// primary
tok_identifier = -4, tok_number = -5,
-
+
// control
tok_if = -6, tok_then = -7, tok_else = -8,
tok_for = -9, tok_in = -10,
-
+
// operators
tok_binary = -11, tok_unary = -12,
-
+
// var definition
tok_var = -13
};
// Comment until end of line.
do LastChar = getchar();
while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
-
+
if (LastChar != EOF)
return gettok();
}
-
+
// Check for end of file. Don't eat the EOF.
if (LastChar == EOF)
return tok_eof;
/// UnaryExprAST - Expression class for a unary operator.
struct UnaryExprAST : public ExprAST {
- UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
+ UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
: Opcode(std::move(Opcode)), Operand(std::move(Operand)) {}
Value *IRGen(IRGenContext &C) const override;
/// BinaryExprAST - Expression class for a binary operator.
struct BinaryExprAST : public ExprAST {
BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
- std::unique_ptr<ExprAST> RHS)
+ std::unique_ptr<ExprAST> RHS)
: Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
Value *IRGen(IRGenContext &C) const override;
bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
-
+
char getOperatorName() const {
assert(isUnaryOp() || isBinaryOp());
return Name[Name.size()-1];
static int GetTokPrecedence() {
if (!isascii(CurTok))
return -1;
-
+
// Make sure it's a declared binop.
int TokPrec = BinopPrecedence[CurTok];
if (TokPrec <= 0) return -1;
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;
-
+
getNextToken(); // eat identifier.
-
+
if (CurTok != '(') // Simple variable ref.
return llvm::make_unique<VariableExprAST>(IdName);
-
+
// Call.
getNextToken(); // eat (
std::vector<std::unique_ptr<ExprAST>> Args;
// Eat the ')'.
getNextToken();
-
+
return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}
auto V = ParseExpression();
if (!V)
return nullptr;
-
+
if (CurTok != ')')
return ErrorU<ExprAST>("expected ')'");
getNextToken(); // eat ).
/// ifexpr ::= 'if' expression 'then' expression 'else' expression
static std::unique_ptr<ExprAST> ParseIfExpr() {
getNextToken(); // eat the if.
-
+
// condition.
auto Cond = ParseExpression();
if (!Cond)
return nullptr;
-
+
if (CurTok != tok_then)
return ErrorU<ExprAST>("expected then");
getNextToken(); // eat the then
-
+
auto Then = ParseExpression();
if (!Then)
return nullptr;
-
+
if (CurTok != tok_else)
return ErrorU<ExprAST>("expected else");
-
+
getNextToken();
-
+
auto Else = ParseExpression();
if (!Else)
return nullptr;
-
+
return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
std::move(Else));
}
if (CurTok != tok_identifier)
return ErrorU<ForExprAST>("expected identifier after for");
-
+
std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.
-
+
if (CurTok != '=')
return ErrorU<ForExprAST>("expected '=' after for");
getNextToken(); // eat '='.
-
-
+
+
auto Start = ParseExpression();
if (!Start)
return nullptr;
if (CurTok != ',')
return ErrorU<ForExprAST>("expected ',' after for start value");
getNextToken();
-
+
auto End = ParseExpression();
if (!End)
return nullptr;
-
+
// The step value is optional.
std::unique_ptr<ExprAST> Step;
if (CurTok == ',') {
if (!Step)
return nullptr;
}
-
+
if (CurTok != tok_in)
return ErrorU<ForExprAST>("expected 'in' after for");
getNextToken(); // eat 'in'.
-
+
auto Body = ParseExpression();
if (Body)
return nullptr;
std::move(Step), std::move(Body));
}
-/// varexpr ::= 'var' identifier ('=' expression)?
+/// varexpr ::= 'var' identifier ('=' expression)?
// (',' identifier ('=' expression)?)* 'in' expression
static std::unique_ptr<VarExprAST> ParseVarExpr() {
getNextToken(); // eat the var.
// At least one variable name is required.
if (CurTok != tok_identifier)
return ErrorU<VarExprAST>("expected identifier after var");
-
+
while (1) {
std::string Name = IdentifierStr;
getNextToken(); // eat identifier.
std::unique_ptr<ExprAST> Init;
if (CurTok == '=') {
getNextToken(); // eat the '='.
-
+
Init = ParseExpression();
if (!Init)
return nullptr;
}
-
+
VarBindings.push_back(VarExprAST::Binding(Name, std::move(Init)));
-
+
// End of var list, exit loop.
if (CurTok != ',') break;
getNextToken(); // eat the ','.
-
+
if (CurTok != tok_identifier)
return ErrorU<VarExprAST>("expected identifier list after var");
}
-
+
// At this point, we have to have 'in'.
if (CurTok != tok_in)
return ErrorU<VarExprAST>("expected 'in' keyword after 'var'");
getNextToken(); // eat 'in'.
-
+
auto Body = ParseExpression();
if (!Body)
return nullptr;
-
+
return llvm::make_unique<VarExprAST>(std::move(VarBindings), std::move(Body));
}
// If the current token is not an operator, it must be a primary expr.
if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
return ParsePrimary();
-
+
// If this is a unary operator, read it.
int Opc = CurTok;
getNextToken();
// If this is a binop, find its precedence.
while (1) {
int TokPrec = GetTokPrecedence();
-
+
// If this is a binop that binds at least as tightly as the current binop,
// consume it, otherwise we are done.
if (TokPrec < ExprPrec)
return LHS;
-
+
// Okay, we know this is a binop.
int BinOp = CurTok;
getNextToken(); // eat binop
-
+
// Parse the unary expression after the binary operator.
auto RHS = ParseUnary();
if (!RHS)
return nullptr;
-
+
// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (!RHS)
return nullptr;
}
-
+
// Merge LHS/RHS.
LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
}
auto LHS = ParseUnary();
if (!LHS)
return nullptr;
-
+
return ParseBinOpRHS(0, std::move(LHS));
}
/// ::= unary LETTER (id)
static std::unique_ptr<PrototypeAST> ParsePrototype() {
std::string FnName;
-
+
unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
unsigned BinaryPrecedence = 30;
-
+
switch (CurTok) {
default:
return ErrorU<PrototypeAST>("Expected function name in prototype");
FnName += (char)CurTok;
Kind = 2;
getNextToken();
-
+
// Read the precedence if present.
if (CurTok == tok_number) {
if (NumVal < 1 || NumVal > 100)
}
break;
}
-
+
if (CurTok != '(')
return ErrorU<PrototypeAST>("Expected '(' in prototype");
-
+
std::vector<std::string> ArgNames;
while (getNextToken() == tok_identifier)
ArgNames.push_back(IdentifierStr);
if (CurTok != ')')
return ErrorU<PrototypeAST>("Expected ')' in prototype");
-
+
// success.
getNextToken(); // eat ')'.
-
+
// Verify right number of names for operator.
if (Kind && ArgNames.size() != Kind)
return ErrorU<PrototypeAST>("Invalid number of operands for operator");
-
+
return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames), Kind != 0,
BinaryPrecedence);
}
PrototypeAST* getPrototypeAST(const std::string &Name);
private:
typedef std::map<std::string, std::unique_ptr<PrototypeAST>> PrototypeMap;
-
+
LLVMContext &Context;
std::unique_ptr<TargetMachine> TM;
-
+
PrototypeMap Prototypes;
};
}
return ErrorP<Value>("Unknown variable name");
}
-
+
Value *L = LHS->IRGen(C);
Value *R = RHS->IRGen(C);
if (!L || !R) return nullptr;
-
+
switch (Op) {
case '+': return C.getBuilder().CreateFAdd(L, R, "addtmp");
case '-': return C.getBuilder().CreateFSub(L, R, "subtmp");
"booltmp");
default: break;
}
-
+
// If it wasn't a builtin binary operator, it must be a user defined one. Emit
// a call to it.
std::string FnName = MakeLegalFunctionName(std::string("binary")+Op);
Value *Ops[] = { L, R };
return C.getBuilder().CreateCall(F, Ops, "binop");
}
-
+
return ErrorP<Value>("Unknown binary operator");
}
ArgsV.push_back(Args[i]->IRGen(C));
if (!ArgsV.back()) return nullptr;
}
-
+
return C.getBuilder().CreateCall(CalleeF, ArgsV, "calltmp");
}
Value *IfExprAST::IRGen(IRGenContext &C) const {
Value *CondV = Cond->IRGen(C);
if (!CondV) return nullptr;
-
+
// Convert condition to a bool by comparing equal to 0.0.
- ConstantFP *FPZero =
+ ConstantFP *FPZero =
ConstantFP::get(C.getLLVMContext(), APFloat(0.0));
CondV = C.getBuilder().CreateFCmpONE(CondV, FPZero, "ifcond");
-
+
Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
-
+
// Create blocks for the then and else cases. Insert the 'then' block at the
// end of the function.
BasicBlock *ThenBB = BasicBlock::Create(C.getLLVMContext(), "then", TheFunction);
BasicBlock *ElseBB = BasicBlock::Create(C.getLLVMContext(), "else");
BasicBlock *MergeBB = BasicBlock::Create(C.getLLVMContext(), "ifcont");
-
+
C.getBuilder().CreateCondBr(CondV, ThenBB, ElseBB);
-
+
// Emit then value.
C.getBuilder().SetInsertPoint(ThenBB);
-
+
Value *ThenV = Then->IRGen(C);
if (!ThenV) return nullptr;
-
+
C.getBuilder().CreateBr(MergeBB);
// Codegen of 'Then' can change the current block, update ThenBB for the PHI.
ThenBB = C.getBuilder().GetInsertBlock();
-
+
// Emit else block.
TheFunction->getBasicBlockList().push_back(ElseBB);
C.getBuilder().SetInsertPoint(ElseBB);
-
+
Value *ElseV = Else->IRGen(C);
if (!ElseV) return nullptr;
-
+
C.getBuilder().CreateBr(MergeBB);
// Codegen of 'Else' can change the current block, update ElseBB for the PHI.
ElseBB = C.getBuilder().GetInsertBlock();
-
+
// Emit merge block.
TheFunction->getBasicBlockList().push_back(MergeBB);
C.getBuilder().SetInsertPoint(MergeBB);
PHINode *PN = C.getBuilder().CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
"iftmp");
-
+
PN->addIncoming(ThenV, ThenBB);
PN->addIncoming(ElseV, ElseBB);
return PN;
// start = startexpr
// store start -> var
// goto loop
- // loop:
+ // loop:
// ...
// bodyexpr
// ...
// store nextvar -> var
// br endcond, loop, endloop
// outloop:
-
+
Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
// Create an alloca for the variable in the entry block.
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
-
+
// Emit the start code first, without 'variable' in scope.
Value *StartVal = Start->IRGen(C);
if (!StartVal) return nullptr;
-
+
// Store the value into the alloca.
C.getBuilder().CreateStore(StartVal, Alloca);
-
+
// Make the new basic block for the loop header, inserting after current
// block.
BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
-
+
// Insert an explicit fall through from the current block to the LoopBB.
C.getBuilder().CreateBr(LoopBB);
// Start insertion in LoopBB.
C.getBuilder().SetInsertPoint(LoopBB);
-
+
// Within the loop, the variable is defined equal to the PHI node. If it
// shadows an existing variable, we have to restore it, so save it now.
AllocaInst *OldVal = C.NamedValues[VarName];
C.NamedValues[VarName] = Alloca;
-
+
// Emit the body of the loop. This, like any other expr, can change the
// current BB. Note that we ignore the value computed by the body, but don't
// allow an error.
if (!Body->IRGen(C))
return nullptr;
-
+
// Emit the step value.
Value *StepVal;
if (Step) {
// If not specified, use 1.0.
StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
}
-
+
// Compute the end condition.
Value *EndCond = End->IRGen(C);
if (EndCond == 0) return EndCond;
-
+
// Reload, increment, and restore the alloca. This handles the case where
// the body of the loop mutates the variable.
Value *CurVar = C.getBuilder().CreateLoad(Alloca, VarName.c_str());
Value *NextVar = C.getBuilder().CreateFAdd(CurVar, StepVal, "nextvar");
C.getBuilder().CreateStore(NextVar, Alloca);
-
+
// Convert condition to a bool by comparing equal to 0.0.
- EndCond = C.getBuilder().CreateFCmpONE(EndCond,
+ EndCond = C.getBuilder().CreateFCmpONE(EndCond,
ConstantFP::get(getGlobalContext(), APFloat(0.0)),
"loopcond");
-
+
// Create the "after loop" block and insert it.
BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
-
+
// Insert the conditional branch into the end of LoopEndBB.
C.getBuilder().CreateCondBr(EndCond, LoopBB, AfterBB);
-
+
// Any new code will be inserted in AfterBB.
C.getBuilder().SetInsertPoint(AfterBB);
-
+
// Restore the unshadowed variable.
if (OldVal)
C.NamedValues[VarName] = OldVal;
else
C.NamedValues.erase(VarName);
-
+
// for expr always returns 0.0.
return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
}
Value *VarExprAST::IRGen(IRGenContext &C) const {
std::vector<AllocaInst *> OldBindings;
-
+
Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
// Register all variables and emit their initializer.
for (unsigned i = 0, e = VarBindings.size(); i != e; ++i) {
auto &VarName = VarBindings[i].first;
auto &Init = VarBindings[i].second;
-
+
// Emit the initializer before adding the variable to scope, this prevents
// the initializer from referencing the variable itself, and permits stuff
// like this:
if (!InitVal) return nullptr;
} else // If not specified, use 0.0.
InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
-
+
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
C.getBuilder().CreateStore(InitVal, Alloca);
// Remember the old variable binding so that we can restore the binding when
// we unrecurse.
OldBindings.push_back(C.NamedValues[VarName]);
-
+
// Remember this binding.
C.NamedValues[VarName] = Alloca;
}
-
+
// Codegen the body, now that all vars are in scope.
Value *BodyVal = Body->IRGen(C);
if (!BodyVal) return nullptr;
-
+
// Pop all our variables from scope.
for (unsigned i = 0, e = VarBindings.size(); i != e; ++i)
C.NamedValues[VarBindings[i].first] = OldBindings[i];
std::string FnName = MakeLegalFunctionName(Name);
// Make the function type: double(double,double) etc.
- std::vector<Type*> Doubles(Args.size(),
+ std::vector<Type*> Doubles(Args.size(),
Type::getDoubleTy(getGlobalContext()));
FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
Doubles, false);
// Delete the one we just made and get the existing one.
F->eraseFromParent();
F = C.getM().getFunction(Name);
-
+
// If F already has a body, reject this.
if (!F->empty()) {
ErrorP<Function>("redefinition of function");
return nullptr;
}
-
+
// If F took a different number of args, reject.
if (F->arg_size() != Args.size()) {
ErrorP<Function>("redefinition of function with different # args");
return nullptr;
}
}
-
+
// Set names for all arguments.
unsigned Idx = 0;
for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
++AI, ++Idx)
AI->setName(Args[Idx]);
-
+
return F;
}
Function *FunctionAST::IRGen(IRGenContext &C) const {
C.NamedValues.clear();
-
+
Function *TheFunction = Proto->IRGen(C);
if (!TheFunction)
return nullptr;
-
+
// If this is an operator, install it.
if (Proto->isBinaryOp())
BinopPrecedence[Proto->getOperatorName()] = Proto->Precedence;
-
+
// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
C.getBuilder().SetInsertPoint(BB);
-
+
// Add all arguments to the symbol table and create their allocas.
Proto->CreateArgumentAllocas(TheFunction, C);
return TheFunction;
}
-
+
// Error reading body, remove function.
TheFunction->eraseFromParent();
// Get the address of the JIT'd function in memory.
auto ExprSymbol = J.findUnmangledSymbol("__anon_expr");
-
+
// Cast it to the right type (takes no arguments, returns a double) so we
// can call it as a native function.
double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
//===----------------------------------------------------------------------===//
/// putchard - putchar that takes a double and returns 0.
-extern "C"
+extern "C"
double putchard(double X) {
putchar((char)X);
return 0;
}
/// printd - printf that takes a double prints it as "%f\n", returning 0.
-extern "C"
+extern "C"
double printd(double X) {
printf("%f", X);
return 0;
}
-extern "C"
+extern "C"
double printlf() {
printf("\n");
return 0;
return 0;
}
-
// primary
tok_identifier = -4, tok_number = -5,
-
+
// control
tok_if = -6, tok_then = -7, tok_else = -8,
tok_for = -9, tok_in = -10,
-
+
// operators
tok_binary = -11, tok_unary = -12,
-
+
// var definition
tok_var = -13
};
// Comment until end of line.
do LastChar = getchar();
while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
-
+
if (LastChar != EOF)
return gettok();
}
-
+
// Check for end of file. Don't eat the EOF.
if (LastChar == EOF)
return tok_eof;
/// UnaryExprAST - Expression class for a unary operator.
struct UnaryExprAST : public ExprAST {
- UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
+ UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
: Opcode(std::move(Opcode)), Operand(std::move(Operand)) {}
Value *IRGen(IRGenContext &C) const override;
/// BinaryExprAST - Expression class for a binary operator.
struct BinaryExprAST : public ExprAST {
BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
- std::unique_ptr<ExprAST> RHS)
+ std::unique_ptr<ExprAST> RHS)
: Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
Value *IRGen(IRGenContext &C) const override;
bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
-
+
char getOperatorName() const {
assert(isUnaryOp() || isBinaryOp());
return Name[Name.size()-1];
static int GetTokPrecedence() {
if (!isascii(CurTok))
return -1;
-
+
// Make sure it's a declared binop.
int TokPrec = BinopPrecedence[CurTok];
if (TokPrec <= 0) return -1;
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;
-
+
getNextToken(); // eat identifier.
-
+
if (CurTok != '(') // Simple variable ref.
return llvm::make_unique<VariableExprAST>(IdName);
-
+
// Call.
getNextToken(); // eat (
std::vector<std::unique_ptr<ExprAST>> Args;
// Eat the ')'.
getNextToken();
-
+
return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}
auto V = ParseExpression();
if (!V)
return nullptr;
-
+
if (CurTok != ')')
return ErrorU<ExprAST>("expected ')'");
getNextToken(); // eat ).
/// ifexpr ::= 'if' expression 'then' expression 'else' expression
static std::unique_ptr<ExprAST> ParseIfExpr() {
getNextToken(); // eat the if.
-
+
// condition.
auto Cond = ParseExpression();
if (!Cond)
return nullptr;
-
+
if (CurTok != tok_then)
return ErrorU<ExprAST>("expected then");
getNextToken(); // eat the then
-
+
auto Then = ParseExpression();
if (!Then)
return nullptr;
-
+
if (CurTok != tok_else)
return ErrorU<ExprAST>("expected else");
-
+
getNextToken();
-
+
auto Else = ParseExpression();
if (!Else)
return nullptr;
-
+
return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
std::move(Else));
}
if (CurTok != tok_identifier)
return ErrorU<ForExprAST>("expected identifier after for");
-
+
std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.
-
+
if (CurTok != '=')
return ErrorU<ForExprAST>("expected '=' after for");
getNextToken(); // eat '='.
-
-
+
+
auto Start = ParseExpression();
if (!Start)
return nullptr;
if (CurTok != ',')
return ErrorU<ForExprAST>("expected ',' after for start value");
getNextToken();
-
+
auto End = ParseExpression();
if (!End)
return nullptr;
-
+
// The step value is optional.
std::unique_ptr<ExprAST> Step;
if (CurTok == ',') {
if (!Step)
return nullptr;
}
-
+
if (CurTok != tok_in)
return ErrorU<ForExprAST>("expected 'in' after for");
getNextToken(); // eat 'in'.
-
+
auto Body = ParseExpression();
if (Body)
return nullptr;
std::move(Step), std::move(Body));
}
-/// varexpr ::= 'var' identifier ('=' expression)?
+/// varexpr ::= 'var' identifier ('=' expression)?
// (',' identifier ('=' expression)?)* 'in' expression
static std::unique_ptr<VarExprAST> ParseVarExpr() {
getNextToken(); // eat the var.
// At least one variable name is required.
if (CurTok != tok_identifier)
return ErrorU<VarExprAST>("expected identifier after var");
-
+
while (1) {
std::string Name = IdentifierStr;
getNextToken(); // eat identifier.
std::unique_ptr<ExprAST> Init;
if (CurTok == '=') {
getNextToken(); // eat the '='.
-
+
Init = ParseExpression();
if (!Init)
return nullptr;
}
-
+
VarBindings.push_back(VarExprAST::Binding(Name, std::move(Init)));
-
+
// End of var list, exit loop.
if (CurTok != ',') break;
getNextToken(); // eat the ','.
-
+
if (CurTok != tok_identifier)
return ErrorU<VarExprAST>("expected identifier list after var");
}
-
+
// At this point, we have to have 'in'.
if (CurTok != tok_in)
return ErrorU<VarExprAST>("expected 'in' keyword after 'var'");
getNextToken(); // eat 'in'.
-
+
auto Body = ParseExpression();
if (!Body)
return nullptr;
-
+
return llvm::make_unique<VarExprAST>(std::move(VarBindings), std::move(Body));
}
// If the current token is not an operator, it must be a primary expr.
if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
return ParsePrimary();
-
+
// If this is a unary operator, read it.
int Opc = CurTok;
getNextToken();
// If this is a binop, find its precedence.
while (1) {
int TokPrec = GetTokPrecedence();
-
+
// If this is a binop that binds at least as tightly as the current binop,
// consume it, otherwise we are done.
if (TokPrec < ExprPrec)
return LHS;
-
+
// Okay, we know this is a binop.
int BinOp = CurTok;
getNextToken(); // eat binop
-
+
// Parse the unary expression after the binary operator.
auto RHS = ParseUnary();
if (!RHS)
return nullptr;
-
+
// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (!RHS)
return nullptr;
}
-
+
// Merge LHS/RHS.
LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
}
auto LHS = ParseUnary();
if (!LHS)
return nullptr;
-
+
return ParseBinOpRHS(0, std::move(LHS));
}
/// ::= unary LETTER (id)
static std::unique_ptr<PrototypeAST> ParsePrototype() {
std::string FnName;
-
+
unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
unsigned BinaryPrecedence = 30;
-
+
switch (CurTok) {
default:
return ErrorU<PrototypeAST>("Expected function name in prototype");
FnName += (char)CurTok;
Kind = 2;
getNextToken();
-
+
// Read the precedence if present.
if (CurTok == tok_number) {
if (NumVal < 1 || NumVal > 100)
}
break;
}
-
+
if (CurTok != '(')
return ErrorU<PrototypeAST>("Expected '(' in prototype");
-
+
std::vector<std::string> ArgNames;
while (getNextToken() == tok_identifier)
ArgNames.push_back(IdentifierStr);
if (CurTok != ')')
return ErrorU<PrototypeAST>("Expected ')' in prototype");
-
+
// success.
getNextToken(); // eat ')'.
-
+
// Verify right number of names for operator.
if (Kind && ArgNames.size() != Kind)
return ErrorU<PrototypeAST>("Invalid number of operands for operator");
-
+
return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames), Kind != 0,
BinaryPrecedence);
}
PrototypeAST* getPrototypeAST(const std::string &Name);
private:
typedef std::map<std::string, std::unique_ptr<PrototypeAST>> PrototypeMap;
-
+
LLVMContext &Context;
std::unique_ptr<TargetMachine> TM;
-
+
PrototypeMap Prototypes;
};
}
return ErrorP<Value>("Unknown variable name");
}
-
+
Value *L = LHS->IRGen(C);
Value *R = RHS->IRGen(C);
if (!L || !R) return nullptr;
-
+
switch (Op) {
case '+': return C.getBuilder().CreateFAdd(L, R, "addtmp");
case '-': return C.getBuilder().CreateFSub(L, R, "subtmp");
"booltmp");
default: break;
}
-
+
// If it wasn't a builtin binary operator, it must be a user defined one. Emit
// a call to it.
std::string FnName = MakeLegalFunctionName(std::string("binary")+Op);
Value *Ops[] = { L, R };
return C.getBuilder().CreateCall(F, Ops, "binop");
}
-
+
return ErrorP<Value>("Unknown binary operator");
}
ArgsV.push_back(Args[i]->IRGen(C));
if (!ArgsV.back()) return nullptr;
}
-
+
return C.getBuilder().CreateCall(CalleeF, ArgsV, "calltmp");
}
Value *IfExprAST::IRGen(IRGenContext &C) const {
Value *CondV = Cond->IRGen(C);
if (!CondV) return nullptr;
-
+
// Convert condition to a bool by comparing equal to 0.0.
- ConstantFP *FPZero =
+ ConstantFP *FPZero =
ConstantFP::get(C.getLLVMContext(), APFloat(0.0));
CondV = C.getBuilder().CreateFCmpONE(CondV, FPZero, "ifcond");
-
+
Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
-
+
// Create blocks for the then and else cases. Insert the 'then' block at the
// end of the function.
BasicBlock *ThenBB = BasicBlock::Create(C.getLLVMContext(), "then", TheFunction);
BasicBlock *ElseBB = BasicBlock::Create(C.getLLVMContext(), "else");
BasicBlock *MergeBB = BasicBlock::Create(C.getLLVMContext(), "ifcont");
-
+
C.getBuilder().CreateCondBr(CondV, ThenBB, ElseBB);
-
+
// Emit then value.
C.getBuilder().SetInsertPoint(ThenBB);
-
+
Value *ThenV = Then->IRGen(C);
if (!ThenV) return nullptr;
-
+
C.getBuilder().CreateBr(MergeBB);
// Codegen of 'Then' can change the current block, update ThenBB for the PHI.
ThenBB = C.getBuilder().GetInsertBlock();
-
+
// Emit else block.
TheFunction->getBasicBlockList().push_back(ElseBB);
C.getBuilder().SetInsertPoint(ElseBB);
-
+
Value *ElseV = Else->IRGen(C);
if (!ElseV) return nullptr;
-
+
C.getBuilder().CreateBr(MergeBB);
// Codegen of 'Else' can change the current block, update ElseBB for the PHI.
ElseBB = C.getBuilder().GetInsertBlock();
-
+
// Emit merge block.
TheFunction->getBasicBlockList().push_back(MergeBB);
C.getBuilder().SetInsertPoint(MergeBB);
PHINode *PN = C.getBuilder().CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
"iftmp");
-
+
PN->addIncoming(ThenV, ThenBB);
PN->addIncoming(ElseV, ElseBB);
return PN;
// start = startexpr
// store start -> var
// goto loop
- // loop:
+ // loop:
// ...
// bodyexpr
// ...
// store nextvar -> var
// br endcond, loop, endloop
// outloop:
-
+
Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
// Create an alloca for the variable in the entry block.
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
-
+
// Emit the start code first, without 'variable' in scope.
Value *StartVal = Start->IRGen(C);
if (!StartVal) return nullptr;
-
+
// Store the value into the alloca.
C.getBuilder().CreateStore(StartVal, Alloca);
-
+
// Make the new basic block for the loop header, inserting after current
// block.
BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
-
+
// Insert an explicit fall through from the current block to the LoopBB.
C.getBuilder().CreateBr(LoopBB);
// Start insertion in LoopBB.
C.getBuilder().SetInsertPoint(LoopBB);
-
+
// Within the loop, the variable is defined equal to the PHI node. If it
// shadows an existing variable, we have to restore it, so save it now.
AllocaInst *OldVal = C.NamedValues[VarName];
C.NamedValues[VarName] = Alloca;
-
+
// Emit the body of the loop. This, like any other expr, can change the
// current BB. Note that we ignore the value computed by the body, but don't
// allow an error.
if (!Body->IRGen(C))
return nullptr;
-
+
// Emit the step value.
Value *StepVal;
if (Step) {
// If not specified, use 1.0.
StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
}
-
+
// Compute the end condition.
Value *EndCond = End->IRGen(C);
if (EndCond == 0) return EndCond;
-
+
// Reload, increment, and restore the alloca. This handles the case where
// the body of the loop mutates the variable.
Value *CurVar = C.getBuilder().CreateLoad(Alloca, VarName.c_str());
Value *NextVar = C.getBuilder().CreateFAdd(CurVar, StepVal, "nextvar");
C.getBuilder().CreateStore(NextVar, Alloca);
-
+
// Convert condition to a bool by comparing equal to 0.0.
- EndCond = C.getBuilder().CreateFCmpONE(EndCond,
+ EndCond = C.getBuilder().CreateFCmpONE(EndCond,
ConstantFP::get(getGlobalContext(), APFloat(0.0)),
"loopcond");
-
+
// Create the "after loop" block and insert it.
BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
-
+
// Insert the conditional branch into the end of LoopEndBB.
C.getBuilder().CreateCondBr(EndCond, LoopBB, AfterBB);
-
+
// Any new code will be inserted in AfterBB.
C.getBuilder().SetInsertPoint(AfterBB);
-
+
// Restore the unshadowed variable.
if (OldVal)
C.NamedValues[VarName] = OldVal;
else
C.NamedValues.erase(VarName);
-
+
// for expr always returns 0.0.
return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
}
Value *VarExprAST::IRGen(IRGenContext &C) const {
std::vector<AllocaInst *> OldBindings;
-
+
Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
// Register all variables and emit their initializer.
for (unsigned i = 0, e = VarBindings.size(); i != e; ++i) {
auto &VarName = VarBindings[i].first;
auto &Init = VarBindings[i].second;
-
+
// Emit the initializer before adding the variable to scope, this prevents
// the initializer from referencing the variable itself, and permits stuff
// like this:
if (!InitVal) return nullptr;
} else // If not specified, use 0.0.
InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
-
+
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
C.getBuilder().CreateStore(InitVal, Alloca);
// Remember the old variable binding so that we can restore the binding when
// we unrecurse.
OldBindings.push_back(C.NamedValues[VarName]);
-
+
// Remember this binding.
C.NamedValues[VarName] = Alloca;
}
-
+
// Codegen the body, now that all vars are in scope.
Value *BodyVal = Body->IRGen(C);
if (!BodyVal) return nullptr;
-
+
// Pop all our variables from scope.
for (unsigned i = 0, e = VarBindings.size(); i != e; ++i)
C.NamedValues[VarBindings[i].first] = OldBindings[i];
std::string FnName = MakeLegalFunctionName(Name);
// Make the function type: double(double,double) etc.
- std::vector<Type*> Doubles(Args.size(),
+ std::vector<Type*> Doubles(Args.size(),
Type::getDoubleTy(getGlobalContext()));
FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
Doubles, false);
// Delete the one we just made and get the existing one.
F->eraseFromParent();
F = C.getM().getFunction(Name);
-
+
// If F already has a body, reject this.
if (!F->empty()) {
ErrorP<Function>("redefinition of function");
return nullptr;
}
-
+
// If F took a different number of args, reject.
if (F->arg_size() != Args.size()) {
ErrorP<Function>("redefinition of function with different # args");
return nullptr;
}
}
-
+
// Set names for all arguments.
unsigned Idx = 0;
for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
++AI, ++Idx)
AI->setName(Args[Idx]);
-
+
return F;
}
Function *FunctionAST::IRGen(IRGenContext &C) const {
C.NamedValues.clear();
-
+
Function *TheFunction = Proto->IRGen(C);
if (!TheFunction)
return nullptr;
-
+
// If this is an operator, install it.
if (Proto->isBinaryOp())
BinopPrecedence[Proto->getOperatorName()] = Proto->Precedence;
-
+
// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
C.getBuilder().SetInsertPoint(BB);
-
+
// Add all arguments to the symbol table and create their allocas.
Proto->CreateArgumentAllocas(TheFunction, C);
return TheFunction;
}
-
+
// Error reading body, remove function.
TheFunction->eraseFromParent();
// Get the address of the JIT'd function in memory.
auto ExprSymbol = J.findUnmangledSymbol("__anon_expr");
-
+
// Cast it to the right type (takes no arguments, returns a double) so we
// can call it as a native function.
double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
//===----------------------------------------------------------------------===//
/// putchard - putchar that takes a double and returns 0.
-extern "C"
+extern "C"
double putchard(double X) {
putchar((char)X);
return 0;
}
/// printd - printf that takes a double prints it as "%f\n", returning 0.
-extern "C"
+extern "C"
double printd(double X) {
printf("%f", X);
return 0;
}
-extern "C"
+extern "C"
double printlf() {
printf("\n");
return 0;
return 0;
}
-
// primary
tok_identifier = -4, tok_number = -5,
-
+
// control
tok_if = -6, tok_then = -7, tok_else = -8,
tok_for = -9, tok_in = -10,
-
+
// operators
tok_binary = -11, tok_unary = -12,
-
+
// var definition
tok_var = -13
};
// Comment until end of line.
do LastChar = getchar();
while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
-
+
if (LastChar != EOF)
return gettok();
}
-
+
// Check for end of file. Don't eat the EOF.
if (LastChar == EOF)
return tok_eof;
/// UnaryExprAST - Expression class for a unary operator.
struct UnaryExprAST : public ExprAST {
- UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
+ UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
: Opcode(std::move(Opcode)), Operand(std::move(Operand)) {}
Value *IRGen(IRGenContext &C) const override;
/// BinaryExprAST - Expression class for a binary operator.
struct BinaryExprAST : public ExprAST {
BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
- std::unique_ptr<ExprAST> RHS)
+ std::unique_ptr<ExprAST> RHS)
: Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
Value *IRGen(IRGenContext &C) const override;
bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
-
+
char getOperatorName() const {
assert(isUnaryOp() || isBinaryOp());
return Name[Name.size()-1];
static int GetTokPrecedence() {
if (!isascii(CurTok))
return -1;
-
+
// Make sure it's a declared binop.
int TokPrec = BinopPrecedence[CurTok];
if (TokPrec <= 0) return -1;
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;
-
+
getNextToken(); // eat identifier.
-
+
if (CurTok != '(') // Simple variable ref.
return llvm::make_unique<VariableExprAST>(IdName);
-
+
// Call.
getNextToken(); // eat (
std::vector<std::unique_ptr<ExprAST>> Args;
// Eat the ')'.
getNextToken();
-
+
return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}
auto V = ParseExpression();
if (!V)
return nullptr;
-
+
if (CurTok != ')')
return ErrorU<ExprAST>("expected ')'");
getNextToken(); // eat ).
/// ifexpr ::= 'if' expression 'then' expression 'else' expression
static std::unique_ptr<ExprAST> ParseIfExpr() {
getNextToken(); // eat the if.
-
+
// condition.
auto Cond = ParseExpression();
if (!Cond)
return nullptr;
-
+
if (CurTok != tok_then)
return ErrorU<ExprAST>("expected then");
getNextToken(); // eat the then
-
+
auto Then = ParseExpression();
if (!Then)
return nullptr;
-
+
if (CurTok != tok_else)
return ErrorU<ExprAST>("expected else");
-
+
getNextToken();
-
+
auto Else = ParseExpression();
if (!Else)
return nullptr;
-
+
return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
std::move(Else));
}
if (CurTok != tok_identifier)
return ErrorU<ForExprAST>("expected identifier after for");
-
+
std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.
-
+
if (CurTok != '=')
return ErrorU<ForExprAST>("expected '=' after for");
getNextToken(); // eat '='.
-
-
+
+
auto Start = ParseExpression();
if (!Start)
return nullptr;
if (CurTok != ',')
return ErrorU<ForExprAST>("expected ',' after for start value");
getNextToken();
-
+
auto End = ParseExpression();
if (!End)
return nullptr;
-
+
// The step value is optional.
std::unique_ptr<ExprAST> Step;
if (CurTok == ',') {
if (!Step)
return nullptr;
}
-
+
if (CurTok != tok_in)
return ErrorU<ForExprAST>("expected 'in' after for");
getNextToken(); // eat 'in'.
-
+
auto Body = ParseExpression();
if (Body)
return nullptr;
std::move(Step), std::move(Body));
}
-/// varexpr ::= 'var' identifier ('=' expression)?
+/// varexpr ::= 'var' identifier ('=' expression)?
// (',' identifier ('=' expression)?)* 'in' expression
static std::unique_ptr<VarExprAST> ParseVarExpr() {
getNextToken(); // eat the var.
// At least one variable name is required.
if (CurTok != tok_identifier)
return ErrorU<VarExprAST>("expected identifier after var");
-
+
while (1) {
std::string Name = IdentifierStr;
getNextToken(); // eat identifier.
std::unique_ptr<ExprAST> Init;
if (CurTok == '=') {
getNextToken(); // eat the '='.
-
+
Init = ParseExpression();
if (!Init)
return nullptr;
}
-
+
VarBindings.push_back(VarExprAST::Binding(Name, std::move(Init)));
-
+
// End of var list, exit loop.
if (CurTok != ',') break;
getNextToken(); // eat the ','.
-
+
if (CurTok != tok_identifier)
return ErrorU<VarExprAST>("expected identifier list after var");
}
-
+
// At this point, we have to have 'in'.
if (CurTok != tok_in)
return ErrorU<VarExprAST>("expected 'in' keyword after 'var'");
getNextToken(); // eat 'in'.
-
+
auto Body = ParseExpression();
if (!Body)
return nullptr;
-
+
return llvm::make_unique<VarExprAST>(std::move(VarBindings), std::move(Body));
}
// If the current token is not an operator, it must be a primary expr.
if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
return ParsePrimary();
-
+
// If this is a unary operator, read it.
int Opc = CurTok;
getNextToken();
// If this is a binop, find its precedence.
while (1) {
int TokPrec = GetTokPrecedence();
-
+
// If this is a binop that binds at least as tightly as the current binop,
// consume it, otherwise we are done.
if (TokPrec < ExprPrec)
return LHS;
-
+
// Okay, we know this is a binop.
int BinOp = CurTok;
getNextToken(); // eat binop
-
+
// Parse the unary expression after the binary operator.
auto RHS = ParseUnary();
if (!RHS)
return nullptr;
-
+
// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (!RHS)
return nullptr;
}
-
+
// Merge LHS/RHS.
LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
}
auto LHS = ParseUnary();
if (!LHS)
return nullptr;
-
+
return ParseBinOpRHS(0, std::move(LHS));
}
/// ::= unary LETTER (id)
static std::unique_ptr<PrototypeAST> ParsePrototype() {
std::string FnName;
-
+
unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
unsigned BinaryPrecedence = 30;
-
+
switch (CurTok) {
default:
return ErrorU<PrototypeAST>("Expected function name in prototype");
FnName += (char)CurTok;
Kind = 2;
getNextToken();
-
+
// Read the precedence if present.
if (CurTok == tok_number) {
if (NumVal < 1 || NumVal > 100)
}
break;
}
-
+
if (CurTok != '(')
return ErrorU<PrototypeAST>("Expected '(' in prototype");
-
+
std::vector<std::string> ArgNames;
while (getNextToken() == tok_identifier)
ArgNames.push_back(IdentifierStr);
if (CurTok != ')')
return ErrorU<PrototypeAST>("Expected ')' in prototype");
-
+
// success.
getNextToken(); // eat ')'.
-
+
// Verify right number of names for operator.
if (Kind && ArgNames.size() != Kind)
return ErrorU<PrototypeAST>("Invalid number of operands for operator");
-
+
return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames), Kind != 0,
BinaryPrecedence);
}
PrototypeAST* getPrototypeAST(const std::string &Name);
private:
typedef std::map<std::string, std::unique_ptr<PrototypeAST>> PrototypeMap;
-
+
LLVMContext &Context;
std::unique_ptr<TargetMachine> TM;
-
+
PrototypeMap Prototypes;
};
}
return ErrorP<Value>("Unknown variable name");
}
-
+
Value *L = LHS->IRGen(C);
Value *R = RHS->IRGen(C);
if (!L || !R) return nullptr;
-
+
switch (Op) {
case '+': return C.getBuilder().CreateFAdd(L, R, "addtmp");
case '-': return C.getBuilder().CreateFSub(L, R, "subtmp");
"booltmp");
default: break;
}
-
+
// If it wasn't a builtin binary operator, it must be a user defined one. Emit
// a call to it.
std::string FnName = MakeLegalFunctionName(std::string("binary")+Op);
Value *Ops[] = { L, R };
return C.getBuilder().CreateCall(F, Ops, "binop");
}
-
+
return ErrorP<Value>("Unknown binary operator");
}
ArgsV.push_back(Args[i]->IRGen(C));
if (!ArgsV.back()) return nullptr;
}
-
+
return C.getBuilder().CreateCall(CalleeF, ArgsV, "calltmp");
}
Value *IfExprAST::IRGen(IRGenContext &C) const {
Value *CondV = Cond->IRGen(C);
if (!CondV) return nullptr;
-
+
// Convert condition to a bool by comparing equal to 0.0.
- ConstantFP *FPZero =
+ ConstantFP *FPZero =
ConstantFP::get(C.getLLVMContext(), APFloat(0.0));
CondV = C.getBuilder().CreateFCmpONE(CondV, FPZero, "ifcond");
-
+
Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
-
+
// Create blocks for the then and else cases. Insert the 'then' block at the
// end of the function.
BasicBlock *ThenBB = BasicBlock::Create(C.getLLVMContext(), "then", TheFunction);
BasicBlock *ElseBB = BasicBlock::Create(C.getLLVMContext(), "else");
BasicBlock *MergeBB = BasicBlock::Create(C.getLLVMContext(), "ifcont");
-
+
C.getBuilder().CreateCondBr(CondV, ThenBB, ElseBB);
-
+
// Emit then value.
C.getBuilder().SetInsertPoint(ThenBB);
-
+
Value *ThenV = Then->IRGen(C);
if (!ThenV) return nullptr;
-
+
C.getBuilder().CreateBr(MergeBB);
// Codegen of 'Then' can change the current block, update ThenBB for the PHI.
ThenBB = C.getBuilder().GetInsertBlock();
-
+
// Emit else block.
TheFunction->getBasicBlockList().push_back(ElseBB);
C.getBuilder().SetInsertPoint(ElseBB);
-
+
Value *ElseV = Else->IRGen(C);
if (!ElseV) return nullptr;
-
+
C.getBuilder().CreateBr(MergeBB);
// Codegen of 'Else' can change the current block, update ElseBB for the PHI.
ElseBB = C.getBuilder().GetInsertBlock();
-
+
// Emit merge block.
TheFunction->getBasicBlockList().push_back(MergeBB);
C.getBuilder().SetInsertPoint(MergeBB);
PHINode *PN = C.getBuilder().CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
"iftmp");
-
+
PN->addIncoming(ThenV, ThenBB);
PN->addIncoming(ElseV, ElseBB);
return PN;
// start = startexpr
// store start -> var
// goto loop
- // loop:
+ // loop:
// ...
// bodyexpr
// ...
// store nextvar -> var
// br endcond, loop, endloop
// outloop:
-
+
Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
// Create an alloca for the variable in the entry block.
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
-
+
// Emit the start code first, without 'variable' in scope.
Value *StartVal = Start->IRGen(C);
if (!StartVal) return nullptr;
-
+
// Store the value into the alloca.
C.getBuilder().CreateStore(StartVal, Alloca);
-
+
// Make the new basic block for the loop header, inserting after current
// block.
BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
-
+
// Insert an explicit fall through from the current block to the LoopBB.
C.getBuilder().CreateBr(LoopBB);
// Start insertion in LoopBB.
C.getBuilder().SetInsertPoint(LoopBB);
-
+
// Within the loop, the variable is defined equal to the PHI node. If it
// shadows an existing variable, we have to restore it, so save it now.
AllocaInst *OldVal = C.NamedValues[VarName];
C.NamedValues[VarName] = Alloca;
-
+
// Emit the body of the loop. This, like any other expr, can change the
// current BB. Note that we ignore the value computed by the body, but don't
// allow an error.
if (!Body->IRGen(C))
return nullptr;
-
+
// Emit the step value.
Value *StepVal;
if (Step) {
// If not specified, use 1.0.
StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
}
-
+
// Compute the end condition.
Value *EndCond = End->IRGen(C);
if (EndCond == 0) return EndCond;
-
+
// Reload, increment, and restore the alloca. This handles the case where
// the body of the loop mutates the variable.
Value *CurVar = C.getBuilder().CreateLoad(Alloca, VarName.c_str());
Value *NextVar = C.getBuilder().CreateFAdd(CurVar, StepVal, "nextvar");
C.getBuilder().CreateStore(NextVar, Alloca);
-
+
// Convert condition to a bool by comparing equal to 0.0.
- EndCond = C.getBuilder().CreateFCmpONE(EndCond,
+ EndCond = C.getBuilder().CreateFCmpONE(EndCond,
ConstantFP::get(getGlobalContext(), APFloat(0.0)),
"loopcond");
-
+
// Create the "after loop" block and insert it.
BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
-
+
// Insert the conditional branch into the end of LoopEndBB.
C.getBuilder().CreateCondBr(EndCond, LoopBB, AfterBB);
-
+
// Any new code will be inserted in AfterBB.
C.getBuilder().SetInsertPoint(AfterBB);
-
+
// Restore the unshadowed variable.
if (OldVal)
C.NamedValues[VarName] = OldVal;
else
C.NamedValues.erase(VarName);
-
+
// for expr always returns 0.0.
return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
}
Value *VarExprAST::IRGen(IRGenContext &C) const {
std::vector<AllocaInst *> OldBindings;
-
+
Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
// Register all variables and emit their initializer.
for (unsigned i = 0, e = VarBindings.size(); i != e; ++i) {
auto &VarName = VarBindings[i].first;
auto &Init = VarBindings[i].second;
-
+
// Emit the initializer before adding the variable to scope, this prevents
// the initializer from referencing the variable itself, and permits stuff
// like this:
if (!InitVal) return nullptr;
} else // If not specified, use 0.0.
InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
-
+
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
C.getBuilder().CreateStore(InitVal, Alloca);
// Remember the old variable binding so that we can restore the binding when
// we unrecurse.
OldBindings.push_back(C.NamedValues[VarName]);
-
+
// Remember this binding.
C.NamedValues[VarName] = Alloca;
}
-
+
// Codegen the body, now that all vars are in scope.
Value *BodyVal = Body->IRGen(C);
if (!BodyVal) return nullptr;
-
+
// Pop all our variables from scope.
for (unsigned i = 0, e = VarBindings.size(); i != e; ++i)
C.NamedValues[VarBindings[i].first] = OldBindings[i];
std::string FnName = MakeLegalFunctionName(Name);
// Make the function type: double(double,double) etc.
- std::vector<Type*> Doubles(Args.size(),
+ std::vector<Type*> Doubles(Args.size(),
Type::getDoubleTy(getGlobalContext()));
FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
Doubles, false);
// Delete the one we just made and get the existing one.
F->eraseFromParent();
F = C.getM().getFunction(Name);
-
+
// If F already has a body, reject this.
if (!F->empty()) {
ErrorP<Function>("redefinition of function");
return nullptr;
}
-
+
// If F took a different number of args, reject.
if (F->arg_size() != Args.size()) {
ErrorP<Function>("redefinition of function with different # args");
return nullptr;
}
}
-
+
// Set names for all arguments.
unsigned Idx = 0;
for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
++AI, ++Idx)
AI->setName(Args[Idx]);
-
+
return F;
}
Function *FunctionAST::IRGen(IRGenContext &C) const {
C.NamedValues.clear();
-
+
Function *TheFunction = Proto->IRGen(C);
if (!TheFunction)
return nullptr;
-
+
// If this is an operator, install it.
if (Proto->isBinaryOp())
BinopPrecedence[Proto->getOperatorName()] = Proto->Precedence;
-
+
// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
C.getBuilder().SetInsertPoint(BB);
-
+
// Add all arguments to the symbol table and create their allocas.
Proto->CreateArgumentAllocas(TheFunction, C);
return TheFunction;
}
-
+
// Error reading body, remove function.
TheFunction->eraseFromParent();
// Get the address of the JIT'd function in memory.
auto ExprSymbol = J.findUnmangledSymbol("__anon_expr");
-
+
// Cast it to the right type (takes no arguments, returns a double) so we
// can call it as a native function.
double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
//===----------------------------------------------------------------------===//
/// putchard - putchar that takes a double and returns 0.
-extern "C"
+extern "C"
double putchard(double X) {
putchar((char)X);
return 0;
}
/// printd - printf that takes a double prints it as "%f\n", returning 0.
-extern "C"
+extern "C"
double printd(double X) {
printf("%f", X);
return 0;
}
-extern "C"
+extern "C"
double printlf() {
printf("\n");
return 0;
return 0;
}
-
// primary
tok_identifier = -4, tok_number = -5,
-
+
// control
tok_if = -6, tok_then = -7, tok_else = -8,
tok_for = -9, tok_in = -10,
-
+
// operators
tok_binary = -11, tok_unary = -12,
-
+
// var definition
tok_var = -13
};
// Comment until end of line.
do LastChar = getchar();
while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
-
+
if (LastChar != EOF)
return gettok();
}
-
+
// Check for end of file. Don't eat the EOF.
if (LastChar == EOF)
return tok_eof;
/// UnaryExprAST - Expression class for a unary operator.
struct UnaryExprAST : public ExprAST {
- UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
+ UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
: Opcode(std::move(Opcode)), Operand(std::move(Operand)) {}
Value *IRGen(IRGenContext &C) const override;
/// BinaryExprAST - Expression class for a binary operator.
struct BinaryExprAST : public ExprAST {
BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
- std::unique_ptr<ExprAST> RHS)
+ std::unique_ptr<ExprAST> RHS)
: Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
Value *IRGen(IRGenContext &C) const override;
bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
-
+
char getOperatorName() const {
assert(isUnaryOp() || isBinaryOp());
return Name[Name.size()-1];
static int GetTokPrecedence() {
if (!isascii(CurTok))
return -1;
-
+
// Make sure it's a declared binop.
int TokPrec = BinopPrecedence[CurTok];
if (TokPrec <= 0) return -1;
/// ::= identifier '(' expression* ')'
static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
std::string IdName = IdentifierStr;
-
+
getNextToken(); // eat identifier.
-
+
if (CurTok != '(') // Simple variable ref.
return llvm::make_unique<VariableExprAST>(IdName);
-
+
// Call.
getNextToken(); // eat (
std::vector<std::unique_ptr<ExprAST>> Args;
// Eat the ')'.
getNextToken();
-
+
return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
}
auto V = ParseExpression();
if (!V)
return nullptr;
-
+
if (CurTok != ')')
return ErrorU<ExprAST>("expected ')'");
getNextToken(); // eat ).
/// ifexpr ::= 'if' expression 'then' expression 'else' expression
static std::unique_ptr<ExprAST> ParseIfExpr() {
getNextToken(); // eat the if.
-
+
// condition.
auto Cond = ParseExpression();
if (!Cond)
return nullptr;
-
+
if (CurTok != tok_then)
return ErrorU<ExprAST>("expected then");
getNextToken(); // eat the then
-
+
auto Then = ParseExpression();
if (!Then)
return nullptr;
-
+
if (CurTok != tok_else)
return ErrorU<ExprAST>("expected else");
-
+
getNextToken();
-
+
auto Else = ParseExpression();
if (!Else)
return nullptr;
-
+
return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
std::move(Else));
}
if (CurTok != tok_identifier)
return ErrorU<ForExprAST>("expected identifier after for");
-
+
std::string IdName = IdentifierStr;
getNextToken(); // eat identifier.
-
+
if (CurTok != '=')
return ErrorU<ForExprAST>("expected '=' after for");
getNextToken(); // eat '='.
-
-
+
+
auto Start = ParseExpression();
if (!Start)
return nullptr;
if (CurTok != ',')
return ErrorU<ForExprAST>("expected ',' after for start value");
getNextToken();
-
+
auto End = ParseExpression();
if (!End)
return nullptr;
-
+
// The step value is optional.
std::unique_ptr<ExprAST> Step;
if (CurTok == ',') {
if (!Step)
return nullptr;
}
-
+
if (CurTok != tok_in)
return ErrorU<ForExprAST>("expected 'in' after for");
getNextToken(); // eat 'in'.
-
+
auto Body = ParseExpression();
if (Body)
return nullptr;
std::move(Step), std::move(Body));
}
-/// varexpr ::= 'var' identifier ('=' expression)?
+/// varexpr ::= 'var' identifier ('=' expression)?
// (',' identifier ('=' expression)?)* 'in' expression
static std::unique_ptr<VarExprAST> ParseVarExpr() {
getNextToken(); // eat the var.
// At least one variable name is required.
if (CurTok != tok_identifier)
return ErrorU<VarExprAST>("expected identifier after var");
-
+
while (1) {
std::string Name = IdentifierStr;
getNextToken(); // eat identifier.
std::unique_ptr<ExprAST> Init;
if (CurTok == '=') {
getNextToken(); // eat the '='.
-
+
Init = ParseExpression();
if (!Init)
return nullptr;
}
-
+
VarBindings.push_back(VarExprAST::Binding(Name, std::move(Init)));
-
+
// End of var list, exit loop.
if (CurTok != ',') break;
getNextToken(); // eat the ','.
-
+
if (CurTok != tok_identifier)
return ErrorU<VarExprAST>("expected identifier list after var");
}
-
+
// At this point, we have to have 'in'.
if (CurTok != tok_in)
return ErrorU<VarExprAST>("expected 'in' keyword after 'var'");
getNextToken(); // eat 'in'.
-
+
auto Body = ParseExpression();
if (!Body)
return nullptr;
-
+
return llvm::make_unique<VarExprAST>(std::move(VarBindings), std::move(Body));
}
// If the current token is not an operator, it must be a primary expr.
if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
return ParsePrimary();
-
+
// If this is a unary operator, read it.
int Opc = CurTok;
getNextToken();
// If this is a binop, find its precedence.
while (1) {
int TokPrec = GetTokPrecedence();
-
+
// If this is a binop that binds at least as tightly as the current binop,
// consume it, otherwise we are done.
if (TokPrec < ExprPrec)
return LHS;
-
+
// Okay, we know this is a binop.
int BinOp = CurTok;
getNextToken(); // eat binop
-
+
// Parse the unary expression after the binary operator.
auto RHS = ParseUnary();
if (!RHS)
return nullptr;
-
+
// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
int NextPrec = GetTokPrecedence();
if (!RHS)
return nullptr;
}
-
+
// Merge LHS/RHS.
LHS = llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
}
auto LHS = ParseUnary();
if (!LHS)
return nullptr;
-
+
return ParseBinOpRHS(0, std::move(LHS));
}
/// ::= unary LETTER (id)
static std::unique_ptr<PrototypeAST> ParsePrototype() {
std::string FnName;
-
+
unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
unsigned BinaryPrecedence = 30;
-
+
switch (CurTok) {
default:
return ErrorU<PrototypeAST>("Expected function name in prototype");
FnName += (char)CurTok;
Kind = 2;
getNextToken();
-
+
// Read the precedence if present.
if (CurTok == tok_number) {
if (NumVal < 1 || NumVal > 100)
}
break;
}
-
+
if (CurTok != '(')
return ErrorU<PrototypeAST>("Expected '(' in prototype");
-
+
std::vector<std::string> ArgNames;
while (getNextToken() == tok_identifier)
ArgNames.push_back(IdentifierStr);
if (CurTok != ')')
return ErrorU<PrototypeAST>("Expected ')' in prototype");
-
+
// success.
getNextToken(); // eat ')'.
-
+
// Verify right number of names for operator.
if (Kind && ArgNames.size() != Kind)
return ErrorU<PrototypeAST>("Invalid number of operands for operator");
-
+
return llvm::make_unique<PrototypeAST>(FnName, std::move(ArgNames), Kind != 0,
BinaryPrecedence);
}
PrototypeAST* getPrototypeAST(const std::string &Name);
private:
typedef std::map<std::string, std::unique_ptr<PrototypeAST>> PrototypeMap;
-
+
LLVMContext &Context;
std::unique_ptr<TargetMachine> TM;
-
+
PrototypeMap Prototypes;
};
}
return ErrorP<Value>("Unknown variable name");
}
-
+
Value *L = LHS->IRGen(C);
Value *R = RHS->IRGen(C);
if (!L || !R) return nullptr;
-
+
switch (Op) {
case '+': return C.getBuilder().CreateFAdd(L, R, "addtmp");
case '-': return C.getBuilder().CreateFSub(L, R, "subtmp");
"booltmp");
default: break;
}
-
+
// If it wasn't a builtin binary operator, it must be a user defined one. Emit
// a call to it.
std::string FnName = MakeLegalFunctionName(std::string("binary")+Op);
Value *Ops[] = { L, R };
return C.getBuilder().CreateCall(F, Ops, "binop");
}
-
+
return ErrorP<Value>("Unknown binary operator");
}
ArgsV.push_back(Args[i]->IRGen(C));
if (!ArgsV.back()) return nullptr;
}
-
+
return C.getBuilder().CreateCall(CalleeF, ArgsV, "calltmp");
}
Value *IfExprAST::IRGen(IRGenContext &C) const {
Value *CondV = Cond->IRGen(C);
if (!CondV) return nullptr;
-
+
// Convert condition to a bool by comparing equal to 0.0.
- ConstantFP *FPZero =
+ ConstantFP *FPZero =
ConstantFP::get(C.getLLVMContext(), APFloat(0.0));
CondV = C.getBuilder().CreateFCmpONE(CondV, FPZero, "ifcond");
-
+
Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
-
+
// Create blocks for the then and else cases. Insert the 'then' block at the
// end of the function.
BasicBlock *ThenBB = BasicBlock::Create(C.getLLVMContext(), "then", TheFunction);
BasicBlock *ElseBB = BasicBlock::Create(C.getLLVMContext(), "else");
BasicBlock *MergeBB = BasicBlock::Create(C.getLLVMContext(), "ifcont");
-
+
C.getBuilder().CreateCondBr(CondV, ThenBB, ElseBB);
-
+
// Emit then value.
C.getBuilder().SetInsertPoint(ThenBB);
-
+
Value *ThenV = Then->IRGen(C);
if (!ThenV) return nullptr;
-
+
C.getBuilder().CreateBr(MergeBB);
// Codegen of 'Then' can change the current block, update ThenBB for the PHI.
ThenBB = C.getBuilder().GetInsertBlock();
-
+
// Emit else block.
TheFunction->getBasicBlockList().push_back(ElseBB);
C.getBuilder().SetInsertPoint(ElseBB);
-
+
Value *ElseV = Else->IRGen(C);
if (!ElseV) return nullptr;
-
+
C.getBuilder().CreateBr(MergeBB);
// Codegen of 'Else' can change the current block, update ElseBB for the PHI.
ElseBB = C.getBuilder().GetInsertBlock();
-
+
// Emit merge block.
TheFunction->getBasicBlockList().push_back(MergeBB);
C.getBuilder().SetInsertPoint(MergeBB);
PHINode *PN = C.getBuilder().CreatePHI(Type::getDoubleTy(getGlobalContext()), 2,
"iftmp");
-
+
PN->addIncoming(ThenV, ThenBB);
PN->addIncoming(ElseV, ElseBB);
return PN;
// start = startexpr
// store start -> var
// goto loop
- // loop:
+ // loop:
// ...
// bodyexpr
// ...
// store nextvar -> var
// br endcond, loop, endloop
// outloop:
-
+
Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
// Create an alloca for the variable in the entry block.
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
-
+
// Emit the start code first, without 'variable' in scope.
Value *StartVal = Start->IRGen(C);
if (!StartVal) return nullptr;
-
+
// Store the value into the alloca.
C.getBuilder().CreateStore(StartVal, Alloca);
-
+
// Make the new basic block for the loop header, inserting after current
// block.
BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction);
-
+
// Insert an explicit fall through from the current block to the LoopBB.
C.getBuilder().CreateBr(LoopBB);
// Start insertion in LoopBB.
C.getBuilder().SetInsertPoint(LoopBB);
-
+
// Within the loop, the variable is defined equal to the PHI node. If it
// shadows an existing variable, we have to restore it, so save it now.
AllocaInst *OldVal = C.NamedValues[VarName];
C.NamedValues[VarName] = Alloca;
-
+
// Emit the body of the loop. This, like any other expr, can change the
// current BB. Note that we ignore the value computed by the body, but don't
// allow an error.
if (!Body->IRGen(C))
return nullptr;
-
+
// Emit the step value.
Value *StepVal;
if (Step) {
// If not specified, use 1.0.
StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0));
}
-
+
// Compute the end condition.
Value *EndCond = End->IRGen(C);
if (EndCond == 0) return EndCond;
-
+
// Reload, increment, and restore the alloca. This handles the case where
// the body of the loop mutates the variable.
Value *CurVar = C.getBuilder().CreateLoad(Alloca, VarName.c_str());
Value *NextVar = C.getBuilder().CreateFAdd(CurVar, StepVal, "nextvar");
C.getBuilder().CreateStore(NextVar, Alloca);
-
+
// Convert condition to a bool by comparing equal to 0.0.
- EndCond = C.getBuilder().CreateFCmpONE(EndCond,
+ EndCond = C.getBuilder().CreateFCmpONE(EndCond,
ConstantFP::get(getGlobalContext(), APFloat(0.0)),
"loopcond");
-
+
// Create the "after loop" block and insert it.
BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction);
-
+
// Insert the conditional branch into the end of LoopEndBB.
C.getBuilder().CreateCondBr(EndCond, LoopBB, AfterBB);
-
+
// Any new code will be inserted in AfterBB.
C.getBuilder().SetInsertPoint(AfterBB);
-
+
// Restore the unshadowed variable.
if (OldVal)
C.NamedValues[VarName] = OldVal;
else
C.NamedValues.erase(VarName);
-
+
// for expr always returns 0.0.
return Constant::getNullValue(Type::getDoubleTy(getGlobalContext()));
}
Value *VarExprAST::IRGen(IRGenContext &C) const {
std::vector<AllocaInst *> OldBindings;
-
+
Function *TheFunction = C.getBuilder().GetInsertBlock()->getParent();
// Register all variables and emit their initializer.
for (unsigned i = 0, e = VarBindings.size(); i != e; ++i) {
auto &VarName = VarBindings[i].first;
auto &Init = VarBindings[i].second;
-
+
// Emit the initializer before adding the variable to scope, this prevents
// the initializer from referencing the variable itself, and permits stuff
// like this:
if (!InitVal) return nullptr;
} else // If not specified, use 0.0.
InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0));
-
+
AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
C.getBuilder().CreateStore(InitVal, Alloca);
// Remember the old variable binding so that we can restore the binding when
// we unrecurse.
OldBindings.push_back(C.NamedValues[VarName]);
-
+
// Remember this binding.
C.NamedValues[VarName] = Alloca;
}
-
+
// Codegen the body, now that all vars are in scope.
Value *BodyVal = Body->IRGen(C);
if (!BodyVal) return nullptr;
-
+
// Pop all our variables from scope.
for (unsigned i = 0, e = VarBindings.size(); i != e; ++i)
C.NamedValues[VarBindings[i].first] = OldBindings[i];
std::string FnName = MakeLegalFunctionName(Name);
// Make the function type: double(double,double) etc.
- std::vector<Type*> Doubles(Args.size(),
+ std::vector<Type*> Doubles(Args.size(),
Type::getDoubleTy(getGlobalContext()));
FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()),
Doubles, false);
// Delete the one we just made and get the existing one.
F->eraseFromParent();
F = C.getM().getFunction(Name);
-
+
// If F already has a body, reject this.
if (!F->empty()) {
ErrorP<Function>("redefinition of function");
return nullptr;
}
-
+
// If F took a different number of args, reject.
if (F->arg_size() != Args.size()) {
ErrorP<Function>("redefinition of function with different # args");
return nullptr;
}
}
-
+
// Set names for all arguments.
unsigned Idx = 0;
for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
++AI, ++Idx)
AI->setName(Args[Idx]);
-
+
return F;
}
Function *FunctionAST::IRGen(IRGenContext &C) const {
C.NamedValues.clear();
-
+
Function *TheFunction = Proto->IRGen(C);
if (!TheFunction)
return nullptr;
-
+
// If this is an operator, install it.
if (Proto->isBinaryOp())
BinopPrecedence[Proto->getOperatorName()] = Proto->Precedence;
-
+
// Create a new basic block to start insertion into.
BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction);
C.getBuilder().SetInsertPoint(BB);
-
+
// Add all arguments to the symbol table and create their allocas.
Proto->CreateArgumentAllocas(TheFunction, C);
return TheFunction;
}
-
+
// Error reading body, remove function.
TheFunction->eraseFromParent();
// Get the address of the JIT'd function in memory.
auto ExprSymbol = J.findUnmangledSymbol("__anon_expr");
-
+
// Cast it to the right type (takes no arguments, returns a double) so we
// can call it as a native function.
double (*FP)() = (double (*)())(intptr_t)ExprSymbol.getAddress();
//===----------------------------------------------------------------------===//
/// putchard - putchar that takes a double and returns 0.
-extern "C"
+extern "C"
double putchard(double X) {
putchar((char)X);
return 0;
}
/// printd - printf that takes a double prints it as "%f\n", returning 0.
-extern "C"
+extern "C"
double printd(double X) {
printf("%f", X);
return 0;
}
-extern "C"
+extern "C"
double printlf() {
printf("\n");
return 0;
return 0;
}
-