case Intrinsic::usub_with_overflow:
case Intrinsic::sadd_with_overflow:
case Intrinsic::ssub_with_overflow:
+ case Intrinsic::convert_from_fp16:
+ case Intrinsic::convert_to_fp16:
return true;
default:
return false;
const Type *Ty = F->getReturnType();
if (NumOperands == 1) {
if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
+ if (Name == "llvm.convert.to.fp16") {
+ APFloat Val(Op->getValueAPF());
+
+ bool lost = false;
+ Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
+
+ return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
+ }
+
if (!Ty->isFloatTy() && !Ty->isDoubleTy())
return 0;
/// Currently APFloat versions of these functions do not exist, so we use
return ConstantInt::get(Ty, Op->getValue().countTrailingZeros());
else if (Name.startswith("llvm.ctlz"))
return ConstantInt::get(Ty, Op->getValue().countLeadingZeros());
+ else if (Name == "llvm.convert.from.fp16") {
+ APFloat Val(Op->getValue());
+
+ bool lost = false;
+ APFloat::opStatus status =
+ Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
+
+ // Conversion is always precise.
+ status = status;
+ assert(status == APFloat::opOK && !lost &&
+ "Precision lost during fp16 constfolding");
+
+ return ConstantFP::get(F->getContext(), Val);
+ }
return 0;
}