if (I == Start) IAfterStart = true;
bool IsSimpleLoadStore;
- if (!isInstVectorizable(I, IsSimpleLoadStore)) continue;
+ if (!isInstVectorizable(&*I, IsSimpleLoadStore))
+ continue;
// Look for an instruction with which to pair instruction *I...
DenseSet<Value *> Users;
AliasSetTracker WriteSet(*AA);
- if (I->mayWriteToMemory()) WriteSet.add(I);
+ if (I->mayWriteToMemory())
+ WriteSet.add(&*I);
bool JAfterStart = IAfterStart;
BasicBlock::iterator J = std::next(I);
for (unsigned ss = 0; J != E && ss <= Config.SearchLimit; ++J, ++ss) {
- if (J == Start) JAfterStart = true;
+ if (&*J == Start)
+ JAfterStart = true;
// Determine if J uses I, if so, exit the loop.
- bool UsesI = trackUsesOfI(Users, WriteSet, I, J, !Config.FastDep);
+ bool UsesI = trackUsesOfI(Users, WriteSet, &*I, &*J, !Config.FastDep);
if (Config.FastDep) {
// Note: For this heuristic to be effective, independent operations
// must tend to be intermixed. This is likely to be true from some
// J does not use I, and comes before the first use of I, so it can be
// merged with I if the instructions are compatible.
int CostSavings, FixedOrder;
- if (!areInstsCompatible(I, J, IsSimpleLoadStore, NonPow2Len,
- CostSavings, FixedOrder)) continue;
+ if (!areInstsCompatible(&*I, &*J, IsSimpleLoadStore, NonPow2Len,
+ CostSavings, FixedOrder))
+ continue;
// J is a candidate for merging with I.
if (PairableInsts.empty() ||
- PairableInsts[PairableInsts.size()-1] != I) {
- PairableInsts.push_back(I);
+ PairableInsts[PairableInsts.size() - 1] != &*I) {
+ PairableInsts.push_back(&*I);
}
- CandidatePairs[I].push_back(J);
+ CandidatePairs[&*I].push_back(&*J);
++TotalPairs;
if (TTI)
- CandidatePairCostSavings.insert(ValuePairWithCost(ValuePair(I, J),
- CostSavings));
+ CandidatePairCostSavings.insert(
+ ValuePairWithCost(ValuePair(&*I, &*J), CostSavings));
if (FixedOrder == 1)
- FixedOrderPairs.insert(ValuePair(I, J));
+ FixedOrderPairs.insert(ValuePair(&*I, &*J));
else if (FixedOrder == -1)
- FixedOrderPairs.insert(ValuePair(J, I));
+ FixedOrderPairs.insert(ValuePair(&*J, &*I));
// The next call to this function must start after the last instruction
// selected during this invocation.
BasicBlock::iterator E = BB.end(), EL =
BasicBlock::iterator(cast<Instruction>(PairableInsts.back()));
for (BasicBlock::iterator I = BB.getFirstInsertionPt(); I != E; ++I) {
- if (IsInPair.find(I) == IsInPair.end()) continue;
+ if (IsInPair.find(&*I) == IsInPair.end())
+ continue;
DenseSet<Value *> Users;
AliasSetTracker WriteSet(*AA);
- if (I->mayWriteToMemory()) WriteSet.add(I);
+ if (I->mayWriteToMemory())
+ WriteSet.add(&*I);
for (BasicBlock::iterator J = std::next(I); J != E; ++J) {
- (void) trackUsesOfI(Users, WriteSet, I, J);
+ (void)trackUsesOfI(Users, WriteSet, &*I, &*J);
if (J == EL)
break;
for (DenseSet<Value *>::iterator U = Users.begin(), E = Users.end();
U != E; ++U) {
if (IsInPair.find(*U) == IsInPair.end()) continue;
- PairableInstUsers.insert(ValuePair(I, *U));
+ PairableInstUsers.insert(ValuePair(&*I, *U));
}
if (I == EL)
if (I->mayWriteToMemory()) WriteSet.add(I);
for (; cast<Instruction>(L) != J; ++L)
- (void) trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSetPairs);
+ (void)trackUsesOfI(Users, WriteSet, I, &*L, true, &LoadMoveSetPairs);
assert(cast<Instruction>(L) == J &&
"Tracking has not proceeded far enough to check for dependencies");
if (I->mayWriteToMemory()) WriteSet.add(I);
for (; cast<Instruction>(L) != J;) {
- if (trackUsesOfI(Users, WriteSet, I, L, true, &LoadMoveSetPairs)) {
+ if (trackUsesOfI(Users, WriteSet, I, &*L, true, &LoadMoveSetPairs)) {
// Move this instruction
- Instruction *InstToMove = L; ++L;
+ Instruction *InstToMove = &*L++;
DEBUG(dbgs() << "BBV: moving: " << *InstToMove <<
" to after " << *InsertionPt << "\n");
// Note: We cannot end the loop when we reach J because J could be moved
// farther down the use chain by another instruction pairing. Also, J
// could be before I if this is an inverted input.
- for (BasicBlock::iterator E = BB.end(); cast<Instruction>(L) != E; ++L) {
- if (trackUsesOfI(Users, WriteSet, I, L)) {
+ for (BasicBlock::iterator E = BB.end(); L != E; ++L) {
+ if (trackUsesOfI(Users, WriteSet, I, &*L)) {
if (L->mayReadFromMemory()) {
- LoadMoveSet[L].push_back(I);
- LoadMoveSetPairs.insert(ValuePair(L, I));
+ LoadMoveSet[&*L].push_back(I);
+ LoadMoveSetPairs.insert(ValuePair(&*L, I));
}
}
}
DEBUG(dbgs() << "BBV: initial: \n" << BB << "\n");
for (BasicBlock::iterator PI = BB.getFirstInsertionPt(); PI != BB.end();) {
- DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(PI);
+ DenseMap<Value *, Value *>::iterator P = ChosenPairs.find(&*PI);
if (P == ChosenPairs.end()) {
++PI;
continue;
// yet. If so, use the header as this will be a single block loop.
if (!Latch)
Latch = Header;
-
- IRBuilder<> Builder(Header->getFirstInsertionPt());
+
+ IRBuilder<> Builder(&*Header->getFirstInsertionPt());
setDebugLocFromInst(Builder, getDebugLocFromInstOrOperands(OldInduction));
auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index");
BranchInst::Create(ExitBlock, ScalarPH, CmpN));
// Get ready to start creating new instructions into the vectorized body.
- Builder.SetInsertPoint(VecBody->getFirstInsertionPt());
+ Builder.SetInsertPoint(&*VecBody->getFirstInsertionPt());
// Save the state.
LoopVectorPreHeader = Lp->getLoopPreheader();
for (unsigned i = 0, e = BBs.size(); i != e; ++i) {
BasicBlock *BB = BBs[i];
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
- Instruction *In = I++;
+ Instruction *In = &*I++;
if (!CSEDenseMapInfo::canHandle(In))
continue;
// the PHIs and the values we are going to write.
// This allows us to write both PHINodes and the extractelement
// instructions.
- Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
+ Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
VectorParts RdxParts = getVectorValue(LoopExitInst);
setDebugLocFromInst(Builder, LoopExitInst);
++UI;
}
}
- Builder.SetInsertPoint(LoopMiddleBlock->getFirstInsertionPt());
+ Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt());
for (unsigned part = 0; part < UF; ++part)
RdxParts[part] = Builder.CreateTrunc(RdxParts[part], RdxVecTy);
}
// Predicate any stores.
for (auto KV : PredicatedStores) {
BasicBlock::iterator I(KV.first);
- auto *BB = SplitBlock(I->getParent(), std::next(I), DT, LI);
- auto *T = SplitBlockAndInsertIfThen(KV.second, I, /*Unreachable=*/false,
+ auto *BB = SplitBlock(I->getParent(), &*std::next(I), DT, LI);
+ auto *T = SplitBlockAndInsertIfThen(KV.second, &*I, /*Unreachable=*/false,
/*BranchWeights=*/nullptr, DT);
I->moveBefore(T);
I->getParent()->setName("pred.store.if");
// This is phase one of vectorizing PHIs.
Type *VecTy = (VF == 1) ? PN->getType() :
VectorType::get(PN->getType(), VF);
- Entry[part] = PHINode::Create(VecTy, 2, "vec.phi",
- LoopVectorBody.back()-> getFirstInsertionPt());
+ Entry[part] = PHINode::Create(
+ VecTy, 2, "vec.phi", &*LoopVectorBody.back()->getFirstInsertionPt());
}
PV->push_back(P);
return;
void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) {
// For each instruction in the old loop.
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
- VectorParts &Entry = WidenMap.get(it);
+ VectorParts &Entry = WidenMap.get(&*it);
switch (it->getOpcode()) {
case Instruction::Br:
continue;
case Instruction::PHI: {
// Vectorize PHINodes.
- widenPHIInstruction(it, Entry, UF, VF, PV);
+ widenPHIInstruction(&*it, Entry, UF, VF, PV);
continue;
}// End of PHI.
Entry[Part] = V;
}
- propagateMetadata(Entry, it);
+ propagateMetadata(Entry, &*it);
break;
}
case Instruction::Select: {
// instruction with a scalar condition. Otherwise, use vector-select.
bool InvariantCond = SE->isLoopInvariant(SE->getSCEV(it->getOperand(0)),
OrigLoop);
- setDebugLocFromInst(Builder, it);
+ setDebugLocFromInst(Builder, &*it);
// The condition can be loop invariant but still defined inside the
// loop. This means that we can't just use the original 'cond' value.
Op1[Part]);
}
- propagateMetadata(Entry, it);
+ propagateMetadata(Entry, &*it);
break;
}
// Widen compares. Generate vector compares.
bool FCmp = (it->getOpcode() == Instruction::FCmp);
CmpInst *Cmp = dyn_cast<CmpInst>(it);
- setDebugLocFromInst(Builder, it);
+ setDebugLocFromInst(Builder, &*it);
VectorParts &A = getVectorValue(it->getOperand(0));
VectorParts &B = getVectorValue(it->getOperand(1));
for (unsigned Part = 0; Part < UF; ++Part) {
Value *C = nullptr;
if (FCmp) {
C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
- cast<FCmpInst>(C)->copyFastMathFlags(it);
+ cast<FCmpInst>(C)->copyFastMathFlags(&*it);
} else {
C = Builder.CreateICmp(Cmp->getPredicate(), A[Part], B[Part]);
}
Entry[Part] = C;
}
- propagateMetadata(Entry, it);
+ propagateMetadata(Entry, &*it);
break;
}
case Instruction::Store:
case Instruction::Load:
- vectorizeMemoryInstruction(it);
+ vectorizeMemoryInstruction(&*it);
break;
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::BitCast: {
CastInst *CI = dyn_cast<CastInst>(it);
- setDebugLocFromInst(Builder, it);
+ setDebugLocFromInst(Builder, &*it);
/// Optimize the special case where the source is the induction
/// variable. Notice that we can only optimize the 'trunc' case
/// because: a. FP conversions lose precision, b. sext/zext may wrap,
ConstantInt::getSigned(CI->getType(), II.getStepValue()->getSExtValue());
for (unsigned Part = 0; Part < UF; ++Part)
Entry[Part] = getStepVector(Broadcasted, VF * Part, Step);
- propagateMetadata(Entry, it);
+ propagateMetadata(Entry, &*it);
break;
}
/// Vectorize casts.
VectorParts &A = getVectorValue(it->getOperand(0));
for (unsigned Part = 0; Part < UF; ++Part)
Entry[Part] = Builder.CreateCast(CI->getOpcode(), A[Part], DestTy);
- propagateMetadata(Entry, it);
+ propagateMetadata(Entry, &*it);
break;
}
// Ignore dbg intrinsics.
if (isa<DbgInfoIntrinsic>(it))
break;
- setDebugLocFromInst(Builder, it);
+ setDebugLocFromInst(Builder, &*it);
Module *M = BB->getParent()->getParent();
CallInst *CI = cast<CallInst>(it);
if (ID &&
(ID == Intrinsic::assume || ID == Intrinsic::lifetime_end ||
ID == Intrinsic::lifetime_start)) {
- scalarizeInstruction(it);
+ scalarizeInstruction(&*it);
break;
}
// The flag shows whether we use Intrinsic or a usual Call for vectorized
bool UseVectorIntrinsic =
ID && getVectorIntrinsicCost(CI, VF, *TTI, TLI) <= CallCost;
if (!UseVectorIntrinsic && NeedToScalarize) {
- scalarizeInstruction(it);
+ scalarizeInstruction(&*it);
break;
}
Entry[Part] = Builder.CreateCall(VectorF, Args);
}
- propagateMetadata(Entry, it);
+ propagateMetadata(Entry, &*it);
break;
}
default:
// All other instructions are unsupported. Scalarize them.
- scalarizeInstruction(it);
+ scalarizeInstruction(&*it);
break;
}// end of switch.
}// end of for_each instr.
if (!PhiTy->isIntegerTy() &&
!PhiTy->isFloatingPointTy() &&
!PhiTy->isPointerTy()) {
- emitAnalysis(VectorizationReport(it)
+ emitAnalysis(VectorizationReport(&*it)
<< "loop control flow is not understood by vectorizer");
DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
return false;
if (*bb != Header) {
// Check that this instruction has no outside users or is an
// identified reduction value with an outside user.
- if (!hasOutsideLoopUser(TheLoop, it, AllowedExit))
+ if (!hasOutsideLoopUser(TheLoop, &*it, AllowedExit))
continue;
- emitAnalysis(VectorizationReport(it) <<
+ emitAnalysis(VectorizationReport(&*it) <<
"value could not be identified as "
"an induction or reduction variable");
return false;
// We only allow if-converted PHIs with exactly two incoming values.
if (Phi->getNumIncomingValues() != 2) {
- emitAnalysis(VectorizationReport(it)
+ emitAnalysis(VectorizationReport(&*it)
<< "control flow not understood by vectorizer");
DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
return false;
// Until we explicitly handle the case of an induction variable with
// an outside loop user we have to give up vectorizing this loop.
- if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) {
- emitAnalysis(VectorizationReport(it) <<
+ if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) {
+ emitAnalysis(VectorizationReport(&*it) <<
"use of induction value outside of the "
"loop is not handled by vectorizer");
return false;
continue;
}
- emitAnalysis(VectorizationReport(it) <<
+ emitAnalysis(VectorizationReport(&*it) <<
"value that could not be identified as "
"reduction is used outside the loop");
DEBUG(dbgs() << "LV: Found an unidentified PHI."<< *Phi <<"\n");
if (CI && !getIntrinsicIDForCall(CI, TLI) && !isa<DbgInfoIntrinsic>(CI) &&
!(CI->getCalledFunction() && TLI &&
TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
- emitAnalysis(VectorizationReport(it) <<
- "call instruction cannot be vectorized");
+ emitAnalysis(VectorizationReport(&*it)
+ << "call instruction cannot be vectorized");
DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n");
return false;
}
if (CI &&
hasVectorInstrinsicScalarOpd(getIntrinsicIDForCall(CI, TLI), 1)) {
if (!SE->isLoopInvariant(SE->getSCEV(CI->getOperand(1)), TheLoop)) {
- emitAnalysis(VectorizationReport(it)
+ emitAnalysis(VectorizationReport(&*it)
<< "intrinsic instruction cannot be vectorized");
DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n");
return false;
// Also, we can't vectorize extractelement instructions.
if ((!VectorType::isValidElementType(it->getType()) &&
!it->getType()->isVoidTy()) || isa<ExtractElementInst>(it)) {
- emitAnalysis(VectorizationReport(it)
+ emitAnalysis(VectorizationReport(&*it)
<< "instruction return type cannot be vectorized");
DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
return false;
// Reduction instructions are allowed to have exit users.
// All other instructions must not have external users.
- if (hasOutsideLoopUser(TheLoop, it, AllowedExit)) {
- emitAnalysis(VectorizationReport(it) <<
+ if (hasOutsideLoopUser(TheLoop, &*it, AllowedExit)) {
+ emitAnalysis(VectorizationReport(&*it) <<
"value cannot be used outside the loop");
return false;
}
BE = TheLoop->block_end(); B != BE; ++B)
for (BasicBlock::iterator I = (*B)->begin(), IE = (*B)->end();
I != IE; ++I)
- if (I->getType()->isPointerTy() && isConsecutivePtr(I))
+ if (I->getType()->isPointerTy() && isConsecutivePtr(&*I))
Worklist.insert(Worklist.end(), I->op_begin(), I->op_end());
while (!Worklist.empty()) {
Type *T = it->getType();
// Skip ignored values.
- if (ValuesToIgnore.count(it))
+ if (ValuesToIgnore.count(&*it))
continue;
// Only examine Loads, Stores and PHINodes.
// Ignore loaded pointer types and stored pointer types that are not
// consecutive. However, we do want to take consecutive stores/loads of
// pointer vectors into account.
- if (T->isPointerTy() && !isConsecutiveLoadOrStore(it))
+ if (T->isPointerTy() && !isConsecutiveLoadOrStore(&*it))
continue;
MaxWidth = std::max(MaxWidth,
for (LoopBlocksDFS::RPOIterator bb = DFS.beginRPO(),
be = DFS.endRPO(); bb != be; ++bb) {
R.NumInstructions += (*bb)->size();
- for (BasicBlock::iterator it = (*bb)->begin(), e = (*bb)->end(); it != e;
- ++it) {
- Instruction *I = it;
- IdxToInstr[Index++] = I;
+ for (Instruction &I : **bb) {
+ IdxToInstr[Index++] = &I;
// Save the end location of each USE.
- for (unsigned i = 0; i < I->getNumOperands(); ++i) {
- Value *U = I->getOperand(i);
+ for (unsigned i = 0; i < I.getNumOperands(); ++i) {
+ Value *U = I.getOperand(i);
Instruction *Instr = dyn_cast<Instruction>(U);
// Ignore non-instruction values such as arguments, constants, etc.
continue;
// Skip ignored values.
- if (ValuesToIgnore.count(it))
+ if (ValuesToIgnore.count(&*it))
continue;
- unsigned C = getInstructionCost(it, VF);
+ unsigned C = getInstructionCost(&*it, VF);
// Check if we should override the cost.
if (ForceTargetInstructionCost.getNumOccurrences() > 0)
}
// Now find the sequence of instructions between PrevInst and Inst.
- BasicBlock::reverse_iterator InstIt(Inst), PrevInstIt(PrevInst);
+ BasicBlock::reverse_iterator InstIt(Inst->getIterator()),
+ PrevInstIt(PrevInst->getIterator());
--PrevInstIt;
while (InstIt != PrevInstIt) {
if (PrevInstIt == PrevInst->getParent()->rend()) {
void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
Instruction *VL0 = cast<Instruction>(VL[0]);
- BasicBlock::iterator NextInst = VL0;
+ BasicBlock::iterator NextInst(VL0);
++NextInst;
Builder.SetInsertPoint(VL0->getParent(), NextInst);
Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
scheduleBlock(BSIter.second.get());
}
- Builder.SetInsertPoint(F->getEntryBlock().begin());
+ Builder.SetInsertPoint(&F->getEntryBlock().front());
vectorizeTree(&VectorizableTree[0]);
DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
User->replaceUsesOfWith(Scalar, Ex);
}
} else {
- Builder.SetInsertPoint(F->getEntryBlock().begin());
+ Builder.SetInsertPoint(&F->getEntryBlock().front());
Value *Ex = Builder.CreateExtractElement(Vec, Lane);
CSEBlocks.insert(&F->getEntryBlock());
User->replaceUsesOfWith(Scalar, Ex);
BasicBlock *BB = (*I)->getBlock();
// For all instructions in blocks containing gather sequences:
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
- Instruction *In = it++;
+ Instruction *In = &*it++;
if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
continue;
}
// Search up and down at the same time, because we don't know if the new
// instruction is above or below the existing scheduling region.
- BasicBlock::reverse_iterator UpIter(ScheduleStart);
+ BasicBlock::reverse_iterator UpIter(ScheduleStart->getIterator());
BasicBlock::reverse_iterator UpperEnd = BB->rend();
BasicBlock::iterator DownIter(ScheduleEnd);
BasicBlock::iterator LowerEnd = BB->end();
Instruction *pickedInst = BundleMember->Inst;
if (LastScheduledInst->getNextNode() != pickedInst) {
BS->BB->getInstList().remove(pickedInst);
- BS->BB->getInstList().insert(LastScheduledInst, pickedInst);
+ BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
+ pickedInst);
}
LastScheduledInst = pickedInst;
BundleMember = BundleMember->NextInBundle;
unsigned VecIdx = 0;
for (auto &V : BuildVectorSlice) {
IRBuilder<true, NoFolder> Builder(
- ++BasicBlock::iterator(InsertAfter));
+ InsertAfter->getParent(), ++BasicBlock::iterator(InsertAfter));
InsertElementInst *IE = cast<InsertElementInst>(V);
Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement(
VectorizedRoot, Builder.getInt32(VecIdx++)));
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
// We may go through BB multiple times so skip the one we have checked.
- if (!VisitedInstrs.insert(it).second)
+ if (!VisitedInstrs.insert(&*it).second)
continue;
if (isa<DbgInfoIntrinsic>(it))