isStore(opCode))
- memInstructions.push_back(node);
-
- //Loop over all operands, and put them into the register number to
- //graph node map for determining dependencies
- //If an operands is a use/def, we have an anti dependence to itself
- for(unsigned i=0; i < MI->getNumOperands(); ++i) {
- //Get Operand
- const MachineOperand &mOp = MI->getOperand(i);
-
- //Check if it has an allocated register
- if(mOp.hasAllocatedReg()) {
- int regNum = mOp.getReg();
-
- if(regNum != SparcV9::g0) {
- //Put into our map
- regNumtoNodeMap[regNum].push_back(std::make_pair(i, node));
- }
- continue;
- }
-
-
- //Add virtual registers dependencies
- //Check if any exist in the value map already and create dependencies
- //between them.
- if(mOp.getType() == MachineOperand::MO_VirtualRegister || mOp.getType() == MachineOperand::MO_CCRegister) {
-
- //Make sure virtual register value is not null
- assert((mOp.getVRegValue() != NULL) && "Null value is defined");
-
- //Check if this is a read operation in a phi node, if so DO NOT PROCESS
- if(mOp.isUse() && (opCode == TargetInstrInfo::PHI))
- continue;
-
-
- if (const Value* srcI = mOp.getVRegValue()) {
-
- //Find value in the map
- std::map<const Value*, std::vector<OpIndexNodePair> >::iterator V
- = valuetoNodeMap.find(srcI);
-
- //If there is something in the map already, add edges from
- //those instructions
- //to this one we are processing
- if(V != valuetoNodeMap.end()) {
- addValueEdges(V->second, node, mOp.isUse(), mOp.isDef());
-
- //Add to value map
- V->second.push_back(std::make_pair(i,node));
- }
- //Otherwise put it in the map
- else
- //Put into value map
- valuetoNodeMap[mOp.getVRegValue()].push_back(std::make_pair(i, node));
- }
- }
- }
- }
- addMemEdges(memInstructions);
- addMachRegEdges(regNumtoNodeMap);
-
- //Finally deal with PHI Nodes and Value*
- for(std::vector<const MachineInstr*>::iterator I = phiInstrs.begin(), E = phiInstrs.end(); I != E; ++I) {
- //Get Node for this instruction
- MSchedGraphNode *node = find(*I)->second;
-
- //Loop over operands for this instruction and add value edges
- for(unsigned i=0; i < (*I)->getNumOperands(); ++i) {
- //Get Operand
- const MachineOperand &mOp = (*I)->getOperand(i);
- if((mOp.getType() == MachineOperand::MO_VirtualRegister || mOp.getType() == MachineOperand::MO_CCRegister) && mOp.isUse()) {
- //find the value in the map
- if (const Value* srcI = mOp.getVRegValue()) {
-
- //Find value in the map
- std::map<const Value*, std::vector<OpIndexNodePair> >::iterator V
- = valuetoNodeMap.find(srcI);
-
- //If there is something in the map already, add edges from
- //those instructions
- //to this one we are processing
- if(V != valuetoNodeMap.end()) {
- addValueEdges(V->second, node, mOp.isUse(), mOp.isDef(), 1);
- }
- }
- }
- }
- }
-}
-
-void MSchedGraph::addValueEdges(std::vector<OpIndexNodePair> &NodesInMap,
- MSchedGraphNode *destNode, bool nodeIsUse,
- bool nodeIsDef, int diff) {
-
- for(std::vector<OpIndexNodePair>::iterator I = NodesInMap.begin(),
- E = NodesInMap.end(); I != E; ++I) {
-
- //Get node in vectors machine operand that is the same value as node
- MSchedGraphNode *srcNode = I->second;
- MachineOperand mOp = srcNode->getInst()->getOperand(I->first);
-
- //Node is a Def, so add output dep.
- if(nodeIsDef) {
- if(mOp.isUse())
- srcNode->addOutEdge(destNode, MSchedGraphEdge::ValueDep,
- MSchedGraphEdge::AntiDep, diff);
- if(mOp.isDef())
- srcNode->addOutEdge(destNode, MSchedGraphEdge::ValueDep,
- MSchedGraphEdge::OutputDep, diff);
-
- }
- if(nodeIsUse) {
- if(mOp.isDef())
- srcNode->addOutEdge(destNode, MSchedGraphEdge::ValueDep,
- MSchedGraphEdge::TrueDep, diff);
- }
- }
-}
-
-
-void MSchedGraph::addMachRegEdges(std::map<int, std::vector<OpIndexNodePair> >& regNumtoNodeMap) {
- //Loop over all machine registers in the map, and add dependencies
- //between the instructions that use it
- typedef std::map<int, std::vector<OpIndexNodePair> > regNodeMap;
- for(regNodeMap::iterator I = regNumtoNodeMap.begin(); I != regNumtoNodeMap.end(); ++I) {
- //Get the register number
- int regNum = (*I).first;
-
- //Get Vector of nodes that use this register
- std::vector<OpIndexNodePair> Nodes = (*I).second;
-
- //Loop over nodes and determine the dependence between the other
- //nodes in the vector
- for(unsigned i =0; i < Nodes.size(); ++i) {
-
- //Get src node operator index that uses this machine register
- int srcOpIndex = Nodes[i].first;
-
- //Get the actual src Node
- MSchedGraphNode *srcNode = Nodes[i].second;
-
- //Get Operand
- const MachineOperand &srcMOp = srcNode->getInst()->getOperand(srcOpIndex);
-
- bool srcIsUseandDef = srcMOp.isDef() && srcMOp.isUse();
- bool srcIsUse = srcMOp.isUse() && !srcMOp.isDef();
-
-
- //Look at all instructions after this in execution order
- for(unsigned j=i+1; j < Nodes.size(); ++j) {
-
- //Sink node is a write
- if(Nodes[j].second->getInst()->getOperand(Nodes[j].first).isDef()) {
- //Src only uses the register (read)
- if(srcIsUse)
- srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
- MSchedGraphEdge::AntiDep);
-
- else if(srcIsUseandDef) {
- srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
- MSchedGraphEdge::AntiDep);
-
- srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
- MSchedGraphEdge::OutputDep);
- }
- else
- srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
- MSchedGraphEdge::OutputDep);
- }
- //Dest node is a read
- else {
- if(!srcIsUse || srcIsUseandDef)
- srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
- MSchedGraphEdge::TrueDep);
- }
-
- }
-
- //Look at all the instructions before this one since machine registers
- //could live across iterations.
- for(unsigned j = 0; j < i; ++j) {
- //Sink node is a write
- if(Nodes[j].second->getInst()->getOperand(Nodes[j].first).isDef()) {
- //Src only uses the register (read)
- if(srcIsUse)
- srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
- MSchedGraphEdge::AntiDep, 1);
-
- else if(srcIsUseandDef) {
- srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
- MSchedGraphEdge::AntiDep, 1);
-
- srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
- MSchedGraphEdge::OutputDep, 1);
- }
- else
- srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
- MSchedGraphEdge::OutputDep, 1);
- }
- //Dest node is a read
- else {
- if(!srcIsUse || srcIsUseandDef)
- srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
- MSchedGraphEdge::TrueDep,1 );
- }
-
-
- }
-
- }
-
- }
-
-}
-
-void MSchedGraph::addMemEdges(const std::vector<MSchedGraphNode*>& memInst) {
-
- //Get Target machine instruction info
- const TargetInstrInfo *TMI = Target.getInstrInfo();
-
- //Loop over all memory instructions in the vector
- //Knowing that they are in execution, add true, anti, and output dependencies
- for (unsigned srcIndex = 0; srcIndex < memInst.size(); ++srcIndex) {
-
- //Get the machine opCode to determine type of memory instruction
- MachineOpCode srcNodeOpCode = memInst[srcIndex]->getInst()->getOpcode();
-
- //All instructions after this one in execution order have an iteration delay of 0
- for(unsigned destIndex = srcIndex + 1; destIndex < memInst.size(); ++destIndex) {
-
- //source is a Load, so add anti-dependencies (store after load)
- if(TMI->isLoad(srcNodeOpCode))
- if(TMI->isStore(memInst[destIndex]->getInst()->getOpcode()))
- memInst[srcIndex]->addOutEdge(memInst[destIndex],
- MSchedGraphEdge::MemoryDep,
- MSchedGraphEdge::AntiDep);
-
- //If source is a store, add output and true dependencies
- if(TMI->isStore(srcNodeOpCode)) {
- if(TMI->isStore(memInst[destIndex]->getInst()->getOpcode()))
- memInst[srcIndex]->addOutEdge(memInst[destIndex],
- MSchedGraphEdge::MemoryDep,
- MSchedGraphEdge::OutputDep);
- else
- memInst[srcIndex]->addOutEdge(memInst[destIndex],
- MSchedGraphEdge::MemoryDep,
- MSchedGraphEdge::TrueDep);
- }
- }
-
- //All instructions before the src in execution order have an iteration delay of 1
- for(unsigned destIndex = 0; destIndex < srcIndex; ++destIndex) {
- //source is a Load, so add anti-dependencies (store after load)
- if(TMI->isLoad(srcNodeOpCode))
- if(TMI->isStore(memInst[destIndex]->getInst()->getOpcode()))
- memInst[srcIndex]->addOutEdge(memInst[destIndex],
- MSchedGraphEdge::MemoryDep,
- MSchedGraphEdge::AntiDep, 1);
- if(TMI->isStore(srcNodeOpCode)) {
- if(TMI->isStore(memInst[destIndex]->getInst()->getOpcode()))
- memInst[srcIndex]->addOutEdge(memInst[destIndex],
- MSchedGraphEdge::MemoryDep,
- MSchedGraphEdge::OutputDep, 1);
- else
- memInst[srcIndex]->addOutEdge(memInst[destIndex],
- MSchedGraphEdge::MemoryDep,
- MSchedGraphEdge::TrueDep, 1);
- }
-
- }
-
- }
-}
+++ /dev/null
-//===-- ModuloScheduling.cpp - ModuloScheduling ----------------*- C++ -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file was developed by the LLVM research group and is distributed under
-// the University of Illinois Open Source License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This ModuloScheduling pass is based on the Swing Modulo Scheduling
-// algorithm.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "ModuloSched"
-
-#include "ModuloScheduling.h"
-#include "llvm/Instructions.h"
-#include "llvm/Function.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/Passes.h"
-#include "llvm/Support/CFG.h"
-#include "llvm/Target/TargetSchedInfo.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/GraphWriter.h"
-#include "llvm/ADT/StringExtras.h"
-#include <cmath>
-#include <algorithm>
-#include <fstream>
-#include <sstream>
-#include <utility>
-#include <vector>
-#include "../../Target/SparcV9/MachineCodeForInstruction.h"
-#include "../../Target/SparcV9/SparcV9TmpInstr.h"
-#include "../../Target/SparcV9/SparcV9Internals.h"
-#include "../../Target/SparcV9/SparcV9RegisterInfo.h"
-using namespace llvm;
-
-/// Create ModuloSchedulingPass
-///
-FunctionPass *llvm::createModuloSchedulingPass(TargetMachine & targ) {
- DEBUG(std::cerr << "Created ModuloSchedulingPass\n");
- return new ModuloSchedulingPass(targ);
-}
-
-
-//Graph Traits for printing out the dependence graph
-template<typename GraphType>
-static void WriteGraphToFile(std::ostream &O, const std::string &GraphName,
- const GraphType >) {
- std::string Filename = GraphName + ".dot";
- O << "Writing '" << Filename << "'...";
- std::ofstream F(Filename.c_str());
-
- if (F.good())
- WriteGraph(F, GT);
- else
- O << " error opening file for writing!";
- O << "\n";
-};
-
-//Graph Traits for printing out the dependence graph
-namespace llvm {
-
- template<>
- struct DOTGraphTraits<MSchedGraph*> : public DefaultDOTGraphTraits {
- static std::string getGraphName(MSchedGraph *F) {
- return "Dependence Graph";
- }
-
- static std::string getNodeLabel(MSchedGraphNode *Node, MSchedGraph *Graph) {
- if (Node->getInst()) {
- std::stringstream ss;
- ss << *(Node->getInst());
- return ss.str(); //((MachineInstr*)Node->getInst());
- }
- else
- return "No Inst";
- }
- static std::string getEdgeSourceLabel(MSchedGraphNode *Node,
- MSchedGraphNode::succ_iterator I) {
- //Label each edge with the type of dependence
- std::string edgelabel = "";
- switch (I.getEdge().getDepOrderType()) {
-
- case MSchedGraphEdge::TrueDep:
- edgelabel = "True";
- break;
-
- case MSchedGraphEdge::AntiDep:
- edgelabel = "Anti";
- break;
-
- case MSchedGraphEdge::OutputDep:
- edgelabel = "Output";
- break;
-
- default:
- edgelabel = "Unknown";
- break;
- }
-
- //FIXME
- int iteDiff = I.getEdge().getIteDiff();
- std::string intStr = "(IteDiff: ";
- intStr += itostr(iteDiff);
-
- intStr += ")";
- edgelabel += intStr;
-
- return edgelabel;
- }
- };
-}
-
-/// ModuloScheduling::runOnFunction - main transformation entry point
-/// The Swing Modulo Schedule algorithm has three basic steps:
-/// 1) Computation and Analysis of the dependence graph
-/// 2) Ordering of the nodes
-/// 3) Scheduling
-///
-bool ModuloSchedulingPass::runOnFunction(Function &F) {
-
- bool Changed = false;
-
- DEBUG(std::cerr << "Creating ModuloSchedGraph for each valid BasicBlock in " + F.getName() + "\n");
-
- //Get MachineFunction
- MachineFunction &MF = MachineFunction::get(&F);
-
- //Worklist
- std::vector<MachineBasicBlock*> Worklist;
-
- //Iterate over BasicBlocks and put them into our worklist if they are valid
- for (MachineFunction::iterator BI = MF.begin(); BI != MF.end(); ++BI)
- if(MachineBBisValid(BI))
- Worklist.push_back(&*BI);
-
- DEBUG(if(Worklist.size() == 0) std::cerr << "No single basic block loops in function to ModuloSchedule\n");
-
- //Iterate over the worklist and perform scheduling
- for(std::vector<MachineBasicBlock*>::iterator BI = Worklist.begin(),
- BE = Worklist.end(); BI != BE; ++BI) {
-
- MSchedGraph *MSG = new MSchedGraph(*BI, target);
-
- //Write Graph out to file
- DEBUG(WriteGraphToFile(std::cerr, F.getName(), MSG));
-
- //Print out BB for debugging
- DEBUG(std::cerr << "ModuloScheduling BB: \n"; (*BI)->print(std::cerr));
-
- //Calculate Resource II
- int ResMII = calculateResMII(*BI);
-
- //Calculate Recurrence II
- int RecMII = calculateRecMII(MSG, ResMII);
-
- //Our starting initiation interval is the maximum of RecMII and ResMII
- II = std::max(RecMII, ResMII);
-
- //Print out II, RecMII, and ResMII
- DEBUG(std::cerr << "II starts out as " << II << " ( RecMII=" << RecMII << "and ResMII=" << ResMII << "\n");
-
- //Calculate Node Properties
- calculateNodeAttributes(MSG, ResMII);
-
- //Dump node properties if in debug mode
- DEBUG(for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(),
- E = nodeToAttributesMap.end(); I !=E; ++I) {
- std::cerr << "Node: " << *(I->first) << " ASAP: " << I->second.ASAP << " ALAP: "
- << I->second.ALAP << " MOB: " << I->second.MOB << " Depth: " << I->second.depth
- << " Height: " << I->second.height << "\n";
- });
-
- //Put nodes in order to schedule them
- computePartialOrder();
-
- //Dump out partial order
- DEBUG(for(std::vector<std::vector<MSchedGraphNode*> >::iterator I = partialOrder.begin(),
- E = partialOrder.end(); I !=E; ++I) {
- std::cerr << "Start set in PO\n";
- for(std::vector<MSchedGraphNode*>::iterator J = I->begin(), JE = I->end(); J != JE; ++J)
- std::cerr << "PO:" << **J << "\n";
- });
-
- //Place nodes in final order
- orderNodes();
-
- //Dump out order of nodes
- DEBUG(for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(), E = FinalNodeOrder.end(); I != E; ++I) {
- std::cerr << "FO:" << **I << "\n";
- });
-
- //Finally schedule nodes
- computeSchedule();
-
- //Print out final schedule
- DEBUG(schedule.print(std::cerr));
-
-
- //Final scheduling step is to reconstruct the loop
- reconstructLoop(*BI);
-
- //Print out new loop
-
-
- //Clear out our maps for the next basic block that is processed
- nodeToAttributesMap.clear();
- partialOrder.clear();
- recurrenceList.clear();
- FinalNodeOrder.clear();
- schedule.clear();
-
- //Clean up. Nuke old MachineBB and llvmBB
- //BasicBlock *llvmBB = (BasicBlock*) (*BI)->getBasicBlock();
- //Function *parent = (Function*) llvmBB->getParent();
- //Should't std::find work??
- //parent->getBasicBlockList().erase(std::find(parent->getBasicBlockList().begin(), parent->getBasicBlockList().end(), *llvmBB));
- //parent->getBasicBlockList().erase(llvmBB);
-
- //delete(llvmBB);
- //delete(*BI);
- }
-
-
- return Changed;
-}
-
-
-/// This function checks if a Machine Basic Block is valid for modulo
-/// scheduling. This means that it has no control flow (if/else or
-/// calls) in the block. Currently ModuloScheduling only works on
-/// single basic block loops.
-bool ModuloSchedulingPass::MachineBBisValid(const MachineBasicBlock *BI) {
-
- bool isLoop = false;
-
- //Check first if its a valid loop
- for(succ_const_iterator I = succ_begin(BI->getBasicBlock()),
- E = succ_end(BI->getBasicBlock()); I != E; ++I) {
- if (*I == BI->getBasicBlock()) // has single block loop
- isLoop = true;
- }
-
- if(!isLoop)
- return false;
-
- //Get Target machine instruction info
- const TargetInstrInfo *TMI = target.getInstrInfo();
-
- //Check each instruction and look for calls
- for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
- //Get opcode to check instruction type
- MachineOpCode OC = I->getOpcode();
- if(TMI->isCall(OC))
- return false;
-
- }
- return true;
-}
-
-//ResMII is calculated by determining the usage count for each resource
-//and using the maximum.
-//FIXME: In future there should be a way to get alternative resources
-//for each instruction
-int ModuloSchedulingPass::calculateResMII(const MachineBasicBlock *BI) {
-
- const TargetInstrInfo *mii = target.getInstrInfo();
- const TargetSchedInfo *msi = target.getSchedInfo();
-
- int ResMII = 0;
-
- //Map to keep track of usage count of each resource
- std::map<unsigned, unsigned> resourceUsageCount;
-
- for(MachineBasicBlock::const_iterator I = BI->begin(), E = BI->end(); I != E; ++I) {
-
- //Get resource usage for this instruction
- InstrRUsage rUsage = msi->getInstrRUsage(I->getOpcode());
- std::vector<std::vector<resourceId_t> > resources = rUsage.resourcesByCycle;
-
- //Loop over resources in each cycle and increments their usage count
- for(unsigned i=0; i < resources.size(); ++i)
- for(unsigned j=0; j < resources[i].size(); ++j) {
- if( resourceUsageCount.find(resources[i][j]) == resourceUsageCount.end()) {
- resourceUsageCount[resources[i][j]] = 1;
- }
- else {
- resourceUsageCount[resources[i][j]] = resourceUsageCount[resources[i][j]] + 1;
- }
- }
- }
-
- //Find maximum usage count
-
- //Get max number of instructions that can be issued at once. (FIXME)
- int issueSlots = msi->maxNumIssueTotal;
-
- for(std::map<unsigned,unsigned>::iterator RB = resourceUsageCount.begin(), RE = resourceUsageCount.end(); RB != RE; ++RB) {
-
- //Get the total number of the resources in our cpu
- int resourceNum = CPUResource::getCPUResource(RB->first)->maxNumUsers;
-
- //Get total usage count for this resources
- unsigned usageCount = RB->second;
-
- //Divide the usage count by either the max number we can issue or the number of
- //resources (whichever is its upper bound)
- double finalUsageCount;
- if( resourceNum <= issueSlots)
- finalUsageCount = ceil(1.0 * usageCount / resourceNum);
- else
- finalUsageCount = ceil(1.0 * usageCount / issueSlots);
-
-
- //Only keep track of the max
- ResMII = std::max( (int) finalUsageCount, ResMII);
-
- }
-
- return ResMII;
-
-}
-
-/// calculateRecMII - Calculates the value of the highest recurrence
-/// By value we mean the total latency
-int ModuloSchedulingPass::calculateRecMII(MSchedGraph *graph, int MII) {
- std::vector<MSchedGraphNode*> vNodes;
- //Loop over all nodes in the graph
- for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) {
- findAllReccurrences(I->second, vNodes, MII);
- vNodes.clear();
- }
-
- int RecMII = 0;
-
- for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator I = recurrenceList.begin(), E=recurrenceList.end(); I !=E; ++I) {
- DEBUG(for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) {
- std::cerr << **N << "\n";
- });
- RecMII = std::max(RecMII, I->first);
- }
-
- return MII;
-}
-
-/// calculateNodeAttributes - The following properties are calculated for
-/// each node in the dependence graph: ASAP, ALAP, Depth, Height, and
-/// MOB.
-void ModuloSchedulingPass::calculateNodeAttributes(MSchedGraph *graph, int MII) {
-
- //Loop over the nodes and add them to the map
- for(MSchedGraph::iterator I = graph->begin(), E = graph->end(); I != E; ++I) {
- //Assert if its already in the map
- assert(nodeToAttributesMap.find(I->second) == nodeToAttributesMap.end() && "Node attributes are already in the map");
-
- //Put into the map with default attribute values
- nodeToAttributesMap[I->second] = MSNodeAttributes();
- }
-
- //Create set to deal with reccurrences
- std::set<MSchedGraphNode*> visitedNodes;
-
- //Now Loop over map and calculate the node attributes
- for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
- calculateASAP(I->first, MII, (MSchedGraphNode*) 0);
- visitedNodes.clear();
- }
-
- int maxASAP = findMaxASAP();
- //Calculate ALAP which depends on ASAP being totally calculated
- for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
- calculateALAP(I->first, MII, maxASAP, (MSchedGraphNode*) 0);
- visitedNodes.clear();
- }
-
- //Calculate MOB which depends on ASAP being totally calculated, also do depth and height
- for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
- (I->second).MOB = std::max(0,(I->second).ALAP - (I->second).ASAP);
-
- DEBUG(std::cerr << "MOB: " << (I->second).MOB << " (" << *(I->first) << ")\n");
- calculateDepth(I->first, (MSchedGraphNode*) 0);
- calculateHeight(I->first, (MSchedGraphNode*) 0);
- }
-
-
-}
-
-/// ignoreEdge - Checks to see if this edge of a recurrence should be ignored or not
-bool ModuloSchedulingPass::ignoreEdge(MSchedGraphNode *srcNode, MSchedGraphNode *destNode) {
- if(destNode == 0 || srcNode ==0)
- return false;
-
- bool findEdge = edgesToIgnore.count(std::make_pair(srcNode, destNode->getInEdgeNum(srcNode)));
-
- return findEdge;
-}
-
-
-/// calculateASAP - Calculates the
-int ModuloSchedulingPass::calculateASAP(MSchedGraphNode *node, int MII, MSchedGraphNode *destNode) {
-
- DEBUG(std::cerr << "Calculating ASAP for " << *node << "\n");
-
- //Get current node attributes
- MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
-
- if(attributes.ASAP != -1)
- return attributes.ASAP;
-
- int maxPredValue = 0;
-
- //Iterate over all of the predecessors and find max
- for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
-
- //Only process if we are not ignoring the edge
- if(!ignoreEdge(*P, node)) {
- int predASAP = -1;
- predASAP = calculateASAP(*P, MII, node);
-
- assert(predASAP != -1 && "ASAP has not been calculated");
- int iteDiff = node->getInEdge(*P).getIteDiff();
-
- int currentPredValue = predASAP + (*P)->getLatency() - (iteDiff * MII);
- DEBUG(std::cerr << "pred ASAP: " << predASAP << ", iteDiff: " << iteDiff << ", PredLatency: " << (*P)->getLatency() << ", Current ASAP pred: " << currentPredValue << "\n");
- maxPredValue = std::max(maxPredValue, currentPredValue);
- }
- }
-
- attributes.ASAP = maxPredValue;
-
- DEBUG(std::cerr << "ASAP: " << attributes.ASAP << " (" << *node << ")\n");
-
- return maxPredValue;
-}
-
-
-int ModuloSchedulingPass::calculateALAP(MSchedGraphNode *node, int MII,
- int maxASAP, MSchedGraphNode *srcNode) {
-
- DEBUG(std::cerr << "Calculating ALAP for " << *node << "\n");
-
- MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
-
- if(attributes.ALAP != -1)
- return attributes.ALAP;
-
- if(node->hasSuccessors()) {
-
- //Trying to deal with the issue where the node has successors, but
- //we are ignoring all of the edges to them. So this is my hack for
- //now.. there is probably a more elegant way of doing this (FIXME)
- bool processedOneEdge = false;
-
- //FIXME, set to something high to start
- int minSuccValue = 9999999;
-
- //Iterate over all of the predecessors and fine max
- for(MSchedGraphNode::succ_iterator P = node->succ_begin(),
- E = node->succ_end(); P != E; ++P) {
-
- //Only process if we are not ignoring the edge
- if(!ignoreEdge(node, *P)) {
- processedOneEdge = true;
- int succALAP = -1;
- succALAP = calculateALAP(*P, MII, maxASAP, node);
-
- assert(succALAP != -1 && "Successors ALAP should have been caclulated");
-
- int iteDiff = P.getEdge().getIteDiff();
-
- int currentSuccValue = succALAP - node->getLatency() + iteDiff * MII;
-
- DEBUG(std::cerr << "succ ALAP: " << succALAP << ", iteDiff: " << iteDiff << ", SuccLatency: " << (*P)->getLatency() << ", Current ALAP succ: " << currentSuccValue << "\n");
-
- minSuccValue = std::min(minSuccValue, currentSuccValue);
- }
- }
-
- if(processedOneEdge)
- attributes.ALAP = minSuccValue;
-
- else
- attributes.ALAP = maxASAP;
- }
- else
- attributes.ALAP = maxASAP;
-
- DEBUG(std::cerr << "ALAP: " << attributes.ALAP << " (" << *node << ")\n");
-
- if(attributes.ALAP < 0)
- attributes.ALAP = 0;
-
- return attributes.ALAP;
-}
-
-int ModuloSchedulingPass::findMaxASAP() {
- int maxASAP = 0;
-
- for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(),
- E = nodeToAttributesMap.end(); I != E; ++I)
- maxASAP = std::max(maxASAP, I->second.ASAP);
- return maxASAP;
-}
-
-
-int ModuloSchedulingPass::calculateHeight(MSchedGraphNode *node,MSchedGraphNode *srcNode) {
-
- MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
-
- if(attributes.height != -1)
- return attributes.height;
-
- int maxHeight = 0;
-
- //Iterate over all of the predecessors and find max
- for(MSchedGraphNode::succ_iterator P = node->succ_begin(),
- E = node->succ_end(); P != E; ++P) {
-
-
- if(!ignoreEdge(node, *P)) {
- int succHeight = calculateHeight(*P, node);
-
- assert(succHeight != -1 && "Successors Height should have been caclulated");
-
- int currentHeight = succHeight + node->getLatency();
- maxHeight = std::max(maxHeight, currentHeight);
- }
- }
- attributes.height = maxHeight;
- DEBUG(std::cerr << "Height: " << attributes.height << " (" << *node << ")\n");
- return maxHeight;
-}
-
-
-int ModuloSchedulingPass::calculateDepth(MSchedGraphNode *node,
- MSchedGraphNode *destNode) {
-
- MSNodeAttributes &attributes = nodeToAttributesMap.find(node)->second;
-
- if(attributes.depth != -1)
- return attributes.depth;
-
- int maxDepth = 0;
-
- //Iterate over all of the predecessors and fine max
- for(MSchedGraphNode::pred_iterator P = node->pred_begin(), E = node->pred_end(); P != E; ++P) {
-
- if(!ignoreEdge(*P, node)) {
- int predDepth = -1;
- predDepth = calculateDepth(*P, node);
-
- assert(predDepth != -1 && "Predecessors ASAP should have been caclulated");
-
- int currentDepth = predDepth + (*P)->getLatency();
- maxDepth = std::max(maxDepth, currentDepth);
- }
- }
- attributes.depth = maxDepth;
-
- DEBUG(std::cerr << "Depth: " << attributes.depth << " (" << *node << "*)\n");
- return maxDepth;
-}
-
-
-
-void ModuloSchedulingPass::addReccurrence(std::vector<MSchedGraphNode*> &recurrence, int II, MSchedGraphNode *srcBENode, MSchedGraphNode *destBENode) {
- //Check to make sure that this recurrence is unique
- bool same = false;
-
-
- //Loop over all recurrences already in our list
- for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::iterator R = recurrenceList.begin(), RE = recurrenceList.end(); R != RE; ++R) {
-
- bool all_same = true;
- //First compare size
- if(R->second.size() == recurrence.size()) {
-
- for(std::vector<MSchedGraphNode*>::const_iterator node = R->second.begin(), end = R->second.end(); node != end; ++node) {
- if(std::find(recurrence.begin(), recurrence.end(), *node) == recurrence.end()) {
- all_same = all_same && false;
- break;
- }
- else
- all_same = all_same && true;
- }
- if(all_same) {
- same = true;
- break;
- }
- }
- }
-
- if(!same) {
- srcBENode = recurrence.back();
- destBENode = recurrence.front();
-
- //FIXME
- if(destBENode->getInEdge(srcBENode).getIteDiff() == 0) {
- //DEBUG(std::cerr << "NOT A BACKEDGE\n");
- //find actual backedge HACK HACK
- for(unsigned i=0; i< recurrence.size()-1; ++i) {
- if(recurrence[i+1]->getInEdge(recurrence[i]).getIteDiff() == 1) {
- srcBENode = recurrence[i];
- destBENode = recurrence[i+1];
- break;
- }
-
- }
-
- }
- DEBUG(std::cerr << "Back Edge to Remove: " << *srcBENode << " to " << *destBENode << "\n");
- edgesToIgnore.insert(std::make_pair(srcBENode, destBENode->getInEdgeNum(srcBENode)));
- recurrenceList.insert(std::make_pair(II, recurrence));
- }
-
-}
-
-void ModuloSchedulingPass::findAllReccurrences(MSchedGraphNode *node,
- std::vector<MSchedGraphNode*> &visitedNodes,
- int II) {
-
- if(std::find(visitedNodes.begin(), visitedNodes.end(), node) != visitedNodes.end()) {
- std::vector<MSchedGraphNode*> recurrence;
- bool first = true;
- int delay = 0;
- int distance = 0;
- int RecMII = II; //Starting value
- MSchedGraphNode *last = node;
- MSchedGraphNode *srcBackEdge = 0;
- MSchedGraphNode *destBackEdge = 0;
-
-
-
- for(std::vector<MSchedGraphNode*>::iterator I = visitedNodes.begin(), E = visitedNodes.end();
- I !=E; ++I) {
-
- if(*I == node)
- first = false;
- if(first)
- continue;
-
- delay = delay + (*I)->getLatency();
-
- if(*I != node) {
- int diff = (*I)->getInEdge(last).getIteDiff();
- distance += diff;
- if(diff > 0) {
- srcBackEdge = last;
- destBackEdge = *I;
- }
- }
-
- recurrence.push_back(*I);
- last = *I;
- }
-
-
-
- //Get final distance calc
- distance += node->getInEdge(last).getIteDiff();
-
-
- //Adjust II until we get close to the inequality delay - II*distance <= 0
-
- int value = delay-(RecMII * distance);
- int lastII = II;
- while(value <= 0) {
-
- lastII = RecMII;
- RecMII--;
- value = delay-(RecMII * distance);
- }
-
-
- DEBUG(std::cerr << "Final II for this recurrence: " << lastII << "\n");
- addReccurrence(recurrence, lastII, srcBackEdge, destBackEdge);
- assert(distance != 0 && "Recurrence distance should not be zero");
- return;
- }
-
- for(MSchedGraphNode::succ_iterator I = node->succ_begin(), E = node->succ_end(); I != E; ++I) {
- visitedNodes.push_back(node);
- findAllReccurrences(*I, visitedNodes, II);
- visitedNodes.pop_back();
- }
-}
-
-
-
-
-
-void ModuloSchedulingPass::computePartialOrder() {
-
-
- //Loop over all recurrences and add to our partial order
- //be sure to remove nodes that are already in the partial order in
- //a different recurrence and don't add empty recurrences.
- for(std::set<std::pair<int, std::vector<MSchedGraphNode*> > >::reverse_iterator I = recurrenceList.rbegin(), E=recurrenceList.rend(); I !=E; ++I) {
-
- //Add nodes that connect this recurrence to the previous recurrence
-
- //If this is the first recurrence in the partial order, add all predecessors
- for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) {
-
- }
-
-
- std::vector<MSchedGraphNode*> new_recurrence;
- //Loop through recurrence and remove any nodes already in the partial order
- for(std::vector<MSchedGraphNode*>::const_iterator N = I->second.begin(), NE = I->second.end(); N != NE; ++N) {
- bool found = false;
- for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) {
- if(std::find(PO->begin(), PO->end(), *N) != PO->end())
- found = true;
- }
- if(!found) {
- new_recurrence.push_back(*N);
-
- if(partialOrder.size() == 0)
- //For each predecessors, add it to this recurrence ONLY if it is not already in it
- for(MSchedGraphNode::pred_iterator P = (*N)->pred_begin(),
- PE = (*N)->pred_end(); P != PE; ++P) {
-
- //Check if we are supposed to ignore this edge or not
- if(!ignoreEdge(*P, *N))
- //Check if already in this recurrence
- if(std::find(I->second.begin(), I->second.end(), *P) == I->second.end()) {
- //Also need to check if in partial order
- bool predFound = false;
- for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PEND = partialOrder.end(); PO != PEND; ++PO) {
- if(std::find(PO->begin(), PO->end(), *P) != PO->end())
- predFound = true;
- }
-
- if(!predFound)
- if(std::find(new_recurrence.begin(), new_recurrence.end(), *P) == new_recurrence.end())
- new_recurrence.push_back(*P);
-
- }
- }
- }
- }
-
-
- if(new_recurrence.size() > 0)
- partialOrder.push_back(new_recurrence);
- }
-
- //Add any nodes that are not already in the partial order
- std::vector<MSchedGraphNode*> lastNodes;
- for(std::map<MSchedGraphNode*, MSNodeAttributes>::iterator I = nodeToAttributesMap.begin(), E = nodeToAttributesMap.end(); I != E; ++I) {
- bool found = false;
- //Check if its already in our partial order, if not add it to the final vector
- for(std::vector<std::vector<MSchedGraphNode*> >::iterator PO = partialOrder.begin(), PE = partialOrder.end(); PO != PE; ++PO) {
- if(std::find(PO->begin(), PO->end(), I->first) != PO->end())
- found = true;
- }
- if(!found)
- lastNodes.push_back(I->first);
- }
-
- if(lastNodes.size() > 0)
- partialOrder.push_back(lastNodes);
-
-}
-
-
-void ModuloSchedulingPass::predIntersect(std::vector<MSchedGraphNode*> &CurrentSet, std::vector<MSchedGraphNode*> &IntersectResult) {
-
- //Sort CurrentSet so we can use lowerbound
- std::sort(CurrentSet.begin(), CurrentSet.end());
-
- for(unsigned j=0; j < FinalNodeOrder.size(); ++j) {
- for(MSchedGraphNode::pred_iterator P = FinalNodeOrder[j]->pred_begin(),
- E = FinalNodeOrder[j]->pred_end(); P != E; ++P) {
-
- //Check if we are supposed to ignore this edge or not
- if(ignoreEdge(*P,FinalNodeOrder[j]))
- continue;
-
- if(std::find(CurrentSet.begin(),
- CurrentSet.end(), *P) != CurrentSet.end())
- if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end())
- IntersectResult.push_back(*P);
- }
- }
-}
-
-void ModuloSchedulingPass::succIntersect(std::vector<MSchedGraphNode*> &CurrentSet, std::vector<MSchedGraphNode*> &IntersectResult) {
-
- //Sort CurrentSet so we can use lowerbound
- std::sort(CurrentSet.begin(), CurrentSet.end());
-
- for(unsigned j=0; j < FinalNodeOrder.size(); ++j) {
- for(MSchedGraphNode::succ_iterator P = FinalNodeOrder[j]->succ_begin(),
- E = FinalNodeOrder[j]->succ_end(); P != E; ++P) {
-
- //Check if we are supposed to ignore this edge or not
- if(ignoreEdge(FinalNodeOrder[j],*P))
- continue;
-
- if(std::find(CurrentSet.begin(),
- CurrentSet.end(), *P) != CurrentSet.end())
- if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), *P) == FinalNodeOrder.end())
- IntersectResult.push_back(*P);
- }
- }
-}
-
-void dumpIntersection(std::vector<MSchedGraphNode*> &IntersectCurrent) {
- std::cerr << "Intersection (";
- for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(), E = IntersectCurrent.end(); I != E; ++I)
- std::cerr << **I << ", ";
- std::cerr << ")\n";
-}
-
-
-
-void ModuloSchedulingPass::orderNodes() {
-
- int BOTTOM_UP = 0;
- int TOP_DOWN = 1;
-
- //Set default order
- int order = BOTTOM_UP;
-
-
- //Loop over all the sets and place them in the final node order
- for(std::vector<std::vector<MSchedGraphNode*> >::iterator CurrentSet = partialOrder.begin(), E= partialOrder.end(); CurrentSet != E; ++CurrentSet) {
-
- DEBUG(std::cerr << "Processing set in S\n");
- DEBUG(dumpIntersection(*CurrentSet));
-
- //Result of intersection
- std::vector<MSchedGraphNode*> IntersectCurrent;
-
- predIntersect(*CurrentSet, IntersectCurrent);
-
- //If the intersection of predecessor and current set is not empty
- //sort nodes bottom up
- if(IntersectCurrent.size() != 0) {
- DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is NOT empty\n");
- order = BOTTOM_UP;
- }
- //If empty, use successors
- else {
- DEBUG(std::cerr << "Final Node Order Predecessors and Current Set interesection is empty\n");
-
- succIntersect(*CurrentSet, IntersectCurrent);
-
- //sort top-down
- if(IntersectCurrent.size() != 0) {
- DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is NOT empty\n");
- order = TOP_DOWN;
- }
- else {
- DEBUG(std::cerr << "Final Node Order Successors and Current Set interesection is empty\n");
- //Find node with max ASAP in current Set
- MSchedGraphNode *node;
- int maxASAP = 0;
- DEBUG(std::cerr << "Using current set of size " << CurrentSet->size() << "to find max ASAP\n");
- for(unsigned j=0; j < CurrentSet->size(); ++j) {
- //Get node attributes
- MSNodeAttributes nodeAttr= nodeToAttributesMap.find((*CurrentSet)[j])->second;
- //assert(nodeAttr != nodeToAttributesMap.end() && "Node not in attributes map!");
- DEBUG(std::cerr << "CurrentSet index " << j << "has ASAP: " << nodeAttr.ASAP << "\n");
- if(maxASAP < nodeAttr.ASAP) {
- maxASAP = nodeAttr.ASAP;
- node = (*CurrentSet)[j];
- }
- }
- assert(node != 0 && "In node ordering node should not be null");
- IntersectCurrent.push_back(node);
- order = BOTTOM_UP;
- }
- }
-
- //Repeat until all nodes are put into the final order from current set
- while(IntersectCurrent.size() > 0) {
-
- if(order == TOP_DOWN) {
- DEBUG(std::cerr << "Order is TOP DOWN\n");
-
- while(IntersectCurrent.size() > 0) {
- DEBUG(std::cerr << "Intersection is not empty, so find heighest height\n");
-
- int MOB = 0;
- int height = 0;
- MSchedGraphNode *highestHeightNode = IntersectCurrent[0];
-
- //Find node in intersection with highest heigh and lowest MOB
- for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(),
- E = IntersectCurrent.end(); I != E; ++I) {
-
- //Get current nodes properties
- MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second;
-
- if(height < nodeAttr.height) {
- highestHeightNode = *I;
- height = nodeAttr.height;
- MOB = nodeAttr.MOB;
- }
- else if(height == nodeAttr.height) {
- if(MOB > nodeAttr.height) {
- highestHeightNode = *I;
- height = nodeAttr.height;
- MOB = nodeAttr.MOB;
- }
- }
- }
-
- //Append our node with greatest height to the NodeOrder
- if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestHeightNode) == FinalNodeOrder.end()) {
- DEBUG(std::cerr << "Adding node to Final Order: " << *highestHeightNode << "\n");
- FinalNodeOrder.push_back(highestHeightNode);
- }
-
- //Remove V from IntersectOrder
- IntersectCurrent.erase(std::find(IntersectCurrent.begin(),
- IntersectCurrent.end(), highestHeightNode));
-
-
- //Intersect V's successors with CurrentSet
- for(MSchedGraphNode::succ_iterator P = highestHeightNode->succ_begin(),
- E = highestHeightNode->succ_end(); P != E; ++P) {
- //if(lower_bound(CurrentSet->begin(),
- // CurrentSet->end(), *P) != CurrentSet->end()) {
- if(std::find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) {
- if(ignoreEdge(highestHeightNode, *P))
- continue;
- //If not already in Intersect, add
- if(std::find(IntersectCurrent.begin(), IntersectCurrent.end(), *P) == IntersectCurrent.end())
- IntersectCurrent.push_back(*P);
- }
- }
- } //End while loop over Intersect Size
-
- //Change direction
- order = BOTTOM_UP;
-
- //Reset Intersect to reflect changes in OrderNodes
- IntersectCurrent.clear();
- predIntersect(*CurrentSet, IntersectCurrent);
-
- } //End If TOP_DOWN
-
- //Begin if BOTTOM_UP
- else {
- DEBUG(std::cerr << "Order is BOTTOM UP\n");
- while(IntersectCurrent.size() > 0) {
- DEBUG(std::cerr << "Intersection of size " << IntersectCurrent.size() << ", finding highest depth\n");
-
- //dump intersection
- DEBUG(dumpIntersection(IntersectCurrent));
- //Get node with highest depth, if a tie, use one with lowest
- //MOB
- int MOB = 0;
- int depth = 0;
- MSchedGraphNode *highestDepthNode = IntersectCurrent[0];
-
- for(std::vector<MSchedGraphNode*>::iterator I = IntersectCurrent.begin(),
- E = IntersectCurrent.end(); I != E; ++I) {
- //Find node attribute in graph
- MSNodeAttributes nodeAttr= nodeToAttributesMap.find(*I)->second;
-
- if(depth < nodeAttr.depth) {
- highestDepthNode = *I;
- depth = nodeAttr.depth;
- MOB = nodeAttr.MOB;
- }
- else if(depth == nodeAttr.depth) {
- if(MOB > nodeAttr.MOB) {
- highestDepthNode = *I;
- depth = nodeAttr.depth;
- MOB = nodeAttr.MOB;
- }
- }
- }
-
-
-
- //Append highest depth node to the NodeOrder
- if(std::find(FinalNodeOrder.begin(), FinalNodeOrder.end(), highestDepthNode) == FinalNodeOrder.end()) {
- DEBUG(std::cerr << "Adding node to Final Order: " << *highestDepthNode << "\n");
- FinalNodeOrder.push_back(highestDepthNode);
- }
- //Remove heightestDepthNode from IntersectOrder
- IntersectCurrent.erase(std::find(IntersectCurrent.begin(),
- IntersectCurrent.end(),highestDepthNode));
-
-
- //Intersect heightDepthNode's pred with CurrentSet
- for(MSchedGraphNode::pred_iterator P = highestDepthNode->pred_begin(),
- E = highestDepthNode->pred_end(); P != E; ++P) {
- //if(lower_bound(CurrentSet->begin(),
- // CurrentSet->end(), *P) != CurrentSet->end()) {
- if(std::find(CurrentSet->begin(), CurrentSet->end(), *P) != CurrentSet->end()) {
-
- if(ignoreEdge(*P, highestDepthNode))
- continue;
-
- //If not already in Intersect, add
- if(std::find(IntersectCurrent.begin(),
- IntersectCurrent.end(), *P) == IntersectCurrent.end())
- IntersectCurrent.push_back(*P);
- }
- }
-
- } //End while loop over Intersect Size
-
- //Change order
- order = TOP_DOWN;
-
- //Reset IntersectCurrent to reflect changes in OrderNodes
- IntersectCurrent.clear();
- succIntersect(*CurrentSet, IntersectCurrent);
- } //End if BOTTOM_DOWN
-
- DEBUG(std::cerr << "Current Intersection Size: " << IntersectCurrent.size() << "\n");
- }
- //End Wrapping while loop
- DEBUG(std::cerr << "Ending Size of Current Set: " << CurrentSet->size() << "\n");
- }//End for over all sets of nodes
-
- //FIXME: As the algorithm stands it will NEVER add an instruction such as ba (with no
- //data dependencies) to the final order. We add this manually. It will always be
- //in the last set of S since its not part of a recurrence
- //Loop over all the sets and place them in the final node order
- std::vector<std::vector<MSchedGraphNode*> > ::reverse_iterator LastSet = partialOrder.rbegin();
- for(std::vector<MSchedGraphNode*>::iterator CurrentNode = LastSet->begin(), LastNode = LastSet->end();
- CurrentNode != LastNode; ++CurrentNode) {
- if((*CurrentNode)->getInst()->getOpcode() == V9::BA)
- FinalNodeOrder.push_back(*CurrentNode);
- }
- //Return final Order
- //return FinalNodeOrder;
-}
-
-void ModuloSchedulingPass::computeSchedule() {
-
- bool success = false;
-
- while(!success) {
-
- //Loop over the final node order and process each node
- for(std::vector<MSchedGraphNode*>::iterator I = FinalNodeOrder.begin(),
- E = FinalNodeOrder.end(); I != E; ++I) {
-
- //CalculateEarly and Late start
- int EarlyStart = -1;
- int LateStart = 99999; //Set to something higher then we would ever expect (FIXME)
- bool hasSucc = false;
- bool hasPred = false;
-
- if(!(*I)->isBranch()) {
- //Loop over nodes in the schedule and determine if they are predecessors
- //or successors of the node we are trying to schedule
- for(MSSchedule::schedule_iterator nodesByCycle = schedule.begin(), nodesByCycleEnd = schedule.end();
- nodesByCycle != nodesByCycleEnd; ++nodesByCycle) {
-
- //For this cycle, get the vector of nodes schedule and loop over it
- for(std::vector<MSchedGraphNode*>::iterator schedNode = nodesByCycle->second.begin(), SNE = nodesByCycle->second.end(); schedNode != SNE; ++schedNode) {
-
- if((*I)->isPredecessor(*schedNode)) {
- if(!ignoreEdge(*schedNode, *I)) {
- int diff = (*I)->getInEdge(*schedNode).getIteDiff();
- int ES_Temp = nodesByCycle->first + (*schedNode)->getLatency() - diff * II;
- DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n");
- DEBUG(std::cerr << "Temp EarlyStart: " << ES_Temp << " Prev EarlyStart: " << EarlyStart << "\n");
- EarlyStart = std::max(EarlyStart, ES_Temp);
- hasPred = true;
- }
- }
- if((*I)->isSuccessor(*schedNode)) {
- if(!ignoreEdge(*I,*schedNode)) {
- int diff = (*schedNode)->getInEdge(*I).getIteDiff();
- int LS_Temp = nodesByCycle->first - (*I)->getLatency() + diff * II;
- DEBUG(std::cerr << "Diff: " << diff << " Cycle: " << nodesByCycle->first << "\n");
- DEBUG(std::cerr << "Temp LateStart: " << LS_Temp << " Prev LateStart: " << LateStart << "\n");
- LateStart = std::min(LateStart, LS_Temp);
- hasSucc = true;
- }
- }
- }
- }
- }
- else {
- //WARNING: HACK! FIXME!!!!
- if((*I)->getInst()->getOpcode() == V9::BA) {
- EarlyStart = II-1;
- LateStart = II-1;
- }
- else {
- EarlyStart = II-1;
- LateStart = II-1;
- assert( (EarlyStart >= 0) && (LateStart >=0) && "EarlyStart and LateStart must be greater then 0");
- }
- hasPred = 1;
- hasSucc = 1;
- }
-
-
- DEBUG(std::cerr << "Has Successors: " << hasSucc << ", Has Pred: " << hasPred << "\n");
- DEBUG(std::cerr << "EarlyStart: " << EarlyStart << ", LateStart: " << LateStart << "\n");
-
- //Check if the node has no pred or successors and set Early Start to its ASAP
- if(!hasSucc && !hasPred)
- EarlyStart = nodeToAttributesMap.find(*I)->second.ASAP;
-
- //Now, try to schedule this node depending upon its pred and successor in the schedule
- //already
- if(!hasSucc && hasPred)
- success = scheduleNode(*I, EarlyStart, (EarlyStart + II -1));
- else if(!hasPred && hasSucc)
- success = scheduleNode(*I, LateStart, (LateStart - II +1));
- else if(hasPred && hasSucc)
- success = scheduleNode(*I, EarlyStart, std::min(LateStart, (EarlyStart + II -1)));
- else
- success = scheduleNode(*I, EarlyStart, EarlyStart + II - 1);
-
- if(!success) {
- ++II;
- schedule.clear();
- break;
- }
-
- }
-
- DEBUG(std::cerr << "Constructing Kernel\n");
- success = schedule.constructKernel(II);
- if(!success) {
- ++II;
- schedule.clear();
- }
- }
-}
-
-
-bool ModuloSchedulingPass::scheduleNode(MSchedGraphNode *node,
- int start, int end) {
- bool success = false;
-
- DEBUG(std::cerr << *node << " (Start Cycle: " << start << ", End Cycle: " << end << ")\n");
-
- //Make sure start and end are not negative
- if(start < 0)
- start = 0;
- if(end < 0)
- end = 0;
-
- bool forward = true;
- if(start > end)
- forward = false;
-
- bool increaseSC = true;
- int cycle = start ;
-
-
- while(increaseSC) {
-
- increaseSC = false;
-
- increaseSC = schedule.insert(node, cycle);
-
- if(!increaseSC)
- return true;
-
- //Increment cycle to try again
- if(forward) {
- ++cycle;
- DEBUG(std::cerr << "Increase cycle: " << cycle << "\n");
- if(cycle > end)
- return false;
- }
- else {
- --cycle;
- DEBUG(std::cerr << "Decrease cycle: " << cycle << "\n");
- if(cycle < end)
- return false;
- }
- }
-
- return success;
-}
-
-void ModuloSchedulingPass::writePrologues(std::vector<MachineBasicBlock *> &prologues, MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_prologues, std::map<const Value*, std::pair<const MSchedGraphNode*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation) {
-
- //Keep a map to easily know whats in the kernel
- std::map<int, std::set<const MachineInstr*> > inKernel;
- int maxStageCount = 0;
-
- MSchedGraphNode *branch = 0;
- MSchedGraphNode *BAbranch = 0;
-
- for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
- maxStageCount = std::max(maxStageCount, I->second);
-
- //Ignore the branch, we will handle this separately
- if(I->first->isBranch()) {
- if (I->first->getInst()->getOpcode() == V9::BA)
- BAbranch = I->first;
- else
- branch = I->first;
- continue;
- }
-
- //Put int the map so we know what instructions in each stage are in the kernel
- DEBUG(std::cerr << "Inserting instruction " << *(I->first->getInst()) << " into map at stage " << I->second << "\n");
- inKernel[I->second].insert(I->first->getInst());
- }
-
- //Get target information to look at machine operands
- const TargetInstrInfo *mii = target.getInstrInfo();
-
- //Now write the prologues
- for(int i = 0; i < maxStageCount; ++i) {
- BasicBlock *llvmBB = new BasicBlock("PROLOGUE", (Function*) (origBB->getBasicBlock()->getParent()));
- MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB);
-
- DEBUG(std::cerr << "i=" << i << "\n");
- for(int j = 0; j <= i; ++j) {
- for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) {
- if(inKernel[j].count(&*MI)) {
- MachineInstr *instClone = MI->clone();
- machineBB->push_back(instClone);
-
- DEBUG(std::cerr << "Cloning: " << *MI << "\n");
-
- Instruction *tmp;
-
- //After cloning, we may need to save the value that this instruction defines
- for(unsigned opNum=0; opNum < MI->getNumOperands(); ++opNum) {
- //get machine operand
- const MachineOperand &mOp = instClone->getOperand(opNum);
- if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
-
- //Check if this is a value we should save
- if(valuesToSave.count(mOp.getVRegValue())) {
- //Save copy in tmpInstruction
- tmp = new TmpInstruction(mOp.getVRegValue());
-
- DEBUG(std::cerr << "Value: " << *(mOp.getVRegValue()) << " New Value: " << *tmp << " Stage: " << i << "\n");
-
- newValues[mOp.getVRegValue()][i]= tmp;
- newValLocation[tmp] = machineBB;
-
- DEBUG(std::cerr << "Machine Instr Operands: " << *(mOp.getVRegValue()) << ", 0, " << *tmp << "\n");
-
- //Create machine instruction and put int machineBB
- MachineInstr *saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
-
- DEBUG(std::cerr << "Created new machine instr: " << *saveValue << "\n");
- }
- }
-
- //We may also need to update the value that we use if its from an earlier prologue
- if(j != 0) {
- if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
- if(newValues.count(mOp.getVRegValue()))
- if(newValues[mOp.getVRegValue()].count(j-1)) {
- DEBUG(std::cerr << "Replaced this value: " << mOp.getVRegValue() << " With:" << (newValues[mOp.getVRegValue()][i-1]) << "\n");
- //Update the operand with the right value
- instClone->getOperand(opNum).setValueReg(newValues[mOp.getVRegValue()][i-1]);
- }
- }
- }
- }
- }
- }
- }
-
-
- //Stick in branch at the end
- machineBB->push_back(branch->getInst()->clone());
-
- //Stick in BA branch at the end
- machineBB->push_back(BAbranch->getInst()->clone());
-
- (((MachineBasicBlock*)origBB)->getParent())->getBasicBlockList().push_back(machineBB);
- prologues.push_back(machineBB);
- llvm_prologues.push_back(llvmBB);
- }
-}
-
-void ModuloSchedulingPass::writeEpilogues(std::vector<MachineBasicBlock *> &epilogues, const MachineBasicBlock *origBB, std::vector<BasicBlock*> &llvm_epilogues, std::map<const Value*, std::pair<const MSchedGraphNode*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues,std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs ) {
-
- std::map<int, std::set<const MachineInstr*> > inKernel;
-
- for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
-
- //Ignore the branch, we will handle this separately
- if(I->first->isBranch())
- continue;
-
- //Put int the map so we know what instructions in each stage are in the kernel
- inKernel[I->second].insert(I->first->getInst());
- }
-
- std::map<Value*, Value*> valPHIs;
-
- //some debug stuff, will remove later
- DEBUG(for(std::map<Value*, std::map<int, Value*> >::iterator V = newValues.begin(), E = newValues.end(); V !=E; ++V) {
- std::cerr << "Old Value: " << *(V->first) << "\n";
- for(std::map<int, Value*>::iterator I = V->second.begin(), IE = V->second.end(); I != IE; ++I)
- std::cerr << "Stage: " << I->first << " Value: " << *(I->second) << "\n";
- });
-
- //some debug stuff, will remove later
- DEBUG(for(std::map<Value*, std::map<int, Value*> >::iterator V = kernelPHIs.begin(), E = kernelPHIs.end(); V !=E; ++V) {
- std::cerr << "Old Value: " << *(V->first) << "\n";
- for(std::map<int, Value*>::iterator I = V->second.begin(), IE = V->second.end(); I != IE; ++I)
- std::cerr << "Stage: " << I->first << " Value: " << *(I->second) << "\n";
- });
-
- //Now write the epilogues
- for(int i = schedule.getMaxStage()-1; i >= 0; --i) {
- BasicBlock *llvmBB = new BasicBlock("EPILOGUE", (Function*) (origBB->getBasicBlock()->getParent()));
- MachineBasicBlock *machineBB = new MachineBasicBlock(llvmBB);
-
- DEBUG(std::cerr << " Epilogue #: " << i << "\n");
-
-
-
-
- for(MachineBasicBlock::const_iterator MI = origBB->begin(), ME = origBB->end(); ME != MI; ++MI) {
- for(int j=schedule.getMaxStage(); j > i; --j) {
- if(inKernel[j].count(&*MI)) {
- DEBUG(std::cerr << "Cloning instruction " << *MI << "\n");
- MachineInstr *clone = MI->clone();
-
- //Update operands that need to use the result from the phi
- for(unsigned opNum=0; opNum < clone->getNumOperands(); ++opNum) {
- //get machine operand
- const MachineOperand &mOp = clone->getOperand(opNum);
-
- //If this is the last instructions for the max iterations ago, don't update operands
- if(j == schedule.getMaxStage() && (i == 0))
- continue;
-
- if((mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse())) {
-
- DEBUG(std::cerr << "Writing PHI for " << *(mOp.getVRegValue()) << "\n");
-
- //Quickly write appropriate phis for this operand
- if(newValues.count(mOp.getVRegValue())) {
- if(newValues[mOp.getVRegValue()].count(i)) {
- Instruction *tmp = new TmpInstruction(newValues[mOp.getVRegValue()][i]);
- MachineInstr *saveValue = BuildMI(machineBB, V9::PHI, 3).addReg(newValues[mOp.getVRegValue()][i]).addReg(kernelPHIs[mOp.getVRegValue()][i]).addRegDef(tmp);
- DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
- valPHIs[mOp.getVRegValue()] = tmp;
- }
- }
-
- if(valPHIs.count(mOp.getVRegValue())) {
- //Update the operand in the cloned instruction
- clone->getOperand(opNum).setValueReg(valPHIs[mOp.getVRegValue()]);
- }
- }
- }
- machineBB->push_back(clone);
- }
- }
- }
-
- (((MachineBasicBlock*)origBB)->getParent())->getBasicBlockList().push_back(machineBB);
- epilogues.push_back(machineBB);
- llvm_epilogues.push_back(llvmBB);
-
- DEBUG(std::cerr << "EPILOGUE #" << i << "\n");
- DEBUG(machineBB->print(std::cerr));
- }
-}
-
-void ModuloSchedulingPass::writeKernel(BasicBlock *llvmBB, MachineBasicBlock *machineBB, std::map<const Value*, std::pair<const MSchedGraphNode*, int> > &valuesToSave, std::map<Value*, std::map<int, Value*> > &newValues, std::map<Value*, MachineBasicBlock*> &newValLocation, std::map<Value*, std::map<int, Value*> > &kernelPHIs) {
-
- //Keep track of operands that are read and saved from a previous iteration. The new clone
- //instruction will use the result of the phi instead.
- std::map<Value*, Value*> finalPHIValue;
- std::map<Value*, Value*> kernelValue;
-
- //Create TmpInstructions for the final phis
- for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
-
- DEBUG(std::cerr << "Stage: " << I->second << " Inst: " << *(I->first->getInst()) << "\n";);
-
- //Clone instruction
- const MachineInstr *inst = I->first->getInst();
- MachineInstr *instClone = inst->clone();
-
- //Insert into machine basic block
- machineBB->push_back(instClone);
-
-
- //Loop over Machine Operands
- for(unsigned i=0; i < inst->getNumOperands(); ++i) {
- //get machine operand
- const MachineOperand &mOp = inst->getOperand(i);
-
- if(I->second != 0) {
- if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
-
- //Check to see where this operand is defined if this instruction is from max stage
- if(I->second == schedule.getMaxStage()) {
- DEBUG(std::cerr << "VREG: " << *(mOp.getVRegValue()) << "\n");
- }
-
- //If its in the value saved, we need to create a temp instruction and use that instead
- if(valuesToSave.count(mOp.getVRegValue())) {
- TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue());
-
- //Update the operand in the cloned instruction
- instClone->getOperand(i).setValueReg(tmp);
-
- //save this as our final phi
- finalPHIValue[mOp.getVRegValue()] = tmp;
- newValLocation[tmp] = machineBB;
- }
- }
- }
- if(I->second != schedule.getMaxStage()) {
- if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isDef()) {
- if(valuesToSave.count(mOp.getVRegValue())) {
-
- TmpInstruction *tmp = new TmpInstruction(mOp.getVRegValue());
-
- //Create new machine instr and put in MBB
- MachineInstr *saveValue = BuildMI(machineBB, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
-
- //Save for future cleanup
- kernelValue[mOp.getVRegValue()] = tmp;
- newValLocation[tmp] = machineBB;
- kernelPHIs[mOp.getVRegValue()][schedule.getMaxStage()-1] = tmp;
- }
- }
- }
- }
-
- }
-
- DEBUG(std::cerr << "KERNEL before PHIs\n");
- DEBUG(machineBB->print(std::cerr));
-
-
- //Loop over each value we need to generate phis for
- for(std::map<Value*, std::map<int, Value*> >::iterator V = newValues.begin(),
- E = newValues.end(); V != E; ++V) {
-
-
- DEBUG(std::cerr << "Writing phi for" << *(V->first));
- DEBUG(std::cerr << "\nMap of Value* for this phi\n");
- DEBUG(for(std::map<int, Value*>::iterator I = V->second.begin(),
- IE = V->second.end(); I != IE; ++I) {
- std::cerr << "Stage: " << I->first;
- std::cerr << " Value: " << *(I->second) << "\n";
- });
-
- //If we only have one current iteration live, its safe to set lastPhi = to kernel value
- if(V->second.size() == 1) {
- assert(kernelValue[V->first] != 0 && "Kernel value* must exist to create phi");
- MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(),V9::PHI, 3).addReg(V->second.begin()->second).addReg(kernelValue[V->first]).addRegDef(finalPHIValue[V->first]);
- DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
- kernelPHIs[V->first][schedule.getMaxStage()-1] = kernelValue[V->first];
- }
- else {
-
- //Keep track of last phi created.
- Instruction *lastPhi = 0;
-
- unsigned count = 1;
- //Loop over the the map backwards to generate phis
- for(std::map<int, Value*>::reverse_iterator I = V->second.rbegin(), IE = V->second.rend();
- I != IE; ++I) {
-
- if(count < (V->second).size()) {
- if(lastPhi == 0) {
- lastPhi = new TmpInstruction(I->second);
- MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(kernelValue[V->first]).addReg(I->second).addRegDef(lastPhi);
- DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
- newValLocation[lastPhi] = machineBB;
- }
- else {
- Instruction *tmp = new TmpInstruction(I->second);
- MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(tmp);
- DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
- lastPhi = tmp;
- kernelPHIs[V->first][I->first] = lastPhi;
- newValLocation[lastPhi] = machineBB;
- }
- }
- //Final phi value
- else {
- //The resulting value must be the Value* we created earlier
- assert(lastPhi != 0 && "Last phi is NULL!\n");
- MachineInstr *saveValue = BuildMI(*machineBB, machineBB->begin(), V9::PHI, 3).addReg(lastPhi).addReg(I->second).addRegDef(finalPHIValue[V->first]);
- DEBUG(std::cerr << "Resulting PHI: " << *saveValue << "\n");
- kernelPHIs[V->first][I->first] = finalPHIValue[V->first];
- }
-
- ++count;
- }
-
- }
- }
-
- DEBUG(std::cerr << "KERNEL after PHIs\n");
- DEBUG(machineBB->print(std::cerr));
-}
-
-
-void ModuloSchedulingPass::removePHIs(const MachineBasicBlock *origBB, std::vector<MachineBasicBlock *> &prologues, std::vector<MachineBasicBlock *> &epilogues, MachineBasicBlock *kernelBB, std::map<Value*, MachineBasicBlock*> &newValLocation) {
-
- //Worklist to delete things
- std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> > worklist;
-
- const TargetInstrInfo *TMI = target.getInstrInfo();
-
- //Start with the kernel and for each phi insert a copy for the phi def and for each arg
- for(MachineBasicBlock::iterator I = kernelBB->begin(), E = kernelBB->end(); I != E; ++I) {
- //Get op code and check if its a phi
- if(I->getOpcode() == V9::PHI) {
- Instruction *tmp = 0;
- for(unsigned i = 0; i < I->getNumOperands(); ++i) {
- //Get Operand
- const MachineOperand &mOp = I->getOperand(i);
- assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n");
-
- if(!tmp) {
- tmp = new TmpInstruction(mOp.getVRegValue());
- }
-
- //Now for all our arguments we read, OR to the new TmpInstruction that we created
- if(mOp.isUse()) {
- DEBUG(std::cerr << "Use: " << mOp << "\n");
- //Place a copy at the end of its BB but before the branches
- assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n");
- //Reverse iterate to find the branches, we can safely assume no instructions have been
- //put in the nop positions
- for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) {
- MachineOpCode opc = inst->getOpcode();
- if(TMI->isBranch(opc) || TMI->isNop(opc))
- continue;
- else {
- BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
- break;
- }
-
- }
-
- }
- else {
- //Remove the phi and replace it with an OR
- DEBUG(std::cerr << "Def: " << mOp << "\n");
- BuildMI(*kernelBB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue());
- worklist.push_back(std::make_pair(kernelBB, I));
- }
-
- }
- }
-
- }
-
- //Remove phis from epilogue
- for(std::vector<MachineBasicBlock*>::iterator MB = epilogues.begin(), ME = epilogues.end(); MB != ME; ++MB) {
- for(MachineBasicBlock::iterator I = (*MB)->begin(), E = (*MB)->end(); I != E; ++I) {
- //Get op code and check if its a phi
- if(I->getOpcode() == V9::PHI) {
- Instruction *tmp = 0;
- for(unsigned i = 0; i < I->getNumOperands(); ++i) {
- //Get Operand
- const MachineOperand &mOp = I->getOperand(i);
- assert(mOp.getType() == MachineOperand::MO_VirtualRegister && "Should be a Value*\n");
-
- if(!tmp) {
- tmp = new TmpInstruction(mOp.getVRegValue());
- }
-
- //Now for all our arguments we read, OR to the new TmpInstruction that we created
- if(mOp.isUse()) {
- DEBUG(std::cerr << "Use: " << mOp << "\n");
- //Place a copy at the end of its BB but before the branches
- assert(newValLocation.count(mOp.getVRegValue()) && "We must know where this value is located\n");
- //Reverse iterate to find the branches, we can safely assume no instructions have been
- //put in the nop positions
- for(MachineBasicBlock::iterator inst = --(newValLocation[mOp.getVRegValue()])->end(), endBB = (newValLocation[mOp.getVRegValue()])->begin(); inst != endBB; --inst) {
- MachineOpCode opc = inst->getOpcode();
- if(TMI->isBranch(opc) || TMI->isNop(opc))
- continue;
- else {
- BuildMI(*(newValLocation[mOp.getVRegValue()]), ++inst, V9::ORr, 3).addReg(mOp.getVRegValue()).addImm(0).addRegDef(tmp);
- break;
- }
-
- }
-
- }
- else {
- //Remove the phi and replace it with an OR
- DEBUG(std::cerr << "Def: " << mOp << "\n");
- BuildMI(**MB, I, V9::ORr, 3).addReg(tmp).addImm(0).addRegDef(mOp.getVRegValue());
- worklist.push_back(std::make_pair(*MB,I));
- }
-
- }
- }
- }
- }
-
- //Delete the phis
- for(std::vector<std::pair<MachineBasicBlock*, MachineBasicBlock::iterator> >::iterator I = worklist.begin(), E = worklist.end(); I != E; ++I) {
- DEBUG(std::cerr << "Deleting PHI " << I->second << "\n");
- I->first->erase(I->second);
-
- }
-
-}
-
-
-void ModuloSchedulingPass::reconstructLoop(MachineBasicBlock *BB) {
-
- DEBUG(std::cerr << "Reconstructing Loop\n");
-
- //First find the value *'s that we need to "save"
- std::map<const Value*, std::pair<const MSchedGraphNode*, int> > valuesToSave;
-
- //Keep track of instructions we have already seen and their stage because
- //we don't want to "save" values if they are used in the kernel immediately
- std::map<const MachineInstr*, int> lastInstrs;
-
- //Loop over kernel and only look at instructions from a stage > 0
- //Look at its operands and save values *'s that are read
- for(MSSchedule::kernel_iterator I = schedule.kernel_begin(), E = schedule.kernel_end(); I != E; ++I) {
-
- if(I->second !=0) {
- //For this instruction, get the Value*'s that it reads and put them into the set.
- //Assert if there is an operand of another type that we need to save
- const MachineInstr *inst = I->first->getInst();
- lastInstrs[inst] = I->second;
-
- for(unsigned i=0; i < inst->getNumOperands(); ++i) {
- //get machine operand
- const MachineOperand &mOp = inst->getOperand(i);
-
- if(mOp.getType() == MachineOperand::MO_VirtualRegister && mOp.isUse()) {
- //find the value in the map
- if (const Value* srcI = mOp.getVRegValue()) {
-
- //Before we declare this Value* one that we should save
- //make sure its def is not of the same stage as this instruction
- //because it will be consumed before its used
- Instruction *defInst = (Instruction*) srcI;
-
- //Should we save this value?
- bool save = true;
-
- //Get Machine code for this instruction, and loop backwards over the array
- //to find the def
- MachineCodeForInstruction & tempMvec = MachineCodeForInstruction::get(defInst);
- for (int j = tempMvec.size()-1; j >= 0; j--) {
- MachineInstr *temp = tempMvec[j];
-
- //Loop over instructions
- for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) {
- MachineOperand &mDefOp = temp->getOperand(opNum);
-
- if (mDefOp.getType() == MachineOperand::MO_VirtualRegister && mDefOp.isDef()) {
- const Value* defVReg = mDefOp.getVRegValue();
- if(defVReg == srcI) {
- //Check if instruction has been seen already and is of same stage
- if(lastInstrs.count(temp)) {
- if(lastInstrs[temp] == I->second)
- save = false;
- }
- }
- }
- }
- }
- if(save)
- valuesToSave[srcI] = std::make_pair(I->first, i);
- }
- }
-
- if(mOp.getType() != MachineOperand::MO_VirtualRegister && mOp.isUse()) {
- assert("Our assumption is wrong. We have another type of register that needs to be saved\n");
- }
- }
- }
- }
-
- //The new loop will consist of one or more prologues, the kernel, and one or more epilogues.
-
- //Map to keep track of old to new values
- std::map<Value*, std::map<int, Value*> > newValues;
-
- //Map to keep track of old to new values in kernel
- std::map<Value*, std::map<int, Value*> > kernelPHIs;
-
- //Another map to keep track of what machine basic blocks these new value*s are in since
- //they have no llvm instruction equivalent
- std::map<Value*, MachineBasicBlock*> newValLocation;
-
- std::vector<MachineBasicBlock*> prologues;
- std::vector<BasicBlock*> llvm_prologues;
-
-
- //Write prologue
- writePrologues(prologues, BB, llvm_prologues, valuesToSave, newValues, newValLocation);
-
- //Print out epilogues and prologue
- DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = prologues.begin(), E = prologues.end();
- I != E; ++I) {
- std::cerr << "PROLOGUE\n";
- (*I)->print(std::cerr);
- });
-
- BasicBlock *llvmKernelBB = new BasicBlock("Kernel", (Function*) (BB->getBasicBlock()->getParent()));
- MachineBasicBlock *machineKernelBB = new MachineBasicBlock(llvmKernelBB);
- (((MachineBasicBlock*)BB)->getParent())->getBasicBlockList().push_back(machineKernelBB);
- writeKernel(llvmKernelBB, machineKernelBB, valuesToSave, newValues, newValLocation, kernelPHIs);
-
-
- std::vector<MachineBasicBlock*> epilogues;
- std::vector<BasicBlock*> llvm_epilogues;
-
- //Write epilogues
- writeEpilogues(epilogues, BB, llvm_epilogues, valuesToSave, newValues, newValLocation, kernelPHIs);
-
-
- const TargetInstrInfo *TMI = target.getInstrInfo();
-
- //Fix up machineBB and llvmBB branches
- for(unsigned I = 0; I < prologues.size(); ++I) {
-
- MachineInstr *branch = 0;
-
- //Find terminator since getFirstTerminator does not work!
- for(MachineBasicBlock::reverse_iterator mInst = prologues[I]->rbegin(), mInstEnd = prologues[I]->rend(); mInst != mInstEnd; ++mInst) {
- MachineOpCode OC = mInst->getOpcode();
- if(TMI->isBranch(OC)) {
- branch = &*mInst;
- DEBUG(std::cerr << *mInst << "\n");
- break;
- }
- }
-
-
-
- //Update branch
- for(unsigned opNum = 0; opNum < branch->getNumOperands(); ++opNum) {
- MachineOperand &mOp = branch->getOperand(opNum);
- if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
- mOp.setValueReg(llvm_epilogues[(llvm_epilogues.size()-1-I)]);
- }
- }
-
- //Update llvm basic block with our new branch instr
- DEBUG(std::cerr << BB->getBasicBlock()->getTerminator() << "\n");
- const BranchInst *branchVal = dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator());
- TmpInstruction *tmp = new TmpInstruction(branchVal->getCondition());
- if(I == prologues.size()-1) {
- TerminatorInst *newBranch = new BranchInst(llvmKernelBB,
- llvm_epilogues[(llvm_epilogues.size()-1-I)],
- tmp,
- llvm_prologues[I]);
- }
- else
- TerminatorInst *newBranch = new BranchInst(llvm_prologues[I+1],
- llvm_epilogues[(llvm_epilogues.size()-1-I)],
- tmp,
- llvm_prologues[I]);
-
- assert(branch != 0 && "There must be a terminator for this machine basic block!\n");
-
- //Push nop onto end of machine basic block
- BuildMI(prologues[I], V9::NOP, 0);
-
- //Add a unconditional branch to the next prologue
- if(I != prologues.size()-1)
- BuildMI(prologues[I], V9::BA, 1).addPCDisp(llvm_prologues[I+1]);
- else
- BuildMI(prologues[I], V9::BA, 1).addPCDisp(llvmKernelBB);
-
- //Add one more nop!
- BuildMI(prologues[I], V9::NOP, 0);
- }
-
- //Fix up kernel machine branches
- MachineInstr *branch = 0;
- for(MachineBasicBlock::reverse_iterator mInst = machineKernelBB->rbegin(), mInstEnd = machineKernelBB->rend(); mInst != mInstEnd; ++mInst) {
- MachineOpCode OC = mInst->getOpcode();
- if(TMI->isBranch(OC)) {
- branch = &*mInst;
- DEBUG(std::cerr << *mInst << "\n");
- break;
- }
- }
-
- assert(branch != 0 && "There must be a terminator for the kernel machine basic block!\n");
-
- //Update kernel self loop branch
- for(unsigned opNum = 0; opNum < branch->getNumOperands(); ++opNum) {
- MachineOperand &mOp = branch->getOperand(opNum);
-
- if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
- mOp.setValueReg(llvmKernelBB);
- }
- }
-
- //Update kernelLLVM branches
- const BranchInst *branchVal = dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator());
- TerminatorInst *newBranch = new BranchInst(llvmKernelBB,
- llvm_epilogues[0],
- new TmpInstruction(branchVal->getCondition()),
- llvmKernelBB);
-
- //Add kernel noop
- BuildMI(machineKernelBB, V9::NOP, 0);
-
- //Add unconditional branch to first epilogue
- BuildMI(machineKernelBB, V9::BA, 1).addPCDisp(llvm_epilogues[0]);
-
-
- //Add kernel noop
- BuildMI(machineKernelBB, V9::NOP, 0);
-
- //Lastly add unconditional branches for the epilogues
- for(unsigned I = 0; I < epilogues.size(); ++I) {
-
- //Now since I don't trust fall throughs, add a unconditional branch to the next prologue
- if(I != epilogues.size()-1) {
- BuildMI(epilogues[I], V9::BA, 1).addPCDisp(llvm_epilogues[I+1]);
- //Add unconditional branch to end of epilogue
- TerminatorInst *newBranch = new BranchInst(llvm_epilogues[I+1],
- llvm_epilogues[I]);
-
- }
- else {
- MachineBasicBlock *origBlock = (MachineBasicBlock*) BB;
- for(MachineBasicBlock::reverse_iterator inst = origBlock->rbegin(), instEnd = origBlock->rend(); inst != instEnd; ++inst) {
- MachineOpCode OC = inst->getOpcode();
- if(TMI->isBranch(OC)) {
- branch = &*inst;
- DEBUG(std::cerr << "Exit branch from loop" << *inst << "\n");
- break;
-
- }
-
- for(unsigned opNum = 0; opNum < branch->getNumOperands(); ++opNum) {
- MachineOperand &mOp = branch->getOperand(opNum);
-
- if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
- BuildMI(epilogues[I], V9::BA, 1).addPCDisp(mOp.getVRegValue());
- break;
- }
- }
-
- }
-
- //Update last epilogue exit branch
- BranchInst *branchVal = (BranchInst*) dyn_cast<BranchInst>(BB->getBasicBlock()->getTerminator());
- //Find where we are supposed to branch to
- BasicBlock *nextBlock = 0;
- for(unsigned j=0; j <branchVal->getNumSuccessors(); ++j) {
- if(branchVal->getSuccessor(j) != BB->getBasicBlock())
- nextBlock = branchVal->getSuccessor(j);
- }
- TerminatorInst *newBranch = new BranchInst(nextBlock, llvm_epilogues[I]);
- }
- //Add one more nop!
- BuildMI(epilogues[I], V9::NOP, 0);
-
- }
-
- //FIX UP Machine BB entry!!
- //We are looking at the predecesor of our loop basic block and we want to change its ba instruction
-
-
- //Find all llvm basic blocks that branch to the loop entry and change to our first prologue.
- const BasicBlock *llvmBB = BB->getBasicBlock();
-
- for(pred_const_iterator P = pred_begin(llvmBB), PE = pred_end(llvmBB); P != PE; ++PE) {
- if(*P == llvmBB)
- continue;
- else {
- DEBUG(std::cerr << "Found our entry BB\n");
- //Get the Terminator instruction for this basic block and print it out
- DEBUG(std::cerr << *((*P)->getTerminator()) << "\n");
- //Update the terminator
- TerminatorInst *term = ((BasicBlock*)*P)->getTerminator();
- for(unsigned i=0; i < term->getNumSuccessors(); ++i) {
- if(term->getSuccessor(i) == llvmBB) {
- DEBUG(std::cerr << "Replacing successor bb\n");
- if(llvm_prologues.size() > 0) {
- term->setSuccessor(i, llvm_prologues[0]);
- //Also update its corresponding machine instruction
- MachineCodeForInstruction & tempMvec =
- MachineCodeForInstruction::get(term);
- for (unsigned j = 0; j < tempMvec.size(); j++) {
- MachineInstr *temp = tempMvec[j];
- MachineOpCode opc = temp->getOpcode();
- if(TMI->isBranch(opc)) {
- DEBUG(std::cerr << *temp << "\n");
- //Update branch
- for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) {
- MachineOperand &mOp = temp->getOperand(opNum);
- if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
- mOp.setValueReg(llvm_prologues[0]);
- }
- }
- }
- }
- }
- else {
- term->setSuccessor(i, llvmKernelBB);
- //Also update its corresponding machine instruction
- MachineCodeForInstruction & tempMvec =
- MachineCodeForInstruction::get(term);
- for (unsigned j = 0; j < tempMvec.size(); j++) {
- MachineInstr *temp = tempMvec[j];
- MachineOpCode opc = temp->getOpcode();
- if(TMI->isBranch(opc)) {
- DEBUG(std::cerr << *temp << "\n");
- //Update branch
- for(unsigned opNum = 0; opNum < temp->getNumOperands(); ++opNum) {
- MachineOperand &mOp = temp->getOperand(opNum);
- if (mOp.getType() == MachineOperand::MO_PCRelativeDisp) {
- mOp.setValueReg(llvmKernelBB);
- }
- }
- }
- }
- }
- }
- }
- break;
- }
- }
-
- removePHIs(BB, prologues, epilogues, machineKernelBB, newValLocation);
-
-
-
- //Print out epilogues and prologue
- DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = prologues.begin(), E = prologues.end();
- I != E; ++I) {
- std::cerr << "PROLOGUE\n";
- (*I)->print(std::cerr);
- });
-
- DEBUG(std::cerr << "KERNEL\n");
- DEBUG(machineKernelBB->print(std::cerr));
-
- DEBUG(for(std::vector<MachineBasicBlock*>::iterator I = epilogues.begin(), E = epilogues.end();
- I != E; ++I) {
- std::cerr << "EPILOGUE\n";
- (*I)->print(std::cerr);
- });
-
-
- DEBUG(std::cerr << "New Machine Function" << "\n");
- DEBUG(std::cerr << BB->getParent() << "\n");
-
- //BB->getParent()->getBasicBlockList().erase(BB);
-
-}
-