// isOnlyUse - Return true if this instruction will be deleted if we stop using
// it.
static bool isOnlyUse(Value *V) {
- return V->use_size() == 1 || isa<Constant>(V);
+ return V->hasOneUse() || isa<Constant>(V);
}
// SimplifyCommutative - This performs a few simplifications for commutative
// non-constant operand of the multiply.
//
static inline Value *dyn_castFoldableMul(Value *V) {
- if (V->use_size() == 1 && V->getType()->isInteger())
+ if (V->hasOneUse() && V->getType()->isInteger())
if (Instruction *I = dyn_cast<Instruction>(V))
if (I->getOpcode() == Instruction::Mul)
if (isa<Constant>(I->getOperand(1)))
// Otherwise, if the LHS is not of the same opcode as the root, return.
Instruction *LHSI = dyn_cast<Instruction>(LHS);
- while (LHSI && LHSI->getOpcode() == Opcode && LHSI->use_size() == 1) {
+ while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
// Should we apply this transform to the RHS?
bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
return BinaryOperator::createNot(Op1);
if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1))
- if (Op1I->use_size() == 1) {
+ if (Op1I->hasOneUse()) {
// Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
// is not used by anyone else...
//
if ((*AndRHS & *OpRHS)->isNullValue()) {
// (X ^ C1) & C2 --> (X & C2) iff (C1&C2) == 0
return BinaryOperator::create(Instruction::And, X, AndRHS);
- } else if (Op->use_size() == 1) {
+ } else if (Op->hasOneUse()) {
// (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
std::string OpName = Op->getName(); Op->setName("");
Instruction *And = BinaryOperator::create(Instruction::And,
if (Together == AndRHS) // (X | C) & C --> C
return ReplaceInstUsesWith(TheAnd, AndRHS);
- if (Op->use_size() == 1 && Together != OpRHS) {
+ if (Op->hasOneUse() && Together != OpRHS) {
// (X | C1) & C2 --> (X | (C1&C2)) & C2
std::string Op0Name = Op->getName(); Op->setName("");
Instruction *Or = BinaryOperator::create(Instruction::Or, X,
}
break;
case Instruction::Add:
- if (Op->use_size() == 1) {
+ if (Op->hasOneUse()) {
// Adding a one to a single bit bit-field should be turned into an XOR
// of the bit. First thing to check is to see if this AND is with a
// single bit constant.
if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
// xor (setcc A, B), true = not (setcc A, B) = setncc A, B
if (SetCondInst *SCI = dyn_cast<SetCondInst>(Op0I))
- if (RHS == ConstantBool::True && SCI->use_size() == 1)
+ if (RHS == ConstantBool::True && SCI->hasOneUse())
return new SetCondInst(SCI->getInverseCondition(),
SCI->getOperand(0), SCI->getOperand(1));
}
if (Instruction *Op0I = dyn_cast<Instruction>(Op0))
- if (Op0I->getOpcode() == Instruction::Or && Op0I->use_size() == 1) {
+ if (Op0I->getOpcode() == Instruction::Or && Op0I->hasOneUse()) {
if (Op0I->getOperand(0) == Op1) // (B|A)^B == (A|B)^B
cast<BinaryOperator>(Op0I)->swapOperands();
if (Op0I->getOperand(1) == Op1) { // (A|B)^B == A & ~B
return new SetCondInst(I.getOpcode(), BOp0, NegVal);
else if (Value *NegVal = dyn_castNegVal(BOp0))
return new SetCondInst(I.getOpcode(), NegVal, BOp1);
- else if (BO->use_size() == 1) {
+ else if (BO->hasOneUse()) {
Instruction *Neg = BinaryOperator::createNeg(BOp1, BO->getName());
BO->setName("");
InsertNewInstBefore(Neg, I);
// If the operand is an bitwise operator with a constant RHS, and the
// shift is the only use, we can pull it out of the shift.
- if (Op0->use_size() == 1)
+ if (Op0->hasOneUse())
if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0))
if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
bool isValid = true; // Valid only for And, Or, Xor
// propagate the cast into the instruction. Also, only handle integral types
// for now.
if (Instruction *SrcI = dyn_cast<Instruction>(Src))
- if (SrcI->use_size() == 1 && Src->getType()->isIntegral() &&
+ if (SrcI->hasOneUse() && Src->getType()->isIntegral() &&
CI.getType()->isInteger()) { // Don't mess with casts to bool here
const Type *DestTy = CI.getType();
unsigned SrcBitSize = getTypeSizeInBits(Src->getType());
// only expression using it...
//
if (BinaryOperator *LHSI = dyn_cast<BinaryOperator>(LHS))
- if (LHSI->getOpcode() == I->getOpcode() && LHSI->use_size() == 1) {
+ if (LHSI->getOpcode() == I->getOpcode() && LHSI->hasOneUse()) {
// If the rank of our current RHS is less than the rank of the LHS's LHS,
// then we reassociate the two instructions...
// we introduce tons of unnecessary negation instructions...
//
if (Instruction *I = dyn_cast<Instruction>(V))
- if (I->getOpcode() == Instruction::Add && I->use_size() == 1) {
+ if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
Value *RHS = NegateValue(I->getOperand(1), BI);
Value *LHS = NegateValue(I->getOperand(0), BI);
Instruction *RHSI = dyn_cast<Instruction>(I->getOperand(1));
if (LHSI && (int)LHSI->getOpcode() == I->getOpcode() &&
RHSI && (int)RHSI->getOpcode() == I->getOpcode() &&
- RHSI->use_size() == 1) {
+ RHSI->hasOneUse()) {
// Insert a new temporary instruction... (A+B)+C
BinaryOperator *Tmp = BinaryOperator::create(I->getOpcode(), LHSI,
RHSI->getOperand(0),